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Abstract: - Two basic types of change-point detectors are used for a localization of abrupt changes in 
audio signals, especially in speech and music signals.  The Bayesian autoregressive change-point 
detector (BACD) and Bayesian polynomial change-point detector (BPCD) are analyzed and modified to 
enable sequential signal segmentation. The modification consists in a recursive evaluation of functions 
used in these detectors. Normalization based on Bayesian evidence is discussed together with a proper 
choice of parameters ensuring the numerical stability. Suggested detectors seem to be computationally 
effective and numerical stable as shown by experiments. Some illustrative examples of the 
segmentation of real music and speech signals are given.  
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1   Introduction 
The signal segmentation has been challenge for many 
years. A great number of methods and applications can 
be found, e.g. a speech, music and biological signal 
segmentation. The segmentation is based on searching 
change-points detection using suitable signal parameters. 
Very robust and reliable methods are based the 
maximum likelihood and Bayesian approach e.g. [1], [2], 
[3], [4]. Bayesian detectors are very effective because 
they remove nuisance parameters from the analysis by a 
marginalization process. Moreover, offer powerful tools 
for the model order selection. Effective way of the 
Bayesian detector implementation is based on recursions 
for a change-point position and a new data. Robust 
implementation of a recursive growing window 
algorithm for one change-point detection is suggested in 
[2], [5]. When sequential signal segmentation is required 
the problems with the occurrence of more change-points 
has to be solved. Problems connected with multiple 
change-points detection can be overcome by e.g. Markov 
Chain Monte Carlo Methods (MCMC) and their 
modifications e.g.  [6], [7].  In spite of very high 
robustness of these methods some other solutions can be 
found (e.g. [1], [8], [9], [10], [11]). These methods offer 
relatively easy implementation of the sequential 
detection of abrupt changes, especially for audio signals. 
This paper makes an effort to use simple Bayesian 
change-point detectors for the sequential signal 
segmentation. Two basic types of Bayesian detectors are 
used and modified using sliding window algorithm to be 
suitable for the sequential signal segmentation. First 
detector is the BACD second the BPCD. The BACD is 
based on autoregressive modelling of signals the BPCD 
uses  the polynomial signal modelling.  

 
These two types of methods are chosen with respect to 
signal types. In order the segmentation to be successful a 
proper type of change-point detector should be used. As 
shown below the BACD seems to be suitable for speech, 
violin, oboe and clarinet signals while the BPCD seems 
to be better for trumpet and drum signals. Also 
parameters of segmentation methods should be 
optimised for given signal characteristics. 

 
 

2   Problem Formulation 
This section defines two types of Bayesian detectors the 
BACD and BPCD and describes their recursive 
implementation. 

 
 

2.1 BACD  
The BACD requires the signal model consisting of two 
parts: “left” generated by AR model with 1M parameters 

ka and “right” generated by another AR model with 2M  
parameters kb  
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or in matrix form 

ebGd +⋅= AA .             (2) 
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The matrix AG has the Jordan form  
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and it depends on the unknown index of change-
point ,,...,1 Nm = which is determined by the maximum 
(MAP) of the posterior probability density function (pdf) 
given by [2]  
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Matrix ( ) 1

AAA

−
= GGΦ T is the inverse correlation 

matrix, ddT=D  is the signal energy, AA Gdg T= is 
correlation vector, and ( )AAA det GG T=∆ .  
 
2.2 BPCD  
The signal model for this type of detector is 
modelled by two different polynomials  
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This equation  can be written in matrix form 
ebGd +⋅= PP ,          (6) 
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The probability density is now given by 
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2.3    Recursive algorithm for BACD and BPCD 
When both detectors are to be used for the change-point 
detection of non-stationary signals then the signal 
segmentation is necessary. The length of the window is 
dependent on signal parameters because both signal 
models (AR and polynomial model) presuppose one 
change in one signal segment. This requirement can lead 
to an inapplicable short window length. Moreover, 
results from different windows are not comparable. The 
first problem can be avoided by using sliding window 
algorithm for the evaluation of functions (4) and (8). The 
latter problem can be solved by the normalization of (4) 
and (8) using the Bayesian evidence. The need of this 
normalization follows from the fact that data vector is 
not constant (as supposed in the marginalization process 
used in [2]) when sliding window is applied. If the 
marginalization process is used for two parameters (not 
for three as in [2]) the resulting formula for Bayesian 
evidence  
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slightly differs from the formula given in [2].  Index I 
stands for A (in the case of the evidence for an 
autoregressive model and BACD) and P (in the case of 
the evidence for polynomial model and BPCD). The 

inverse of the correlations matrix ( ) 1
III

−
= GGΦ T and 

cross-correlation vector III Gdg T= are now derived from 
the data matrix IG  given by 
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The final normalized BACD (BACDN) or BPCD 
(BPCDN) detectors are given by 
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Using this function enables to compare results between 
different signal segments and thus it enables to form 
sliding window algorithm.  
The recursive evaluation of pdf (4), (8) and (9) requires 
two types of the update for functions III ,,, ∆ΦgD  
(where I is A or P): the update of a change-point position 
m  and the update given a new data [2], [5]. While the 



position update is used here without any change, the data 
update is modified. Instead the growing memory 
algorithm used in [2] and [5] the sliding window 
algorithm is used.  
This approach can be further simplified. Let 

NmLlmpl ,...,1,,...,1),,|(~ ==Md  represents the sliding 
window (length N ) evaluation of the normalized 
posterior density (11) for L  segments. Thus the 
evaluation of this time-dependent function requires 
updating NxL values. This number of operations can be 
further reduced. Instead of using all NxL samples of 
function ),|(~ Mdmpl only L  values can be used. The 
information needed for the localization of change-point 
is included in time-progress of any value 
of const.),,|(~ =mmp Md  Best choice is 2/Nm =  giving 
the sequence LlNpl ,...,1),,|2/(~ =Md . This choice 
ensures the best numerical stability and the lowest 
sensitivity to disturbances comparing with other 
asymmetric choices ;2/Nm ≠  it also gives the best 
results for the model order selection due to fact that the 
“left” and “right” parts of data vector have the same 
lengths.  
 
2.1.1 Summary of recursive algorithms 
The RBACDN and RBSCDN algorithms can be 
summarized as follows: 
a) Initialization of D ∆∆ ,,,,,, III ggΦΦD  for 1=l  (first 

data segment) and 2/Nm = → ),|2/(~
1 MdNp  

b) Recursion=data and position update 
a. Data update for a new sample for (2), (3) 
b. Removing old sample (2), (3) 
c. Position update for (2) 
→ ,...2),,|2/(~ =lNpl Md  

c) Post-processing of ,...2),,|2/(~ =lNpl Md  
a. Searching for two adjacent minima of 

smoothed ),|2/(~ MdNpl (low-pass filter, 
cut-off 100/π≈ ) → stationary points.  

b. Searching for one maximum of 
),|2/(~ MdNpl between two stationary 

points→ final change-points.  
Notes: Searching for minima of signal is relatively 
simple because of their almost the same values (which 
are close to zero) due to normalization of BACD or 
BPCD by the Bayesian evidence. Searching for one 
maximum decreases the number of false alarms and 
excludes the need of smoothing ),|2/(~ MdNpl . The 
logarithm allows using longer window length (even 3000 
samples) without any numerical instability. The choice 
of the window length depends on signal parameters. 
 
 
 

Details of step b) 
 
A) Data update for function (4), (8) and (9) are given 
by 
I) Adding new data row x 

]1[]1[ˆ +++= NdNdDD ll ; 
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ˆ ΔΔ λ= ; λ/ˆ

II,I,I
TWWΦΦ −= ll , where 

]]1[]1[][00[ 2

1

MNdNdNd
M

−+−= L
43421

Lx

for the RBACDN; 
]]1[]1[]1[00[ 2

1

10

1

+++=
+

NtNtNt P

P

L
43421

Lx

for the RBPCDN; 
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for the BE  normalizing BACD; 
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for the BE  normalizing BPCD. 

 

II) Removing old data row z  
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for the BE  normalizing BPCD. 
 
B) Position update for (2) and 2/Nm =  
I) Replacing of 1+m  row Ir of IG with row  of 
zeros  

I,I,I ]1[ˆ rgg +−= mdll ; TrΦW I,II l= ; 

II1 Wr−=λ ; ll ,I,I
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II) Replacing of 1+m  row Ir of IG with new 
data Iq  
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II1 Wq+=λ ; 
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for the RBPCDN. 
The model order selection needed for the proper 
algorithm performance is dependent on signal 
parameters and it is not included yet in this algorithm. 

 
 

3   Experiments and results 
The described algorithms were preliminary validated by 
experiments with synthetic and real signals. Extensive 
simulations for signals modelled by various 
autoregressive and polynomial models were evaluated. 
Both, the RBACDN and the RBPCDN have shown 
performance close to the BACD and the BPCD 
performance for one change-point and window length 
greater than 200 samples. The RBACDN and the 
RBPCDN behaviour for real signals are illustrated in 
Figs. 1 to Figs. 3 for various signal changes. 
Fig. 1 shows the segmentation process using the 
RBACDN for a non-stationary oboe signal. The average 
error rate evaluated on several realizations of oboe signal 
is about 18%. Results show the tendency for change-
point omissions rather than for change-point insertions 
(false alarms). Cepstral distances (for definition and 
using for the classification of signal changes see [12]) 
vary from 2.5 db (very small, almost inaudible change) 
to 8 dB (strong audible change). As it can be seen from 
the spectrogram the changes are gradual rather than 
abrupt. 
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Fig.1 Oboe signal segmentation. From top to bottom: 
waveform, RBACDN output (11), and spectrogram with 
estimated change-points. Model order M1=M2=20, 
sliding window 2000 samples, cepstral distances are 
from 2.5 db to 8 dB.  
 
Another example of abrupt and strong changes in drum 
signal illustrates Fig. 2.  This type of signal requires 
polynomial rather than autoregressive modeling because 
cepstral changes are smaller than 1 dB. This small values 
indicate that the autoregressive model is inadequate. The 
polynomial model zero order is used in this case because 
there are abrupt changes especially in signal level rather 
than in signal slope. The average error rate evaluated on 
several realizations of the oboe signal is about 10%. 
Results show the tendency rather for change-point 
insertions than for change-point omissions. 
Fig. 3 illustrates speech segmentation which seems to be 
the most problematic application of the suggested 
detectors. Results of speech segmentation show a high 
sensitivity to the choice of window length and the proper 
model order selection. The described RBACDN is not 
yet modified for an automatic model order selection 
using BE and for the use of different model orders for 
“left” and “right” parts of signal. Moreover, speech is a 
highly non-stationary process requiring a small length of 
sliding window. But the short window generates 
inconsistent change-point estimates causing extra 
change-point insertions. When a long window is used the 
RBACDN detects more change-points, especially in 
consonant parts of speech. Also consonant-vowels parts 
are not reliable detected in this case.  
The segmentation experiments with real signals were 
validated by the multiple model algorithm [11] but 
above all by the inspection of segmented spectrograms 
(see bottom of all figures), and by listening the isolated 
segments containing tones or parts of speech sentences. 
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Fig.2 Drum signal segmentation. From top to bottom: 
waveform, RBPCDN output (11), and spectrogram with 
estimated change-points. Model order M1=M2=0, 
sliding window 2000 samples.  
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Fig.3 Speech signal segmentation. From top to bottom: 
waveform, RBACDN output (11), and spectrogram with 
estimated change-points. Model order M1=M2=8, 
sliding window 1000 samples.  

 
 

4   Conclusion 
Two new sliding window segmentation algorithms based 
on the normalization of the probability density function 
by the Bayesian evidence was suggested. The reduction 
of computational costs were described and verified by 
experiments and illustrated on real signals. Further 
research will be focused on an automatic model order 
selection using the Bayesian evidence, and the 
optimization of RBACDN for the automatic speech 
segmentation. 
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