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1 Introduction

We are interested in iterative domain decomposi-

tion methods for solving the advection-di�usion

problem with parabolic layers

"�u+ b(P )ux � c(P )u = f(P ); P 2 
;

u = g on @
; (1)

where 
 = fP = (x; y) : 0 < x < 1; 0 < y < 1g,
" is a small positive parameter, b(P ) � �� >

0; c(P ) � c� > 0 and @
 is the boundary of 
.

For " � 1, problem (1) is singularly per-

turbed and characterized by an exponential layer

of widthO("j ln "j) at x = 0 and by parabolic lay-

ers of width O(
p
"j ln "j) at y = 0 and y = 1 (see

[1] for details).

Iterative domain decomposition algorithms

based on Schwarz-type alternating procedures

for solving singularly perturbed problems have

received much attention for their remarkable

speed and parallelizability, see, for example, [2-4]

and references cited there.

In [3], for solving the singularly perturbed

advection-di�usion problem with the di�erential

operator �"�u+ b(P )ru+ c(P )u, the classical

Schwarz alternating method and some variants

of it were analyzed. In the presence of only the

elliptic boundary layers at x = 1 and y = 1 and

in the case of domain decomposition into two

subdomains, a convergence rate for the continu-

ous problem (i.e. without resort to discretization

in subdomains) as a function of the perturbation

parameter " and an amount of overlap between

two subdomains was studied.

In this paper, we introduce a multidomain

modi�cation of the Schwarz alternating method

proposed in [4 ] for solving singularly perturbed

reaction-di�usion problems. In this approach,

the domain is partitioned into many nonoverlap-

ping subdomains with interface �. Small inter-

facial subdomains are introduced near the inter-

face �, and approximate boundary values com-

puted on � are used for solving problems on

nonoverlapping subdomains.

We consider two domain decomposition algo-

rithms: the �rst one is based on decomposition

of the computational domain into nonoverlap-

ping vertical subdomains, and second uses de-

composition into nonoverlapping horizontal sub-

domains. We show that these algorithms con-

verge uniformly in the perturbation parameter "
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on the piecewise equidistant meshes of Shishkin-

type [1]. The piecewise uniform meshes allow

us to decompose the computational domain into

subdomains outside boundary layers and inside

them as well, and possess load balancing. This

property is very important for implementation

of the iterative algorithms on parallel comput-

ers, since it avoids loss of e�ciency due to any

processors being idle.

2 Undecomposed algorithm

Here for solving problem (1), we construct a

di�erence scheme on piecewise uniform meshes

which possesses uniform convergence in the per-

turbation parameter ". We use the upwind dif-

ference scheme

�U(P ) = f(P ); P 2 
h; (2)

� � "(�2x + �2y) + b�x � c;

where �2x, �
2
y and �x are the central di�erence and

forward di�erence approximations to the second

and �rst derivatives, respectively.

Now introduce piecewise equidistant meshes

of Shishkin-type from [1] that are adapted to the

singularly perturbed behavior of the exact solu-

tion. For the exponential layer, we divide inter-

val �
x = [0; 1] into two parts [0; �x]; [�x; 1]; and

in each part we use a uniform grid with Nx=2+1

mesh points. The transition point �x from [1] is

determined by �x = minf2�1; "��1 lnNxg; where
� = O(��); � > 0. If �x = 1=2, then N�1

x is very

small relative to ". This is unlikely in practice,

and in this case the di�erence scheme (2) can be

analysed using standard techniques. We there-

fore assume that

�x = "��1 lnNx: (3)

This de�nes the piecewise equidistant mesh in

the x-direction condensed in the boundary layer

at x = 0. A piecewise uniform mesh in the

y-direction is formed by dividing the interval

[0; 1] into the three parts [0; �y]; [�y; 1� �y] and

[1� �y; 1], where

�y = �
p
" lnNy (4)

with any positive constant � independent of ".

Assuming that Ny is divisible by 4, we use

equidistant meshes on each of these intervals,

with Ny=4 + 1 points in [0; �y] and [1 � �y; 1]

and Ny=2 + 1 points in [�y; 1� �y].

Theorem 1 The di�erence scheme (2) on the

piecewise uniform mesh 
h from (3),(4) con-

verges "-uniformly to the solution of (1):

max
P2�
h

jU(P )� u(P )j � C(N�1 lnN)p;

where N = minfNx; Nyg, constant C is indepen-

dent of "; N and p = 1=18.

The proof of the theorem can be found in [1].

Remark 1 We mention that the numerical es-

timates given in [5] for the rates of "-uniform

convergence are considerably better, which sug-

gests that this theoretical result is not as sharp

as possible.

3 Domain decomposition al-

gorithm in the exponential

layer

We consider decomposition of the domain �
 into

M nonoverlapping subdomains (vertical strips)
�
m;m = 1; : : : ;M :


m = (xm�1; xm)� (0; 1);

�m = fx = xm; 0 � y � 1g;
where �
m \ �
m+1 = �m. Thus, we can write

down the boundary of 
m as

@
m = �0m [ �m�1 [ �m;

where �0m = @
 \ @
m. Additionally, we con-

sider (M � 1) interfacial subdomains !m;m =

1; : : : ;M � 1:

!m = (xbm; x
e
m)� (0; 1); !m�1 \ !m = ;;

where xbm < xm < xem; m = 1; : : : ;M � 1: The

boundaries of !m are denoted by

bm = fP : x = xbm; 0 � y � 1g;

em = fP : x = xem; 0 � y � 1g;

0m = @
 \ @!m:
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On �
m;m = 1; : : : ;M and �!m;m =

1; : : : ;M � 1 we introduce meshes �
h
m and �!hm,

respectively, and suppose that �
h =
S �
h

m, and

the mesh points in �!hm;m = 1; : : : ;M�1 coincide
with the mesh points of �
h.

We consider the following iterative domain

decomposition algorithm for solving problem (2).

On each iterative step , �rstly, we solve problems

on the nonoverlapping subdomains �
h
m;m =

1; : : : ;M with Dirichlet boundary conditions

passed from the previous iterate. Then Dirichlet

data are passed from these subdomains to the in-

terfacial subdomains �!hm;m = 1; : : : ;M � 1, and

problems on the interfacial subdomains are com-

puted. Finally, we impose continuity for piecing

the solutions on the subdomains together.

On subdomains �
h
m;m = 1; : : : ;M , intro-

duce mesh functions v
(n)
m (P );m = 1; : : : ;M (here

the index n stands for a number of iterative

steps) satisfying the following di�erence schemes

�v(n)m (P ) = f(P ); P 2 
h
m; (5a)

v(n)m (P ) = g(P ); P 2 �h0m ;

v(n)m (P ) = V (n�1)(P ); P 2 �hm�1 [ �hm:

On the interfacial subdomains �!hm;m =

1; : : : ;M � 1, we determine the following di�er-

ence problems

�z(n)m (P ) = f(P ); P 2 !hm; (5b)

z(n)m (P ) =

8><
>:
g(P ); P 2 h0m ,

v
(n)
m (P ); P 2 hbm ,

v
(n)
m+1(P ); P 2 hem .

The mesh function V (n)(P ) is determined in the

form

V (n)(P ) =

(
v
(n)
m (P ); P 2 �
h�

m ;

z
(n)
m (P ); P 2 !hm;

(5c)

where �
h�
m = 
h

m n (!hm�1 [ !hm). Initial guesses

V (0)(P ); P 2 �hm; m = 1; : : : ;M � 1 must be

prescribed. Algorithm (5) can be carried out by

parallel processing, since on each iterative step n

the M problems (5a) for v
(n)
m (P );m = 1; : : : ;M

and the (M � 1) problems (5b) for z
(n)
m (P );m =

1; : : : ;M � 1 can be implemented concurrently.

On �
h
m introduce the following di�erence

problems:

���
1;2
m (P )� c��

1;2
m (P ) = 0; P 2 
h

m; (6)

�1m(P ) =

(
1; P 2 �hm�1,

0; P 2 @
h
m n �hm�1,

�2m(P ) =

�
1; P 2 �hm,

0; P 2 @
h
m n �hm,

where the di�erence operator �� is de�ned by

�� = "(�2x + �2y) + b�x:

Introduce the notations

�bm = k�1m(P ) + �2m(P )khbm ;

�em = k�1m+1(P ) + �2m+1(P )khem ;

� = max
1�m�M�1

(�bm; �
e
m):

The following theorem holds true.

Theorem 2 Algorithm (5) on the piecewise uni-

form mesh (3), (4) converges to the solution

u(P ) of (1) with the following rate

max
P2�
h

jV (n)(P )� u(P )j � C[(N�1 lnN)p + �n];

where V (n)(P ) from (5c), p = 1=18, the con-

traction coe�cient � 2 (0; 1) and constant C are

independent of ", Nx; Ny.

Remark 2 Theorem 2 guarantees us that the

domain decomposition algorithm (5) converges

for any initial guesses.

Now, estimate the contraction coe�cient �

in Theorem 2. Consider algorithm (5) with the

interfacial subdomains !m;m = 1; : : : ;M � 1 lo-

cated in the x-direction outside the exponential

boundary layer. In this case, � satis�es the fol-

lowing estimate

� < (M � 1)
2"

��hx
;

where hx is the step-size of the piecewise equidis-

tant mesh outside the exponential boundary

layer. Thus, for su�ciently small values of "

the inequality "� hx holds, and as follows from

Theorem 2 the order of convergence of algorithm

(5) is de�ned by N but not by the contraction

coe�cient � of domain decomposition.
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Consider decomposition of the computa-

tional domain where the interfacial subdomains

are localized inside the exponential layer. We

decompose the boundary layer [0; �x] and the re-

gion outside the layer [�x; 1] intoM=2 equal sub-

domains, respectively, such that each subdomain
�
hx
m ;m = 1; : : : ;M contains the same number of

mesh points 2I + 1; I = Nx=(2M). Here �
hx
m is

the mesh on [xm�1; xm]. The interfacial subdo-

mains �!hxm ;m = 1; : : : ;M � 1 contain the same

number of mesh points 2I! +1; I! � I, and the

center of the discrete interval �!hxm is located at

xm, where �!hxm is the mesh on [xbm; x
e
m]. In the

case of the maximal size of the interfacial sub-

domains I! = I, it can be proved the following

estimate

� �MN�s=M
x ; s = ��=�;

where �� and � from (1) and (3), respectively.

From here and Theorem 2, we conclude that the

domain decomposition algorithm converges uni-

formly. Consider the limiting case of this decom-

position, where only the �rst subdomain �
h
1 lies

in the boundary layer (the unbalanced decom-

position), i.e. region [�x; 1] outside the layer is

decomposed into M � 1 equal subdomains and

all subdomains �
h
m; m = 2; : : : ;M contain the

same number of mesh points. In the case of the

maximal size of �!hx1 and " � hx, we have the

estimate

� � N�s=2
x :

Note here that getting the better convergence

property of algorithm (5) on the unbalanced de-

composition, we have lost load balancing, since

the sizes of domains �
h
1 and �!h1 for large values

of M are su�ciently bigger then others. To keep

load balancing for algorithm (5) on the unbal-

anced decomposition, we need to use the second

level of parallelization for solving discrete sys-

tems on these two subdomains.

4 Domain decomposition algo-

rithm in the parabolic layers

We consider decomposition of domain �
 into L

nonoverlapping subdomains (horizontal strips)
�
l; l = 1; : : : ; L:


l = (0; 1) � (yl�1; yl);

�l = fP : 0 � x � 1; y = ylg;
where �
l \ �
l+1 = �l. Thus, the boundary of 
l

can be written in the form

@
l = �0l [ �l�1 [ �l;

where �0l = @
 \ @
l. Additionally, we consider

(L�1) interfacial subdomains !l; l = 1; : : : ; L�1:

!l = (0; 1) � (ybl ; y
e
l ); !l�1 \ !l = ;;

where ybl < yl < yel ; l = 1; : : : ; L � 1, with the

boundaries

bl = fP : 0 � x � 1; y = ybl g;

el = fP : 0 � x � 1; y = yel g; 0l = @
 \ @!l:

On �
l; l = 1; : : : ; L and �!l; l = 1; : : : ; L � 1 we

introduce meshes �
h
l and �!hl , respectively, and

suppose that �
h =
S �
h

l , and the mesh points

in �!hl ; l = 1; : : : ; L � 1 coincide with the mesh

points of �
h.

Similarly to (5), we consider the follow-

ing iterative domain decomposition algorithm

for solving problem (2). On subdomains
�
h
l ; l = 1; : : : ; L, introduce mesh functions

v
(n)
l (P ); l = 1; : : : ; L satisfying the following dif-

ference schemes

�v
(n)
l (P ) = f(P ); P 2 
h

l ; (7a)

v
(n)
l (P ) = g(P ); P 2 �h0l ;

v
(n)
l (P ) = V (n�1)(P ); P 2 �hl�1 [ �hl :

On the interfacial subdomains �!hl ; l = 1; : : : ; L�
1, we determine the following di�erence problems

�z
(n)
l (P ) = f(P ); P 2 !hl ; (7b)

z
(n)
l (P ) =

8><
>:
g(P ); P 2 h0l ,

v
(n)
l (P ); P 2 hbl ,

v
(n)
l+1(P ); P 2 hel .

The mesh function V (n)(P ) is determined in the

form

V (n)(P ) =

(
v
(n)
l (P ); P 2 �
h�

l ;

z
(n)
l (P ); P 2 !hl ;

(7c)

where �
h�
l = 
h

l n (!hl�1 [ !hl ). Initial guesses

V (0)(P ); P 2 �hl ; l = 1; : : : ; L� 1 must be pre-

scribed. Algorithm (7) can be carried out by
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parallel processing, since on each iterative step

n the L problems (7a) and the (L� 1) problems

(7b) can be implemented concurrently.

Similar to (6), on �
h
l introduce the following

di�erence problems:

��'
1;2
l (P )� c�'

1;2
l (P ) = 0; P 2 
h

l ;

'1
l (P ) =

(
1; P 2 �hl�1,

0; P 2 @
h
l n �hl�1,

'2
l (P ) =

�
1; P 2 �hl ,

0; P 2 @
h
l n �hl ,

and introduce the notations

%bl = k'1
l (P ) + '2

l (P )khb
l

;

%el = k'1
l+1(P ) + '2

l+1(P )khe
l

;

% = max
1�l�L�1

(%bl ; %
e
l ):

Similar to Theorem 2, we can get the following

result.

Theorem 3 Algorithm (7) on the piecewise uni-

form mesh (3), (4) converges to the solution

u(P ) of (1) with the following rate

max
P2�
h

jV (n)(P )� u(P )j � C[(N�1 lnN)p + %n];

where V (n)(P ) from (7c), p = 1=18, coe�cient

% 2 (0; 1), and constant C is independent of ",

Nx; Ny, and %.

Remark 3 Theorem 3 guarantees us that the

domain decomposition algorithm (7) converges

for any initial guesses.

Now we estimate coe�cient % from Theorem

3. Firstly, consider algorithm (7) with the inter-

facial subdomains !l; l = 1; : : : ; L � 1 located in

the y-direction outside the parabolic boundary

layers. In this case the following estimate on %

holds

% < 4"(c�h
2
y)
�1;

where hy is the step-size of the piecewise equidis-

tant mesh outside the parabolic boundary layers.

In practice, "� N�1
y , then as follows from The-

orem 3, the order of convergence of algorithm (7)

is de�ned by Nx; Ny, but not by coe�cient % of

domain decomposition.

Now we estimate coe�cient % from Theo-

rem 3 in the case where some of the interfa-

cial subdomains are located inside the parabolic

boundary layers. Consider a balanced decom-

position of the computational domain. We de-

compose each of the parabolic boundary layers

[0; �y] and [1��y; 1] into L=4 equal subdomains,

and the interval [�y; 1� �y] into L=2 equal sub-

domains. We note that each of the subdomains
�

hy
l ; l = 1; : : : ; L contains the same number of

mesh points 2J + 1; J = Ny=(2L), where �

hy
l

is the mesh on [yl�1; yl]. The interfacial subdo-

mains �!
hy
l ; l = 1; : : : ; L � 1 inside and outside

the boundary layers contain the same number of

mesh points 2J! + 1; J! � J , and the center of

the discrete interval �!
hy
l is located at yl. In the

case of the maximal size of the interfacial sub-

domains J! = J , it can be proved the following

estimate

% � 2N�s=L
y :

Remark 4 In the context of parallel computing,

the balanced domain decomposition guarantees

us load balancing of a multi-processor computer,

since subdomains �
h
l ; l = 1; : : : ; L and the inter-

facial subdomains �!hl ; l = 1; : : : ; L�1 contain the

same number of mesh points (Nx+1)(NyL
�1+1)

and (Nx + 1)(2J! + 1), respectively.

Consider the limiting case of this decompo-

sition, where only the �rst and the last sub-

domains �

hy
1 and �


hy
L lie in the boundary lay-

ers (the unbalanced decomposition), i.e. the re-

gion outside the layer [�y; 1� �y] is decomposed

into L�2 equal subdomains and all subdomains
�

hy
l ; l = 2; : : : ; L � 1 contain the same number

of mesh points Ny(2(L � 2))�1 + 1. In the case

of the maximal size of �!
hy
1 and �!

hy
L�1, we have

% � 2N�s=4
y ;

which independent of " and L. It should be

noted that improving convergence property of

algorithm (7) on the unbalanced decomposition,

we have lost load balancing, since the sizes of do-

mains �
h
1 ;

�
h
L; �!h1 and �!hL�1 for large values of

L are su�ciently bigger then others. To retain

load balancing for algorithm (7) on this decom-

position, we need to use the second level of par-

allelization for solving discrete systems on these

four subdomains.
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5 Numerical results

As a test problem, consider the following prob-

lem

"�u+ (1 + x2 + y2)ux = 0; 
 = (0; 1) � (0; 1);

u(x; 0) = x3; u(x; 1) = x2; x 2 [0; 1];

u(0; y) = 0; u(1; y) = 1; y 2 [0; 1]:

where �� = 1; c� = 0 in (1). The assumption

c(P ) � c� > 0 in (1) can always be obtained via

a change of variables u(P ) = �u(P ) exp(�dx); d =
const > 0.

M n1; n2; N = 32 n1; n2; N = 128

2 3; 2 3; 2 3; 2 3; 2

4 9; 7 9; 7 9; 6 10; 6

8 32; 21 32; 21 32; 17 33; 18

16 n.a. n.a. 119; 60 123; 62

" 10�3 10�5 10�3 10�5

Table 1

In all our numerical experiments, we choose

Nx = Ny = N . Let ns be a number of itera-

tions on mesh (3), (4) with s = ��=� and � = 1.

In Table 1, we give the numbers of iterations

ns; s = 1; 2 for algorithm (5) on the balanced

domain decomposition in the elliptic layer with

the maximal size of the interfacial subdomains at

N = 32; 128. Our numerical results show, that

for N;M �xed, ns is independent of ". The uni-

form convergent result con�rms our theoretical

estimates. For M �xed, the number of iterations

ns(N) depends almost not at all onN . The num-

ber of iterations as a function of the parameter

s is decreasing one. This result means that if

we increase the transition point �x, the number

of iterations decreases that is in agreement with

the theoretical estimates.

M n1;n2, N = 32 n1;n2, N = 128

3 6; 5 6; 5 6; 4 7; 4

5 13; 10 13; 10 13; 9 14; 9

9 na. n.a. 27; 18 29; 19

" 10�3 10�5 10�3 10�5

Table 2

Table 2 represents the numbers of iterations

ns; s = 1; 2 for algorithm (5) on the unbalanced

domain decomposition with the maximal size of

the interfacial subdomains at N = 32; 128. The

main features of algorithm (5) on the balanced

domain decomposition highlighted from Table 1

hold true on the unbalanced domain decomposi-

tion, where only the �rst subdmain �
h
1 lies in the

elliptic layer. As we can see from Tables 1 and

2, algorithm(5) on the unbalanced decomposi-

tion converges su�ciently faster then on the bal-

anced decomposition, comparing M = 4(2 + 2)

from Table 1 with M = 3(1 + 2) from Table 2,

and so on.

L n1; n2; N = 32 n1; n2; N = 128

4 2; 1 2; 1 2; 1 2; 1

8 3; 2 3; 2 2; 2 2; 2

16 n.a. n.a. 5; 4 5; 3

" 10�3 10�5 10�3 10�5

Table 3

In Tables 3, we present numerical results for

algorithm (7) with the balanced domain decom-

position in the parabolic layers. Let n� be a

number of iterations with � = �� (s = 1) and

� = 1; 2. From the data in Table 3, it follows

that for N;L �xed, n� is independent of ", which

con�rms our theoretical estimates. We note that

in the contrast to the algorithm (5) with domain

decomposition in the elliptic layer, the rate of

convergence of algorithm (7) on the unbalanced

decomposition is only slightly higher then on the

balanced one.
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