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Abstract: In this paper, we study some strong limit theorems for the sequence {niﬂ i1 Xnt,
for each # > 0 and weighted sums Y}_; a,x X, where {X,, n > 1} is a sequence of negative
dependence Sub-Gaussian random variables and a,; is an array of nonnegative real numbers.
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1.Introduction

Some convergence theorems for weighted sums
> h—1ane X has been studied by Chow [4] for
the case where {X,, n > 1} is a sequence
of independent, generalized Gaussian random
variables. The case of m-dependent generalized
Gaussian r.v.’s has been discussed by Ouy [6],
and the strong law of large numbers for sequences
of independent Sub-Gaussian random variables
has been obtained by Taylor and Chung Hu
[9]. In this paper, we extend some of these re-
sults and prove some strong limit theorems for
the sequence of {n% Yoi—q1 Xn}, for each g > 0,
and weighted sums > }_; a,x X, where

{Xn,n > 1} is a sequence of negative de-
pendent Sub-Gaussian random variables and
Gnr 1s an array of nonnegative real num-
bers. Also by sub-Gaussian techniques we prove
that > p—;anx Xk converge with probability
one for each n, where E[X,|F, 1] =0, F, =
o(Xy, -+, Xp) and 3572, a%j = O(k=P) for ev-
ery 0 > 0.To prove these results we need to the
following definitions, lemmas and theorems.

Definition 1. A symmetric random variable
X is said to be Sub- Gaussian (SG) r.v. if there
exist a nonnegative real number « such that for
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each real number ¢

2t2
EetX < exp[aT]. (1.1)

The number,
7(X) = inf{a > 0: E(e'¥) < exp[%£], t € R},
will be called the Gaussian standard of the ran-
dom variable X. It is evident that X will be
a Sub-Gaussian random variable if and only if
7(X) < oo. Moreover

7(X) = sup
140

and inequality (1.1) holds for a = 7(X).

lz ln(E(etX))] 12
12 ’

Definition 2.A symmetric random variable X
is strictly Sub-Gaussian if

E(X?) = r%(X).

Definition 3.The random variables
Xy, -+, X, are said to be ND if we have

P[[(X; < =))] < [] PIX; < =], (1.2)
j=1 j=1
and

P (X; > a;)] < [] PIX; > 2], (1.3)

j=1 j=1



for all z1,---,z, € R . An infinite sequence
{X, , n > 1} is said to be ND if every finite
subset Xi,---, X, is ND. The conditions (1.2)
and (1.3) are equivalent for n = 2, but these do
not agree for n > 3 (see [3],Pages 3-4).

The following Lemmas and Theorems which
our work is based on can be found in Taylor,
Chung Hu (1987),Buldygin, Kozachenko (1980)
and Bozorgnia, Taylor (1996).

Theorem 1. ( [10]) Let X be Sub-Gaussian
random variable and a is a real number (a # 0),
then aX is sub-Gaussian random variable with

7(X) = [a|T(X).

Lemma 1. ([9]) If X is a Sub-Gaussian ran-
dom variable with 7(X) < «, then

i) For every t € R,

a?t?
E[e!XN] < 2exp[——]. (1.4)

ii) For every e > 0, we have

2

PX >¢| < exp[—iv (1.5)
and
£2
Pl|X|>¢] < Qexp[—ﬁ]. (1.6)
Lemma 2. ( [9]) If X is bounded (| X]| < M)

and has zero mean (E(X) = 0), then X is Sub-
Gaussian random variable with 7(X) < v2M.

Lemma 3.( [3]) Let X;,---,X,, be ND ran-
dom variables and f; ---,f, be a sequence
of Borel functions which all are monotone in-

creasing (or all are monotone decreasing) , then
f1(X1), -+, fn(X,) are ND random variables.

Lemmas 4.( [3]) Let X;,---,X, be ND non-
negative random variables. Then

E[l:[ Xjl < 1:[ EX;]

Examples .

1) Let X has uniform distribution in (a,b)
interval, then ¥ = X — ““’ is Sub-Gaussian
random variable with 7'( ) <V2(b—a).

2) Let X be a continuous random variable
with d.f. F(z), then Y = F(X) —  is Sub-
Gaussian with 7(Y) < v/2.

3) Let X be a random variable with d.f. Nor-
mal and E(X) =0, Var(X) =02, then X

is strictly Sub-Gaussian with 72(X) = o?.

2. Strong Limit Theorems

In this section we obtain some strong limit the-
orems for sequence {n—% Y k—1 Xi} foreach g >0,
where {X,,,n > 1} is a sequence of negative de-
pendent Sub-Gaussian random variables with
7(X,) < ay, for every n > 1, under the condi-
tions on Yp_; af.

Theorem 2. Let {X,, n > 1} be a se-
quence of ND Sub-Gaussian random variables
with 7(X,) < ay.

i) S, = Zk 1 Xk is a Sub-Gaussian r.v. with
012 — =1 Oz

i) If Y0, a2 =0(n*P) for every
8 >0, then

lim —ZXk_O W.P.1.

n—oo N,

iii) If a1y = p =

1
ﬁ:> 2

- = ap = «, then for some

lim —Zxk =0 W.P.L.

n—oo nb

Proof.

i) By Lemmas 1,3,4 and Theorems 1 we have

Bl < T Ble™] < expl o
("] < IT Ble™*] < exp[—-],
k=1

hence S,, is a Sub-Gaussian r.v. with

2 _ n 2
o = =105 -

ii) For each ¢ > 0 by part i and Lemma
(1.ii), we have

00 n 00 62’rL _

P < -
> PSS Xil > ne] 23 expl~ 5
n=1 k=1 n=1



iii) and also

00 12
Pll—

Z [|nﬁZXk|>5]§

n=1 k=1

6n26 1

] < o0.

2 Z exp[—
which these complete the proof. O.

Theorem 3. Let {X,,, n > 1} be a sequence of
ND random variables satisfying

Pla < X; < b] =1, for each ¢ where a < b, then
for every 8 > %,

N
dim g I;(Xk — E(Xy)) =0,

Proof. Define Y, = X, — E(X}),
k=1,2,---,n, then, E(Y;) =0 and

|Yi| < (b —a), W.P.1, hence by Lemma 2
{Yy, k > 1} be a sequence of Sub-Gaussian ran-
dom variables with 7(Y}) < v/2(b — a). Thus by
Theorem (3.iii), for every 8 > 3, we have

W.P.1.

lim Z X — =0, W.Pl.

n—oo nﬁ

Corollary 1. Let {X,,, n > 1} be a sequence
of ND identically distributed random variables
with E(X;) =0, Var(X;)=1 and
E[Xf] < 0ok > 1, then % is an asymp-
totically Sub-Gaussian random variable, when
n — oo with T(\/—)<1

Proof. For t € R we have

12 1 t2

14+ +o(=)] — e,

when n — o0 .

2.Some Strong Limit Theorems for
weighted sums

In this section, we obtain some strong limit
theorems for weighted sums
he1ank Xy and YOp_ app Xy, where

{X,, n > 1} is a sequence of negative depen-
dence Sub-Gaussian random variables and a,;, is
an array of nonnegative real numbers.Also we
prove T, = > 72, anx Xy convergence W.P.1.
under the condition that E[X,|F,_1] =0, F, =
o(Xy,-++, Xp) and 3572, a%j = O(k=P) for ev-
ery #>0and n>1.

Lemma 5. Let {X,,, n > 1} be a sequence
of ND Sub-Gaussian random variables with
7(Xk) < a. Then

i) T, is a Sub-Gaussian random variable with

7(Ty) < an/A,, for all n.

ii) For every ¢ >0

2

£
P[|T| > €] < 2exp[~5—57]-
n

Where A, = 332, a?,.
Proof.

i) By Lemmas 1,3,4 and Theorems 1, for every
h € R we have

m
E[ethm] S H E[ehankxk] S
k=1

h2a? 7 a? h2a? A,

5] < exp]

]

exp|

Hence, by Fatou’s Lemma

h%a2A,,

Ble"] < exp|

]

ii) This follows by part i and Lemma 1. O

Corollary 2.

) IR

° , exp[— aZA ] < 0o, then

lim Z ank X =0

n—aoo

W.P.1. (2.1)

L(n)), then (2.1)

In particular if A, = o(In™
holds.

i) If S, =>j_1 Xk and (>0 then



lim n 2(In~0+972(n))s, =0

n—aoo

W.P.1.

Theorem 4. Let {X,, n > 1} be a sequence
of ND Sub-Gaussian r.v.’s

i) If limy oo > p—y @, =1 # 0 < oo, then for
every >0

lim n ﬂZanka =0

n—> o0
k=1

W.P.1. (2.2)

i) If Gl = O(n=#) for some k <n and
16} > s, then

n
nh_r)nw];lanka =0 W.PL. (2.3)

iii) If Y7 a2, = O(n?) for some B > 0,
then

n
lim kz_:l ank Xy =0 W.P.1. (2.4)

Proof. By Lemma 5 for some 0 < B < oo, and
e>0

ZPW ﬁzanka|>8]<
- k=1
n2he?

[o¢]
2 Z exp[——2 5
— 202 3

] < o0,
=10nk

and

2

00 n o
Z Pl Zanka| >e] < Z 2 exp|—
k=1 n=1

n=1

£2,28—1

232] o0-

o
SZ exp|—

Now (2.2) and (2.3) follow from the Borel Can-
telli Lemma, and (2.4) follows from part (ii). O

Theorem 5. Let {X,,, n > 1} be a sequence
of ND Sub-Gaussian r.v.’s. Then for every = € R
2

X
P[g.ngagflTnjl > ] < 2633;0[—m]-

]
202 Y0 a2,

Proof. By Lemmas 1,3,4 and Theorems 1 for
every h € R we have

2 2A
Bl Tnm| < EelTrm 4 Be=hTom < 2exp[h a“Ay,

]

Since {Tnm,Fm, m > 1} is a martingale
and {|Thnm|, Fm, m > 1} is submartingale and
@(t) = eth for each h > 0 is increasing and convex
function, then by the submartingale inequality

Plmax |T,;| > x] = Plmax ¢(|Ty;|) > o(z)] <
j<m j<m

Elo(|T, 2a2A
(TinD] _ g g 1 120
o(z)
For h = afAn we have
72
P[max|Tn]| > x| < 2exp[— 57 A ——
Jj<m n

Theorem 6. Under the assumptions of
Theorem 5

i) If {T,,n, m > 1} converges in probability
for every n, then it converges W.P.1.

i) T, = > 52, ank Xy converges W.P.1 for
each n.

Proof.

i) Let T, — [, in probability for every n,
then there exist a subsequence
{myg, k> 1} such that

Tym, — I, W.P.1. We define
Spk = max  |Typm — Tom, |-
my <m<mj41

By Theorem 5

2

P[Snr, > €] < 2exp[— 7 -

2
20 Z] =m+1 a’n]

Hence by the Borel Cantelli Lemma
Spre — 0 a.e., when k& — oo.Thus

Toim — In| < Snk + |Tmy — In] — 0 W.P.L.

ii) For every N > m by Lemma 4



2

> - ]
2
202 ;')im+l a’nj

PHTnN - Tnm| > 6] < QGXP[—

If m — o0, the left hand side of above inequality
tends to zero. Hence, {7}, m > 1} converges
in probability by the Cauchy criterion. Now part
i shows that T, converges W.P.1. O

Let {X,, n > 1} be a sequence of indepen-
dent Sub-Gaussian r.v.’s with 7(X,) < «, for
every n, then the assumption
E[X,|Fn-1] =0 can be replaced by
E(X,) =0, (iLe.E(X,)=FE[X,|F,-1] =0).
Thus all the above Theorems, Lemmas , and
Corollaries are true in this case.
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