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Abstract: In the paper, infinite-dimensional, continuous-time control systems described by nonlinear abstract 
differential equations are considered. Using methods of functional analysis sufficient conditions for constrained exact 
local controllability are formulated and proved. It is generally assumed that the values of controls are in a convex and 
closed cone with vertex at zero. Illustrative examples are also given. Moreover, some remarks and comments on 
controllability problems for nonlinear dynamical systems are presented. 
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1 Introduction*  

                                                

Controllability is one of the fundamental concept in 
modern mathematical control theory [5]. Roughly 
speaking, controllability generally means, that it is 
possible to steer dynamical system from an arbitrary 
initial state to an arbitrary final state using the set of 
admissible controls. In the literature there are many 
different definitions of controllability which depend on 
the type of dynamical system [2], [4], [5], [6], [8], [9]. 
For infinite dimensional dynamical systems it is 
necessary to distinguish between the notions of 
approximate and exact controllability [2], [4], [5], [6], 
[8]. It follows directly from the fact, that in infinite-
dimensional spaces there exist linear subspaces which 
are not closed. On the other hand, for nonlinear 
dynamical systems there exist two fundamental 
concepts of controllability; namely local controllability 
and global controllability [1], [4], [7], [10]. Therefore, 
for nonlinear abstract dynamical systems defined in 
infinite-dimensional spaces  the following four main 
kinds of controllability are considered: local 
approximate controllability, global approximate 
controllability, local exact  controllability, and global 
exact controllability. Controllability problems for finite-
dimensional nonlinear dynamical systems have been 
considered in many publications; see [5] for an 
extensive review of the literature. However, there exist 
only a few papers on controllability problems for 
infinite-dimensional nonlinear systems. The present 
paper is devoted to a study of the local exact 
controllability with constrained controls for nonlinear 
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stationary infinite-dimensional dynamical systems 
defined in Banach spaces. For such dynamical systems 
direct verification of the local exact controllability is 
rather difficult task. Therefore, using  methods of 
nonlinear functional analysis [1], [2], [3], [6] it is shown 
that local exact controllability of nonlinear dynamical 
system can be checked by global exact  controllability 
criteria for appropriate defined associated simplified 
linear infinite-dimensional dynamical. General results 
are then applied for verification of local  controllability 
for two finite-dimensional nonlinear dynamical systems. 
The results presented in the paper extend to a more 
general class of nonlinear abstract dynamical systems 
previous controllability theorems given in publications 
[1], [3].  
 
 
2 System  Description 
Let us consider the nonlinear infinite-dimensional 
control system described by the abstract ordinary 
differential equation 
 
x'(t) = f(x(t),u(t))  for   t∈[0,T]        (1)   
 
with zero initial condition x(0) = 0, where f : X × U → 
X  is a nonlinear mapping such that f(0,0) = 0 ; here X 
and U are real Banach spaces. It is assumed that the 
mapping f is continuously Frechet differentiable with 
respect to both arguments. 
 Let U0 ⊂ U be a closed convex cone in the 
space U with vertex at zero and nonempty interior. The 
set of admissible controls for the system (1) is given by 
Uad = L∞([0,T],U0).For the dynamical system (1) it is 



possible to define many different concepts of 
controllability [5]. In the sequel we shall focus our 
attention on so-called constrained exact controllability 
in a given time interval [0,T]. In order to do that, first of 
all let us introduce the notion of the attainable set at 
time T > 0 from zero initial state x(0) = 0, denoted by 
KT(U0) and defined as 
 
KT(U0)={x∈X:x=x(T,0,u),u(t)∈U0 fora.e. t∈[0,T]} (2) 
 
where x(t,0,u), (t>0) is the unique solution of the 
equation (2) with zero initial condition and control u ∈ 
Uad. Under the assumptions stated on the nonlinear 
mapping f, such a solution always exists [2]. Using the 
concept of the attainable set, we may introduce the 
fundamental definitions of constrained controllability 
for dynamical system (1) [6].  
 
Definition 2.1 [6] The dynamical system (1) is said to 
be U0-exactly locally controllable in [0,T] if the 
attainable set KT(U0) contains a neighbourhood of the 
origin in the state space X. 
 
 For finite-dimensional state space, when  X = 
Rn  we may omit the word "exact" in the Definition 2.1, 
since in this case exact controllability is equivalent to 
approximate controllability [2], [5], [8]. 
 
Definition 2.2 [6] System (1) is said to be U0-exactly 
globally controllable in [0,T] if KT(U0) = X. 
  
 Similarly, as in the previous case, for finite-
dimensional state space X = Rn , we may omit the word 
"exact" in Definition 2.2. 
 It is convenient to study constrained 
controllability problems for the nonlinear dynamical 
system (1) with the aid of its associated linear 
approximation of the following form 
 
z'(t) = Fz(t) + Gv(t)   for  t∈ [0,T]            (3) 
 
with zero initial condition x(0) = 0, where  F: X→X  
and  G: U→X  are linear bounded operators given by 
F = D1f(x(t,0,u),u(t))  G = D2f(x(t,0,u),u(t)) 
 
 Here D1f  and  D2f  are the partial Frechet 
derivatives of the mapping f with respect to the first and 
second arguments of function f respectively. 
 In what follows we shall concentrate on 
constrained controllability problems for a special case 
of nonlinear system (1), namely we shall consider the 
following infinite-dimensional system [1], [3], [5]. 

 
x'(t) = A(x(t))x(t) + B(x(t))u(t) for  t∈[0,T]              (4) 
 
with zero initial condition x(0) = 0, where  A: X→X  
and  B: U→X  are nonlinear Frechet differentiable 
operators.  
 It should be mentioned, that the nonlinear 
dynamical system (4) satisfies all the assumptions posed 
on general nonlinear dynamical system (1). Therefore, 
under the assumptions on nonlinear function f stated 
above, the linear approximation of the dynamical 
system (4) has the following form 
z'(t) = A(0)z(t) + B(0)v(t)             for  t∈[0,T]            (5)       
 In the next sections using the methods of 
nonlinear functional analysis we shall formulate and 
prove sufficient conditions of constrained controllability 
both for infinite and finite dimensional dynamical 
systems of the form (4). 
 
 
3 Constrained  Controllability 
In order to compare constrained controllability results 
for nonlinear and associated linear system, we need the 
following general theorem, which is proved in [6]. 
 
Theorem 3.1 [6] Suppose that 
(i)   f(0,0) = 0, 
(ii) U0 ⊂ U is a closed convex cone with vertex at zero, 
(iii) The linear dynamical system (3) is U0-exactly 
globally controllable in [0,T]. 
Then the nonlinear dynamical system (1) is U0-exactly 
locally controllable in [0,T]. 
 
 Roughly speaking Theorem 3.1 asserts, that 
under suitable assumptions posed on nonlinear system 
(1), if its linear approximation (3) is U0-(exactly) 
globally controllable, then (1) is locally U0-(exactly) 
controllable. 
 In practical applications of Theorem 2.1, the 
most difficult problem is to verify the assumption (iii) 
about constrained global controllability of the linear 
approximation (3). In order to avoid this disadvantage, 
we may use the following corollary [6]. 
 
Corollary 3.1 [6] Suppose that assumptions (i) and (ii) 
of Theorem 2.1 are satisfied, and that U0 has nonempty 
interior in the space U. Then the nonlinear dynamical 
system (1) is U0-exactly locally controllable in [0,T] if 
the associated linear approximation (3) is U-exactly 
globally controllable in [0,T] (i.e. exactly-globally 
controllable without any constraints) and 
ker(sI - F*)∩(GU0)0 = {0} for every  s∈R         (6) 



where F* denotes the adjoint linear operator, GU0 is the 
image of the cone U0 under the linear operator G, and 
(GU0)0 is the polar cone for the cone GU0. 
 
 Now, using general results stated in Theorem 
3.1 and Corollary 3.1, we shall present sufficient 
conditions for U0-exact local controllability in [0,T] for 
special case of nonlinear dynamical system (4). 
 
Theorem 3.2. Let U0 be a closed convex cone with 
vertex at zero. Then nonlinear system (4) is U0-exactly 
locally controllable in [0,T], if linear approximation (5) 
is U0-exactly globally controllable in [0,T]. 
 
Proof. First of all let us observe, that for the nonlinear 
dynamical system (4) function f(x,u) = A(x)x + B(x)u . 
Therefore, f(0,0) = 0 and the assumption (i) if Theorem 
3.1 is satisfied. The assumptions (ii) and (iii) of 
Theorem 3.1 is the same as in our theorem. Hence all 
the assumptions of Theorem 3.1 are satisfied and 
Theorem 3.2 follows. 
 
Corollary 3.2. Suppose the assumptions of Theorem 3.2 
are satisfied, and that the cone U0 has nonempty interior 
in the space U. Then the nonlinear dynamical system (4) 
is U0-exactly locally controllable in [0,T] if the 
associated linear approximation (2.5) is U-exactly 
controllable in [0,T] (i.e. without any constraints) and 
ker(sI - A(0)*)∩(B(0)U0)0={0} for every  s∈R         (7) 
 
Proof. Let us observe that all the assumptions of 
Corollary 3.1 are satisfied. Moreover, taking into 
account equation (5) and equality (6) we obtain 
immediately relation (7). Hence our corollary follows. 
 It should be mentioned, that in infinite-
dimensional cases, conditions for exact global 
controllability of linear dynamical systems which are 
needed in the above theorems and corollaries are known 
to be quite a strong requirement [4],[5],[9],[10]. 
However, for finite-dimensional case these conditions 
are not so restrictive [5]. 
 Now, using the general results we shall present 
certain sufficient conditions for U0-local controllability 
of nonlinear system (4) in finite dimensional case. 
 
Theorem 3.3. Let X = Rn , U = Rm and U0 be a closed 
convex cone with vertex at zero and nonempty interior 
in the space Rm.. Then the nonlinear dynamical system 
(4) is U0- locally controllable in [0,T] if 
(i)   rank [B(0)|A(0)B(0)|A(0)2B(0)|...|A(0)n-1B(0)] = n 

(ii)  there is no real eigenvector  w ∈ Rn  for the matrix 
A(0)T satisfying for every u ∈ U0 the following 
inequality   wTB(0)u ≤ 0. 
 
Proof. Condition (i) means, that linear dynamical 
system (5) is globally controllable (without any 
constraints) in any time interval [0,T] [5]. Condition (ii) 
in finite-dimensional case is equivalent to the relation 
(7) [9]. Hence, by Corollary 3.3 our theorem follows. 
 For dynamical systems with scalar control (i.e. 
m = 1 and B(x)=b(x)∈Rn) from Theorem 3.3 we directly 
obtain the following corollary. 
 
Corollary 3.3. Let  X = Rn, U = R and U0={u∈R: u≥0}. 
Then the nonlinear dynamical system (5) is U0-locally 
controllable in [0,T] if  
(i)   det[b(0)|A(0)b(0)|A(0)2b(0)|...|A(0)n-1b(0)] ≠ 0 
(ii)  matrix A(0) has only complex eigenvalues. 
 
Proof. Let us observe, that the positive cone U0 has 
nonempty interior in the space R.  Moreover, when m=1 
and B(x) = b(x) ∈ Rn, conditions (i) in Theorem 3.3 and 
Corollary 3.4 are of course equivalent. Finally, since w 
and -w are both eigenvectors of the matrix A(0)T and u 
≥ 0, then one of the inequalities  wTb(0)u ≤ 0  or  -
wTb(0)u ≤ 0 is false. Therefore, matrix A(0)T should 
have only complex eigenvalues. Hence our corollary 
follows. 
 
4 Examples 
In this section we shall present two simple numerical 
finite-dimensional examples, which illustrate theoretical 
considerations given in the previous section. 
 
Example 1. Let us consider the following nonlinear 
finite-dimensional stationary dynamical system with 
nonnegative controls. 
x'1(t) = 2x1(t)cosx2(t) + x2(t)cosx1(t) + u1(t)expx2(t) -  
 - u2(t)expx1(t)                  
x'2(t) = x1(t)expx1(t) + 2x2(t)expx2(t) + 2u1(t)cosx2(t)   
 - 3u2(t)cosx1(t)          (8) 
In this case X = R2 , U = R2 , and the nonnegative cone 
U0 = {u=[u1 , u2]∈R2 : u1 ≥ 0 , u2 ≥ 0}. Moreover, the 
matrices A(x) and B(x) have the following form 

A x
x x
x x

( )
cos cos

exp exp
=

2
2

2

1 2

1          B x  
x x
x x

( )
exp exp
cos cos

=
−
−

2 1

2 12 3
Hence,   

A( )0
2 1
1 2

=  and B  ( )0
1 1
2 3

=
−
−



 Since the matrix B(0) is nonsingular, condition 
(i) in Theorem 3.3 is automatically satisfied. 
 Now, we shall verify condition (ii) of the 
Theorem 3.3. First of all let us observe, that matrix A(0) 
has two real eigenvalues, namely; s1 = 1 and s2 = 3. The 
corresponding eigenvectors are; w1 = k1[1 , -1]T  and  w2 
= k2[1 , 1]T, where k1∈R and k2∈R are given constants. 
Therefore, we have 
 
k1w1B(0)u=k1(-u1+2u2)       k2w2B(0)u = k2(3u1-4u2) 
and assumption (ii) in Theorem 3.3 is satisfied (for a 
given k1 and k2, the right hand sides of two above 
equalities may change the sign). Hence, the nonlinear 
dynamical system (8) is U0-locally controllable in any 
time interval [0,T]. 
 
Example 2. Let us consider nonlinear finite-
dimensional stationary dynamical system with the same 
matrix A(x) as in Example 1, but with the matrix B(x) 
given by the following equality 

B x
x x
x x

( )
exp exp
cos cos

=
−2 1

2 12 3
 

In this case we have     B( )0
1 1
2 3

=
−

 

k1w1B(0)u=k1(-u1-2u2),      k2w2B(0)u=k2(3u1 + 2u2)  
Hence, both two above relations do not satisfy the 
condition (ii) in Theorem 3.3 (for a given k1 and k2, the 
right hand sides of the above equalities cannot change 
the sign). Therefore, in this case the nonlinear systems 
is not U0-locally controllable in any time interval [0,T].  
 
5 Conclusion 
In the present paper exact controllability problems for 
nonlinear stationary dynamical systems have been 
considered. Using certain general theorem on 
constrained exact controllability, sufficient conditions 
for U0-exact controllability in a given time interval have 
been formulated and proved both for infinite-
dimensional and finite-dimensional nonlinear control 
systems. It is generally assumed, that U0 is a closed 
convex cone with vertex at zero. Moreover, two 
illustrative finite-dimensional examples have been 
presented. The obtained theoretical results extend to 
more general class of dynamical systems previous 
results on nonlinear controllability known in the 
literature. Finally, it should be pointed out, that quite 
similar methods of functional analysis can be applied 
for investigation of exact controllability problems in 
nonlinear nonstationary infinite-dimensional and finite-
dimensional dynamical systems including dynamical 
systems with delays. 
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