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Abstract: In this paper, we study some strong limit theorems for the sequence f 1

n�

Pn
k=1Xng,

for each � > 0 and weighted sums
Pn

k=1 ankXk where fXn; n � 1g is a sequence of negative
dependence Sub-Gaussian random variables and ank is an array of nonnegative real numbers.
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1.Introduction

Some convergence theorems for weighted sumsPn
k=1 ankXk has been studied by Chow [4] for

the case where fXn; n � 1g is a sequence
of independent, generalized Gaussian random
variables. The case of m-dependent generalized
Gaussian r.v.'s has been discussed by Ouy [6],
and the strong law of large numbers for sequences
of independent Sub-Gaussian random variables
has been obtained by Taylor and Chung Hu
[9]. In this paper, we extend some of these re-
sults and prove some strong limit theorems for
the sequence of f 1

n�

Pn
k=1Xng, for each � > 0,

and weighted sums
Pn

k=1 ankXk where
fXn; n � 1g is a sequence of negative de-
pendent Sub-Gaussian random variables and
ank is an array of nonnegative real num-
bers. Also by sub-Gaussian techniques we prove
that

P1
k=1 ankXk converge with probability

one for each n, where E[XnjFn�1] = 0 , Fn =

�(X1; � � � ;Xn) and
P1

j=k a
2
nj = O(k��) for ev-

ery � > 0.To prove these results we need to the
following de�nitions, lemmas and theorems.

De�nition 1. A symmetric random variable
X is said to be Sub- Gaussian (SG) r.v. if there
exist a nonnegative real number � such that for
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each real number t

EetX � exp[
�2t2

2
]: (1:1)

The number,

�(X) = inff� � 0 : E(etX) � exp[�
2t2

2
]; t 2 Rg,

will be called the Gaussian standard of the ran-
dom variable X. It is evident that X will be
a Sub-Gaussian random variable if and only if
�(X) <1. Moreover

�(X) = sup
t6=0

"
2 ln(E(etX ))

t2

#1=2
;

and inequality (1.1) holds for � = �(X).

De�nition 2.A symmetric random variable X
is strictly Sub-Gaussian if

E(X2) = �2(X):

De�nition 3.The random variables
X1; � � � ;Xn are said to be ND if we have

P [
n\
j=1

(Xj � xj)] �
nY
j=1

P [Xj � xj ]; (1:2)

and

P [
n\
j=1

(Xj > xj)] �
nY
j=1

P [Xj > xj]; (1:3)
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for all x1; � � � ; xn 2 R . An in�nite sequence
fXn ; n � 1g is said to be ND if every �nite
subset X1; � � � ;Xn is ND. The conditions (1.2)
and (1.3) are equivalent for n = 2, but these do
not agree for n � 3 (see [3],Pages 3-4).
The following Lemmas and Theorems which

our work is based on can be found in Taylor,
Chung Hu (1987),Buldygin, Kozachenko (1980)
and Bozorgnia, Taylor (1996).

Theorem 1. ( [10]) Let X be Sub-Gaussian
random variable and a is a real number (a 6= 0),
then aX is sub-Gaussian random variable with
�(X) = jaj�(X).

Lemma 1. ( [9]) If X is a Sub-Gaussian ran-
dom variable with �(X) � �, then

i) For every t 2 R,

E[etjXj] � 2 exp[
�2t2

2
]: (1:4)

ii) For every " > 0, we have

P [X > "] � exp[� "2

2�2
] (1:5)

and

P [jXj > "] � 2 exp[� "2

2�2
]: (1:6)

Lemma 2. ( [9]) If X is bounded (jXj � M)
and has zero mean (E(X) = 0), then X is Sub-

Gaussian random variable with �(X) � p
2M .

Lemma 3.( [3]) Let X1; � � � ;Xn be ND ran-
dom variables and f1 � � � ; fn be a sequence
of Borel functions which all are monotone in-
creasing (or all are monotone decreasing) , then
f1(X1); � � � ; fn(Xn) are ND random variables.

Lemmas 4.( [3]) Let X1; � � � ;Xn be ND non-
negative random variables. Then

E[
nY
j=1

Xj ] �
nY
j=1

E[Xj ]:

Examples .

1) Let X has uniform distribution in (a; b)

interval, then Y = X � a+b
2

is Sub-Gaussian

random variable with �(Y ) � p
2(b� a).

2) Let X be a continuous random variable
with d.f. F (x), then Y = F (X) � 1

2
is Sub-

Gaussian with �(Y ) � p
2.

3) Let X be a random variable with d.f. Nor-
mal and E(X) = 0; V ar(X) = �2, then X
is strictly Sub-Gaussian with �2(X) = �2.

2. Strong Limit Theorems

In this section we obtain some strong limit the-
orems for sequence f 1

n�

Pn
k=1Xkg for each � > 0,

where fXn; n � 1g is a sequence of negative de-
pendent Sub-Gaussian random variables with
�(Xn) � �n, for every n � 1, under the condi-
tions on

Pn
k=1 �

2
k.

Theorem 2. Let fXn; n � 1g be a se-
quence of ND Sub-Gaussian random variables
with �(Xn) � �n.

i) Sn =
Pn

k=1Xk is a Sub-Gaussian r.v. with
�2 =

Pn
i=1 �

2
i .

ii) If
Pn

i=1 �
2
i = O(n2��) for every

� > 0, then

lim
n�!1

1

n

nX
k=1

Xk = 0 W:P:1:

iii) If �1 = �2 = � � � = �n = �, then for some
� > 1

2
,

lim
n�!1

1

n�

nX
k=1

Xk = 0 W:P:1:

Proof.

i) By Lemmas 1,3,4 and Theorems 1 we have

E[etSn ] �
nY

k=1

E[etXk ] � exp[
�2t2

2
];

hence Sn is a Sub-Gaussian r.v. with
�2 =

Pn
i=1 �

2
i .

ii) For each " > 0 by part i and Lemma
(1.ii), we have

1X
n=1

P [j
nX

k=1

Xkj > n"] � 2
1X
n=1

exp[�"
2n(2��)

2c
] <1;
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iii) and also

1X
n=1

P [j 1
n�

nX
k=1

Xkj > "] �

2
1X
n=1

exp[�"
2n2��1

2�2
] <1:

which these complete the proof. 2.

Theorem 3. Let fXn; n � 1g be a sequence of
ND random variables satisfying
P [a � Xi � b] = 1, for each i where a < b, then
for every � > 1

2
,

lim
n!1

1

n�

nX
k=1

(Xk �E(Xk)) = 0; W:P:1:

Proof. De�ne Yk = Xk �E(Xk),
k = 1; 2; � � � ; n, then, E(Yk) = 0 and
jYkj � (b � a), W.P.1, hence by Lemma 2
fYk; k � 1g be a sequence of Sub-Gaussian ran-

dom variables with �(Yk) �
p
2(b� a). Thus by

Theorem (3.iii), for every � > 1
2
, we have

lim
n!1

1

n�

nX
k=1

(Xk �E(Xk)) = 0; W:P:1:

Corollary 1. Let fXn; n � 1g be a sequence
of ND identically distributed random variables
with E(X1) = 0, V ar(X1) = 1 and

E[Xk
1 ] < 1 k � 1, then Snp

n
is an asymp-

totically Sub-Gaussian random variable, when
n �!1 with �( Snp

n
) � 1 .

Proof. For t 2 R we have

E[e
tp
n
Sn
] �

nY
k=1

E[e
tp
n
Xk ] =

[1 +
t2

2n
+ Æ( 1

n
)]

n

�! e
t
2

2 ;

when n �!1 .

2.Some Strong Limit Theorems for
weighted sums

In this section, we obtain some strong limit
theorems for weighted sums
Tn =

P1
k=1 ankXk and

Pn
k=1 ankXk, where

fXn; n � 1g is a sequence of negative depen-
dence Sub-Gaussian random variables and ank is
an array of nonnegative real numbers.Also we
prove Tn =

P1
k=1 ankXk convergence W.P.1.

under the condition that E[XnjFn�1] = 0, Fn =

�(X1; � � � ;Xn) and
P1

j=k a
2
nj = O(k��) for ev-

ery � > 0 and n � 1.

Lemma 5. Let fXn; n � 1g be a sequence
of ND Sub-Gaussian random variables with
�(Xk) � �. Then

i) Tn is a Sub-Gaussian random variable with
�(Tn) � �

p
An for all n.

ii) For every " > 0

P [jTnj > "] � 2 exp[� "2

2�2An
]:

Where An =
P1

k=1 a
2
nk.

Proof.

i) By Lemmas 1,3,4 and Theorems 1, for every
h 2 R we have

E[ehTnm ] �
mY
k=1

E[ehankXk ] �

exp[
h2�2

Pm
k=1 a

2
nk

2
] � exp[

h2�2An

2
]:

Hence, by Fatou's Lemma

E[ehTn ] � exp[
h2�2An

2
]:

ii) This follows by part i and Lemma 1. 2

Corollary 2.

i) If
P1

n=1 exp[� "2

2�2An
] <1 , then

lim
n�!1

nX
k=1

ankXk = 0 W:P:1: (2:1)

In particular if An = Æ(ln�1(n)), then (2.1)
holds.

ii) If Sn =
Pn

k=1Xk and � > 0 then
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lim
n�!1n�1=2(ln�(1+�)=2(n))Sn = 0 W:P:1:

Theorem 4. Let fXn; n � 1g be a sequence
of ND Sub-Gaussian r.v.'s

i) If limn!1
Pn

k=1 a
2
nk = l 6= 0 <1, then for

every � > 0

lim
n�!1n��

nX
k=1

ankXk = 0 W:P:1: (2:2)

ii) If ank = O(n��) for some k � n and
� > 1

2
, then

lim
n�!1

nX
k=1

ankXk = 0 W:P:1: (2:3)

iii) If
Pn

k=1 a
2
nk = O(n��) for some � > 0,

then

lim
n�!1

nX
k=1

ankXk = 0 W:P:1: (2:4)

Proof. By Lemma 5 for some 0 < B <1, and
" > 0

1X
n=1

P [jn��
nX

k=1

ankXkj > "] �

2
1X
n=1

exp[� n2�"2

2�2
Pn

k=1 a
2
nk

] <1;

and

1X
n=1

P [j
nX

k=1

ankXkj > "] �
1X
n=1

2 exp[� "2

2�2
Pn

k=1 a
2
nk

]

�
1X
n=1

2 exp[�"
2n2��1

2�2B2
] <1:

Now (2.2) and (2.3) follow from the Borel Can-
telli Lemma, and (2.4) follows from part (ii). 2

Theorem 5. Let fXn; n � 1g be a sequence
of ND Sub-Gaussian r.v.'s. Then for every x 2 R

P [max
j�m

jTnj j � x] � 2exp[� x2

2�2An
]:

Proof. By Lemmas 1,3,4 and Theorems 1 for
every h 2 R we have

EehjTnmj � EehTnm+Ee�hTnm � 2 exp[
h2�2An

2
]:

Since fTnm;Fm; m � 1g is a martingale
and fjTnmj;Fm; m � 1g is submartingale and

'(t) = eth for each h � 0 is increasing and convex
function, then by the submartingale inequality

P [max
j�m

jTnjj � x] = P [max
j�m

'(jTnj j) � '(x)] �

E['(jTnmj)]
'(x)

� 2 exp[�hx+ h2�2An

2
]:

For h = x
�2An

we have

P [max
j�m

jTnj j � x] � 2 exp[� x2

2�2An
]: 2

Theorem 6. Under the assumptions of
Theorem 5

i) If fTnm; m � 1g converges in probability
for every n, then it converges W.P.1.

ii) Tn =
P1

k=1 ankXk converges W.P.1 for
each n.

Proof.

i) Let Tnm �! ln in probability for every n,
then there exist a subsequence
fmk; k � 1g such that
Tnmk

�! ln W.P.1. We de�ne

Snk = max
mk<m�mk+1

jTnm � Tnmk
j:

By Theorem 5

P [Snk > "] � 2 exp[� "2

2�2
P1

j=mk+1
a2nj

]:

Hence by the Borel Cantelli Lemma
Snk �! 0 a.e., when k �!1.Thus

jTnm � lnj � Snk + jTnmk
� lnj �! 0 W:P:1:

ii) For every N > m by Lemma 4
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P [jTnN � Tnmj > "] � 2 exp[� "2

2�2
P1

j=m+1 a
2
nj

]:

Ifm �!1, the left hand side of above inequality
tends to zero. Hence, fTnm; m � 1g converges
in probability by the Cauchy criterion. Now part
i shows that Tn converges W.P.1. 2

Let fXn; n � 1g be a sequence of indepen-
dent Sub-Gaussian r.v.'s with �(Xn) � �, for
every n, then the assumption
E[XnjFn�1] = 0 can be replaced by
E(Xn) = 0, ( i.e.E(Xn) = E[XnjFn�1] = 0).
Thus all the above Theorems, Lemmas , and
Corollaries are true in this case.
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