
Solution of Simultaneous Non-Linear Equations using Genetic Algorithms

Angel Fernando Kuri-Morales
Instituto Tecnológico Autónomo de México

Río Hondo No. 1, México D.F.
akuri@rhon.itam.mx

Abstract. The solution of Systems of Simultaneous Non-Linear Equations (SNLE) remains a complex and as yet not
closed problem. Although analytical methods to tackle such problems do exist, they are limited in scope and, in general,
demand certain prior knowledge of the functions under study. In this paper we propose a novel method to numerically
solve such systems by using a Genetic Algorithm (GA). In order to show the generality of the method we first prove a
theorem which allows us to equate the SNLE problem to that of minimizing a linear combination of the equations to be
solved, subject to a set of constraints. Then we describe a rugged GA (the so-called Vasconcelos GA or VGA) which has
been proved to perform optimally in a controlled but unbounded problem space. Next, we show how the VGA may be
efficiently utilized to adapt its behavior (which is inherently adequate to solve unconstrained minimization problems) to a
constrained solution space. Finally, we offer some examples of systems of non-linear equations which were solved using
the proposed methodology.

Keywords. Simultaneous non-linear equations, minimization, genetic algorithms, constrained problems.

1 Introduction
There are several ways to attempt the numerical solution
of systems of simultaneous non-linear equations [1], [2],
[3]. However, the usual methods are generally lacking in
that the user has to determine a solution seed or set of
solutions seeds in such a way that the (generally
iterative) algorithm is able to improve on those seeds
until a reasonable answer is found. If, however, the user
fails to properly select the seed(s) the iterations may not
converge. On the other hand, closed methods demand
the equations to comply with some mathematical
properties which tend to invalidate the method when
they are not met. Evolutionary algorithms, on the other
hand, do not require that the initial iteration space is
seeded. In fact, it has been proven [4] that GAs will
converge to an adequate solution regardless of the initial
population. Furthermore, no particular mathematical
properties of the function under scrutiny are needed for
the algorithm to traverse the problem space and,
eventually, reach the desired global optimization
(which, for simplicity and without loss of generality is
normally formulated in terms of minimization). In order
to be able to apply GAs to the SNLE problem we have
to devise a method to transform it into a minimization
one. It will be proven, in the sequel, that a simple linear
combination of the equations to be simultaneously
solved, subject to a, likewise, simple set of restrictions

will ultimately do the trick, provided that we find a) An
efficient GA and b) A scheme to handle restrictions with
the purported GA.

The rest of the paper is organized as follows. In
part 2 we describe the method and prove the solving
capability of the linear combination of the original
equations. In part 3 we discuss the VGA and how it was
shown to perform in a markedly superior way relative to
other types of GAs. In part 4 we show that the
inherently non-constrained minimization evolutionary
methods may be easily complemented so that they are
able to successfully tackle constrained minimization. In
part 5 we describe some sets of SNLEs which were
solved with the proposed method. Finally, in part 6 we
offer our conclusions.

2 SNLE Algorithm
In order to present the algorithm which solves the SNLE
problem we will exemplify with a simple problem. Next
we will show that the method may be generalized. The
reader should keep in mind that the minimization
method which is implied in what follows is a Genetic
Algorithm. Therefore, we need to specify both the
format in which the variables are to be represented as
well as the code in which such representation is
ultimately implemented. Hence, although not explicitly
stated, the minimization discussed in the sequel
automatically implies the explicit manipulation of the

internal (binary) representation of the variables to be
considered. This is not common with other methods,
where the task above is left to the compiler and,
ultimately, depends on the architecture of the computer
where the algorithms are implemented.

2.1 A Simple SNLE Problem
Let us solve the following set of non-linear equations:

01ycos(yz)sin(2x)
03z2y32x

022zsin(xy)23x

=−++
=+−−

=+−+
 (1)

These equations are typically representative of the kind
of problems we wish to tackle: a) The system displays
non-linearities in all three of the variables, b) The
trigonometric functionals provide us with a potentially
large number of solutions and c) The solutions are not
immediate from the equations. We now proceed as
follows:
1. Represent each of the variables in a binary fixed point
format with an S3.25 format. That is, every variable is
represented in binary assigning 1 bit to the sign, 3 bits to
the integer part and 25 bits to the decimal part. This
choice already implies the definition of a feasible space
of solutions: in this case -252-8,,-2528- +≤≤+ zyx .
The selection of the particular number of integer and
decimal bits is arbitrary but has no bearing on the
algorithm, as will be shown in the sequel.
2. Add all of the equations in (1) to get the expression:

4)cos(
)()2(32

2

223

+−−+
++−++=

zzyyz
xysinyxsinxxW ... (2)

3. Minimize W subject to the following constraints:

01ycos(yz)sin(2x)3C

03z2y32x2C

022zsin(xy)23x1C

≥−++=

≥+−−=

≥+−+=

 (3)

By following this simple procedure, we get the
following values for W, x, y and z:

 W = +0.038767
x = -0.0354308933
y = +1.2499999553
z = +1.3998183608

Furthermore, the C1, C2 and C3 attain the following
values:

C1= 0.00000005

C2= 0.03759279
C3= 0.00117488

We can see, therefore, that the algorithm is promptly
lead to values numerically close to the solution (we
differ the discussion of the optimization algorithm for
the next section). The reason is simple: a) We bundle
together all the conditions of the problem by linearly
combining all the equations and b) We restrict the
values of the variables in such a way that, when
minimizing, we are lead to a lower bound which
approaches the solution to the desired equations. That
is, in trying to minimize the global expression, the
algorithm tends to find the smallest values
corresponding to the constraints. These last constitute
the solution to the problem. In that sense, any
minimization method will yield similar results, provided
that we can �guarantee� its convergence.

This intuitive notion is formalized in what
follows. But notice that we could have equally well
stated the restrictions in (3) as follows:

01ycos(yz)sin(2x)3C

03z2y32x2C

022zsin(xy)23x1C

≤−++=

≤+−−=

≤+−+=

 (4)

provided we now maximize expression (2). Then we
approach the desired values from below.

2.2 Linear Combination Theorem
It is natural to ask ourselves whether the method may be
applied with generality, that is, if we can apply the
method to any system of equations where a solution
exists. This is proved in what follows.

Lemma.
Let) x (f i

r be a set of functions defined in
ℜ→ℜ⊂ n

iS for i=1, ..., m and A a subset in ℜ such

that 0) x (f i ci and Si x ;) x (f i ci
m

1=i
 = α | α { =A ≥⊂∑

rrr

} i ∀ where 0 ci ≠ . If 0A# ≠ and Aa ∈ then 0a ≥ .

Proof.
Let

i}0;)x(ificandiSx;
m

1i
)x(ificα|{αa ∀≥⊂∑

=
=∈ rrr

then there exists (0# ≠A) an 0xr such that

0)0x(ificand
m

1i
)0x(ifica ≥∑

=
= rr which implies

that a is the summation of m real positive numbers.
Hence, 0 a ≥ .

Theorem 2.2
Let 0 =) x (f i

r for i = 1, ..., m be a system of m
equations for which there is, at least, an 0xr which solves

the system and) x (f i ci
m

1=i
 =) x (F rr
∑ . Then

Proof.
First, we shall prove that A)xF(∈r . It is easy to see

that iS0x ∈r , since 0xr is a solution to the system
0)x(if =r and that it must also satisfy 0)x(ific ≥r . This

last condition is seen to be true because, since 0xr is a

solution to the system, we have that 00ic)0x(ific =×=r

is true and, thus, 0)x(ific ≥r also holds.
From the lemma, we know that min(A)≥ 0 and, since

 A)0xF(∈r and 0)0xF(=r then min(A))0xF(=r .

Corollary.
Let min(A)})yF(and)yF(β|{βB === rr where yr

is any vector, #B=1 and there exists an 0xr which is a
solution of 0)x(if =r for i=1,...,m. Therefore, all the
elements of B are zeroes (from the lemma) and each of
the vectors yr satisfies 0)yF(=r for i=1,...,m. Then the
system of equations has #B solutions.

Proof.
From theorem 2.2 we know that min(A))xF(=r and

0)xF(=r and, therefore, all the elements of B are zeroes
(from the lemma) and each of the vectors yr satisfies

0)yF(=r . But since)yF(r is the summation of values
which are all greater than or equal to 0 (because

A∈)yF(r) then 0)y(if =r for i=1,...,m and there are as
many solutions to the system of equations as there are
elements in B.

What theorem 2.2 says then, is that when systems such

as (1) have a solution we may always find it by
minimizing the summation of a linear combination of the
equations, where the values of the variables are properly
constrained and, furthermore, that if more than one exists,
we will find at least one of these. That is, given

0)mx,...,1(x3f
...

0)mx,...,1(x2f
0)mx,...,1(x1f

=

=
=

 (5)

we may always find one of the solution vectors 0xr from
the following expression (we have arbitrarily selected

1mc...2c1c ====):

0)xf(]
m

1i
)x(ifmin[0x ≥∑

=
= r

a
r (6)

where �a � means �subject to�.

3 Genetic Algorithms
Implicit in the previous discussion is the fact that we
have an adequate method to achieve the desired
minimization. This is, in general, not true. However, we
benefit from genetic algorithms and their known (proven
properties) to satisfy our need.

Genetic Algorithms (GAs) are optimization
meta-heuristics which differ from other optimization
methods in two essential ways: a) They explore the
solution landscape in several simultaneous loci and b)
The algorithm explores the actual solution landscape but
modifies its own behavior by changing a mapping of the
space of encoded hypothetical solutions into the space
of the actual solutions. They form part of what is now
termed Evolutionary Computation. The �evolutionary�
part of the name comes from the fact that the mentioned
hypothetical solutions are refined step-by-step by
preserving the most promising candidates from a so-
called �population� which is, simply put, a set of viable
solutions to the problem at hand (each solution in the set
is an �individual� of the population). From a suggestive
analogy with the living beings, the elements of the
encoded solutions are called genes (hence the name
�genetic�), the decoded solutions are the phenotypes,
whilst their encoded counterparts are called the
genotypes. GAs have been widely treated in the
literature (see, for instance [5]) and we know that:
a) Elitist GAs will find the best solution given enough
time, b) Such GAs may find solutions very close to the

min(A))0xF(=r

best solution in logarithmic time and c) Some �simple�
problems may lead the classical GAs astray lest some
modifications are introduced [6]. Previous studies [7]
have statistically proven that the Vasconcelos� variation
of a GA (VGA) performs very favorably and avoids the
pitfalls present in more naive variations. In this
minimization problem, it is natural to use a VGA in an
attempt to reach very good solutions in short time. In
what follows we briefly describe the VGA.

3.1 VGA
In what follows we assume an algorithm which works
with N individuals, of which a certain subset is chosen
(selected) to be crossed and mutated; with a probability
Pc of crossing over the members of the population and a
probability Pm of mutating such members and that this
process of selection-crossover-mutation is performed G
times. The details of Vasconcelos� Genetic Algorithms
are as follows.
1. a) N ← 50 (individuals in the population)

b) Pc ← 0.9 (probability of crossover)
c) Pm ← 0.005 (probability of mutation)
d) G ← 500 (number of generations)

2. Calculate β (the number of bits to mutate) as:
][mPlNceiling ××=β

where l = bits in the individual�s genome (throughout
we assume binary encoding of the solutions).
3. Generate population P(1) randomly.
5. For 1←t to G
6. Evaluate P(t).
7. Sort the individuals in the population according to
 their fitness from best to worst.
8. Retain the best N individuals.
9. For 2/1 Ntoi ←
10. Select individuals i and N-i+1 (say A and Z).
11. Cross individuals A and Z with probability Pc. If
 A and Z are crossed, incorporate their offspring
 to the population.
12. Endfor
13. Mutate β bits (in the new individuals) randomly.
14. Endfor

In step 6, obviously, only the new individuals are
evaluated. In step 11, crossover is annular. That is,
individuals� chromosomes are considered not strings,
but rather rings in the sense that the last bit in the
genome is connected to the first. The size of the ring is

2/l . Annular crossover is illustrated in Figure 1.

Fig. 1. Annular crossover.

As remarked, this algorithm performs very favorably
and avoids the two basic recognized limitations of the
so-called �simple� genetic algorithm: a) Deceptive
functions and b) Spurious correlation.

4 Constrained Optimization
Constrained optimization problems are interesting
because they arise naturally in engineering, science,
operations research, etc. In general, a constrained
numerical optimization problem is defined as:

1,...pmi0)x(ig
1,...mi0)x(ih Subject to

nx)xf(Minimize

+=≤
==

ℜ∈

r
r

rv

 (6)

Constraints define the feasible region, meaning that if
the vector xr complies with all constraints 0)x(ih =r and

0)x(ig ≤r then it belongs to the feasible region.
Traditional methods relying on calculus demand that the
functions and constraints have very particular
characteristics (continuity, differentiability, second
order derivability, etc.); those based on GAs have not
such limitations. For this reason, among others, it is of
practical interest use the best constraint handling
strategy. Here we simply discuss a method (which we
call method K) which has been proved to perform
optimally when compared with others [8]. It consists of
defining the penalty function as follows: [9]

≠−∑

=
−=

otherwise0

ps)xf(
s

1i p
KK)xP(

r
r (7)

where K is a large constant [O(109)], p is the number of

constraints and s is the number of these which have
been satisfied. K�s only restriction is that it should be
large enough to insure that any non-feasible individual
is graded much more poorly than any feasible one. Here
the algorithm receives information as to how many
constraints have been satisfied but is not otherwise
affected by the strategy. Notice that in this method the
penalty is not added to)xf(r but, rather, it replaces)xf(r

∑
=

−=
s

1i p
KK)xF(r when any of the constraints is not

met. This subtle difference does, indeed, seem to make a
difference (as discussed in the sequel).

4.1 Statistical Evaluation of an Algorithm
To determine the adequacy of method K we followed a
statistical path. The basic reason behind this statistical
methodology is to achieve the most general possible
results. It is common practice to run a set of experiments
to establish a comparison between proposed methods,
algorithms and the like. Any such attempt is lacking
since generality may not be reached from a finite set of
experiments. Here we follow a similar methodology but
extract hard numerical bounds because we are able to
find the mean and standard deviation of the unknown
distributions of all the experiments (which, for
simplicity, will be referred to as GAE) which serve as a
basis for comparison.
It is possible, indeed, to try to approximate the
population�s basic parameters (µ and σ) from the
estimators x and s . The key issue is the adequate
determination of the size of the sample. In this case we
know nothing about the distribution under study (i.e. the
probability that the best value from GAE exceeds a
certain value). Hence, to find the basic parameters

(which are usually calculated from ∑
=

=
N

1i ix
N
1

x and

∑
=

−
−

=
N

1i
2)xi(x

1N
1

s) we, first, rely on the fact that

any sampling population of means (for a sufficiently
large sample) is normally distributed. We perform
enough simulations to insure that, indeed, the measured
means are thusly distributed. This we ascertain by
complying with a 2χ goodness-of-fit test with a 99%
level of confidence which allows us to find Xµ and

Xσ . Second, we know that)xf(r for GAE is given by

0.95)Xσ1.96Xµ)xf(P(≥+<r (since this distribution

is gaussian). Third, for the non-gaussian distribution of
)xf(r we further know (from Chebyshev�s theorem) that

0.9375])Xσ[64Xµ)xP(f(≥⋅+<r . These bounds, on

the other hand, are pertinent only for the GAE�s. The
point is, nonetheless, that the calculated values are
absolute within statistical certainty limits and the
foregoing conclusions, within these limits, are
uncontestable.

4.2 The statistical algorithm
To determine the relative performance of method K, it
was compared with other 4 popular methods which we
denoted as methods H, J, P and S. We also selected a
suite of functions and the corresponding parameters.
The interested reader is referred to [8] for the details.
The procedure which allows us to determine the relative
goodness of any GA is as follows:
1. 1←α (determine the parameter set)

2.
5),...,1iforSP,K,J,H,M(i)(whereM(β(A

method)the(determine;1β
==←

←

3. 1←i (count the number of samples)
4. 1←j (count the elements of a sample)
5. A function is selected randomly from the suite.
6. Experiment GAE is performed with this function and
a) the best value and b) the number of satisfied
constraints are stored.
7. 1+← jj
8. If j ≤ 36, go to step 5 (a sample size of 36 guarantees
normality).

9. The average ∑=
j

)x(jf
N
1

ix r of the best fitness�

values is calculated.
10. 1+← ii
11. If i ≤ 50, go to step 4
12. According to the central limit theorem, the ix

distribute normally. We, therefore, define 10 intervals
which are expected to hold 1/10 of the samples
assuming a normal distribution: i.e., the intervals are
standardized. If the samples are indeed normally
distributed the following 2 conditions should hold.

a) At least 5 observations should be found in each of
the 10 intervals (which explains why we test for 50 in
step 11).

b) The values of a 2χ goodness of fit test should be
complied with (which we demand to be in the 99%
confidence level).

We, therefore, check for conditions (a) and (b) above.
If they have not been reached, go to step 4.
13. Once we are assured (with probability = 0.99) that
the ix �s are normally distributed, we calculate the mean

Xµ and standard deviation Xσ of the sampling
distribution of the measured mean values of the best
fitnesses for this experiment. Moreover, we may
calculate the mean µ and the standard deviation σ of
the distribution of the best values (rather than the
means) from XX σσµµ 6; == . Notice that, therefore,
we characterize the statistical behavior of experiment
GAE quantitatively.
14. 1+← ββ . If β < 5, go to step 3.
15. 1+←αα . If α < 3, go to step 2.
16. End.

In step 5 of the algorithm a function is randomly
selected and the fitnesses of the various functions thusly
chosen are averaged. However, for this to be
mathematically consistent we need to normalize the
results in a way such that all functions have a
comparable best case. We achieve this by dividing the
best measured value by the known best value (which is
why we stated, above, that our choice of functions is
somewhat curtailed). Therefore, the best possible
(normalized) value is always Furthermore, the GAs are
not guaranteed to find feasible solutions in all cases. But
we must normalize even those solutions corresponding
to unfeasible individuals; we did this by multiplying the
number of unfulfilled constraints times the largest
penalty assigned to a given individual in generation 100
of each experiment. The unmistakable result obtained
from the statistical algorithm just described is that
method K is superior to all the other methods tested.
This is an interesting an counter-intuitive result. It
seems to contradict previous works (see, for instance,
[10]). Nonetheless, the results are conclusive and,
because of the methodology outlined above, we are able
to use method K with confidence.

5 Experiments
In what follows we describe the detailed solution of 4
SNLE problems with the VGA and method K.

5.1 Problem 1

05yxxy
08yx2y2x

=−++

=−+++
 (8)

Function to minimize:
13y22xxy2y2xf(x) −++++= (9)

Constraints:

05yxxy
08yx2y2x

≥−++

≥−+++ (10)

This problem was solved using an S3.26 format. It was
solved using two different binary encodings: a) Gray
and b) Weighted binary.

The reader will recall that Gray code is cyclic
and that the Hamming distance between any two
consecutive codewords is 1. Intuitively, this is a nice
property for any algorithm which refines the found
solutions step-by-step. For it is easy to see that two
numerically consecutive numbers (such as, say, �7� and
�8�) which are close in the numerical sense, are easier
to handle by any such algorithm if they are also
Hamming-wise closer. For instance, in typical weighted
binary, �7� is encoded as �0111� and �8� as �1000�.
The Hamming distance between these two numbers is 4.
In order to �find� �8� given that an algorithm has
already found �7�, it must change all the bits in one step
and all in the adequate direction. On the other hand,
Gray codes for �7� and �8� are, respectively, �0100�
and �1100�. The Hamming distance, here, is 1 and it is
more likely that �7� �gives rise� to �8� in this sort of
encoding.

Solution for Gray encoding:

1.999661y
1.000584x

≈

≈

Solution for weighted binary encoding:

998059.0y

003467.2x
≈

≈

Notice that the values for x and y were reversed in both
cases. The true values being x=1 and y=2 (or y=1 and
x=2). The VGA ran for 50 generations and N=50 in
each case. It is simple to see that with a binary
representation of 60 bits, there are 260 possible values,
hence, the number of possible solutions is, roughly,
1,152,921x1012. To find the solution the GA explored
50X50=2,500 values; approximately 2.2x10-13 % of the
total; a remarkably efficient performance.

5.2 Problem 2

017.32y)cos(x)sin(22y
010.2(y)2sin(x)cos23x

=−+
=−+ (10)

Function to minimize:

07.522y)cos(x)sin(
...22y(y)2sin(x)cos23x)xf(

=−
+++=r

 (11)

Constraints:

017.32y)cos(x)sin(22y
010.2(y)2sin(x)cos23x

≥−+
≥−+ (12)

This problem was solved using an S3.26 format. It was
solved using two different binary encodings: a) Gray
and b) Weighted binary.

Solution for Gray encoding:

1.2.926398y
1.998176x

≈
≈

Solution for weighted binary encoding:

929688.2y
000000.2x

≈
≈

The errors were, respectively, 0005.0Gray =ε and

594.0=WBε . The VGA ran for 100 generations and
N=50 in each case. Efficiency is analogous to the
problem previously considered.

5.3 Problem 3

02z2y3x
062z2y2x
0103z3y2x

=−+−
=−++
=+−+

 (13)

Function to minimize:
23z2zz3y3x22xz)y,f(x, +−++++= (14)

Constraints:

02z2y3x
062z2y2x
0103z3y2x

≥−+−
≥−++
≥+−+

 (15)

This problem was solved using an S4.24 format. It was
solved using weighted binary encoding.

Solution for weighted binary encoding:

391.99705201 z
271.02107465- y
391.01690438 x

+=
=
+=

and
0.0771331.99705) 1.02107- 1.0169, f(≈++

The VGA ran for 500 generations and N=50. Here the
binary encoding of 87 bits (287) yields close to
154,742x1021 possible solutions. To find the closest the
GA explored 500X50=25,000 values; approximately
1.615x10-19 % of the total; again, a remarkably efficient
performance.

The values reached for each of the 3 constraints
(say c1, c2 and c3) were:

0.0060333c
0.0649042c
0.0061941c

≈
≈
≈

5.4 Problem 4

01ycos(yz)sin(2x)
03z2y32x

022zsin(xy)23x

=−++
=+−−

=+−+
 (16)

Function to minimize:

4z2zycos(yz)
...2ysin(xy)23x32xz)y,f(x,

+−−+
+−++= (17)

Constraints:

01ycos(yz)sin(2x)
03z2y32x

022zsin(xy)23x

≥−++
≥+−−

≥+−+
 (18)

This problem was solved using an S3.25 format. It was
solved using weighted binary encoding.

Solution for weighted binary encoding:

451.37380227 z
001.27288571 y
140.03916706- x

+=
+=

=

and
0.090945z)y,f(x, ≈

The VGA ran for 500 generations and N=50. As above,
the binary encoding of 87 bits (287) yields close to
154,742x1021 possible solutions; 500X50=25,000 values
were explored; approximately 1.615x10-19 % of the
total..

The values reached for each of the 3 constraints
(say c1, c2 and c3) were:

0.00002873c
0.00379912c
0.00028051c

≈
≈
≈

6 Conclusions
We have shown that it is possible to solve arbitrary sets
of non-linear equations using a GA. We have proved
that the results we have illustrated are applicable in
general. From previous analysis we have, furthermore,
provided a general optimization technique and a method
(method K) which allows the GA to perform properly
even when faced with constrained optimization
problems.

All the foregoing conclusions apply without
prior knowledge of the equations� behavior. And we
have also illustrated two interesting facts: a) That binary
fixed point encoding is adequate for our purposes and
that b) The method is impervious to the particular type
of codification.

It is possible to extend the method to include the
numerical solution of the following problems: 1)
Finding the roots of higher degree equations and 2)
Solving Diophantine equations.

Since GAs are powerful optimization tools, it is
to be expected that their application to numerically
complex problems continues to expand. Particularly
when there are no known methods to tackle the
problems in question or when the known methods are
inefficient or incomplete.

References:
[1] Roos, B. and Widmark, P. Eds. European
 Summerschool in Quantum Chemistry, Book I ,
 http://www.teokem.lu.se/esqc/book/content1.html
[2] Systems of Non-Linear Equations,
 http://www.math.neu.edu/undergrad/
 calc4eng/q6/systems_review.html.
[3] Solving systems with linear and non-linear terms,
 http://www-sop.inria.fr/saga/logiciels/ALIAS/
 node17.html
[4] Rudolf, G., �Convergence Analysis of Canonical
 Genetic Algorithms�, IEEE Transactions on Neural
 Networks, 5(1):96-101, January, 1994.
[5] Back, T., Evolutionary Algorithms in Theory and
 Practice, Oxford University Press, New York,

1996.
[6] Kuri, A., A Comprehensive Approach to Genetic
 Algorithms in Optimization and Learning. Theory
 and Applications, Vol. 1. Instituto Politécnico

 Nacional, pp 270, 1999.
[7] Kuri, A., �A Methodology for the Statistical
 Characterization of Genetic Algorithms�, Lecture

Notes in Artificial Intelligence, LNAI 2313, Springer-
Verlag, pp. 79-88, 2002.

 [8] Kuri, A., and Gutiérrez, Jesús, �Penalty Function
Methods for Constrained Optimization with Genetic
Algorithms: A Statistical Analysis�, Lecture Notes in
Artificial Intelligence, LNAI 2313, Springer-Verlag,
pp. 108-117, 2002.

 [9] Kuri, A., "A Universal Eclectic Genetic Algorithm
 for Constrained Optimization", 1998, Proceedings
 6th European Congress on Intelligent Techniques &
 Soft Computing, EUFIT'98, pp. 518-522.
[10] Coello, C., �Use of a Self-Adaptive Penalty

Approach for Engineering Optimization Problems�,
Computers in Industry, 41(2):113-127, 2000.

