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Abstract--Self-organizing maps are an unsupervised neural network model that lends itself to the cluster 

analysis of high dimensional input data. However, interpreting a trained map proves to be difficult because 
the features responsible for specific cluster assignment are not evident from resulting map representation. 
Paper presents an approach for automated knowledge acquisition system using Kohonen self-organizing 
maps and k-means clustering. For the sake of illustrating the system overall architecture and validate it, a 
data set represent world animal has been used as training data set. The verification of the produced 
knowledge based had done by using conventional expert system. 
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1. INTRODUCTION 
 n our daily life, we cannot avoid making 
decisions. Decision-making may be defined as 

making a conclusion or determination upon a 
problem at hand. However, in recent years, 
problems to be solved have become more 
complex. Consequently, knowledge based 
decision-making systems have been developed to 
aid us in solving complex problems. The demand 
for automated knowledge acquisition system has 
increased dramatically. 

The previous approaches for automated 
knowledge acquisition are based on decision 
trees, progressive rule generation, and supervised 
neural networks [1]. All the above-mentioned 
approaches are supervised learning methods, 
requiring training examples combined with their 
target output values. In the real world cases, 
target data is not always known so as to provide 
to the system before start training the data set[2]. 

This paper is organized as follows: Section 2 
presents an overview of the automated knowledge 
acquisition.  Section 3 demonstrates illustrative 
application. Finally section 4 illustrates the 
conclusion and future work..  

2. AUTOMATED KNOWLEDGE 
ACQUISITION 

The paper proposes an automated knowledge 
acquisition method in which, knowledge 
(connectionist) is extracted from data that have 
been classified by a Kohonen self-organizing map 
(KSOM) neural network. This knowledge (at this 
stage) is of the intermediate-level concept rule 
hierarchy. The final concept rule hierarchy is 
generated by applying a rule generation algorithm 
that is aided by an expert system inference 
engine. The resulting knowledge (symbolic) may 
be used in the construction of the symbolic 
knowledge base of an expert system. The 
proposal is rationalized from the realization that 
most complex real-world problems are not 
solvable using just symbolic or just adaptive 
processing alone [3]. As depicted in Figure 2, the 
methodology of the proposed system consists of 
four main phases namely, data preprocessing, 
KSOM learning and k-means clustering, 
symbolic rule extraction and formation of 
knowledge base.   

 
3. ILLUSTRATIVE APPLICATION 

The identification of possible faulty 
condition in the machine from data patterns can 
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enhance the ability to act proactively and more 
efficiently so as to maximize productivity and 
eliminating unplanned downtime. Automation of 
this process depends critically on the existence of 
electrical signatures that can be acquired from the 
machine; and these signatures should uniquely 
correspond to specific condition of the machine. 
 

 
Figure 2: The functional block diagram of 

knowledge acquisition system 
 
3.1  Background of the Problem  

The functional block diagram of this problem 
consists of three main models; namely: wire 
bonding machine and data acquisition, feature 
extraction, and knowledge acquisition and 
condition recognition. This is shown in Figure 3. 

 
 
 

 
The wire-bonding machine that is used in 

this case study is the ABACUS III wire-bonding 
machine found in semiconductor manufacturing 
plant. The wire bonding process is third process 
in the assembly and test of integrated circuits and 
it is the most commonly employed 
interconnection technique in the semiconductor 
industry. Its objective is to attach very fine gold 
wires from the silicon die (sawn chips from 
wafers) to the lead frame. This interconnection 
offers a low resistance for the electrical signal to 
be propagated functionally and completely.  

The data collected from the machine is a 
signature signal that corresponds to the operating 
condition of the machine. The shape of the 
signature reflects the condition of the machine. 
Any distortion or abnormalities in the shape of 
the signal compared to that of a normal signature 
indicates a problem, and corrective measures can 
then be taken to avoid producing further rejects 
and also unplanned breakdown of the machine. 

The data collected from the machine is a 
signature signal that corresponds to the operating 
condition of the machine. The shape of the 
signature reflects the condition of the machine. 

Any distortion or abnormalities in the shape 
of the signal compared to that of a normal 
signature indicates a problem, and corrective 
measures can then be taken to avoid producing 
further rejects and also unplanned breakdown of 
the machine. 

  
 

Figure 3: Functional block diagram of condition monitoring problem 
 

In this case study the electrical signature 
is the damping signal of the bond head 
subassembly of the wire-bonding machine. The 

damping signatures are collected by connecting a 
digital oscilloscope with storage capacity to a 
predetermined test point on the bond head driver 
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(galvo) card of the wire-bonding machine. These 
form the data acquisition module in the functional 
block diagram above. 

The damping signature of the bond head 
subassembly can be described by the following 
continuous time equation [x]: 
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Where A is a constant, f0 and f1 are the 

frequencies, and 0τ and 1τ  are the time constants 
for the signal. A damping signature can be 
divided into three parts namely: the fall signal, 
the rise signal and the steady state part. The fall 
signal and the rise signal refer to part of the signal 
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4 shows an example of the damping signature of a 
good condition machine. 

 
 

 

 
Figure 4: Good damping signature  

 
Any problem that is encountered by the 

machine will result in a deviation in the damping 
signature from that defined in Equation 1 above. 
This is characterized by the values of frequencies 
and time constants that deviate from the system 
specifications. The extraction of unique feature 
vectors from the collected signatures requires 
further analysis.  

In terms of signals, correlation between 
two signals or between one part of a signal to 
another part of the same signal is to measure the 
degree to which they are similar and thus extract 
the information present in it. Specifically, the 
cross-correlation function and autocorrelation 
function are used for this purpose. In this case 

study the autocorrelation is used. The 
autocorrelation function is defined as the measure 
of dependence of successive samples x(n-m) on 
the previous ones x(n) and is carried out by: 
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Where N is the total number of samples 
and time lag m= ± (0,1…N-1)  

 The rise time autocorrelation function is 
evaluated during the interval n3<n<n4 as shown 
in Figure 2. The fall time autocorrelation function 
is evaluated during the interval n1<n<n2. Figure 5 
shows the distribution of parameters for fall time 
autocorrelation and rise time autocorrelation. 
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Figure 5: Distribution of parameters for the RTAC and FTAC [x] 

 
3.2 Rise-Time Auto-Correlation (RTAC) Case 
Study 

This data set is derived from [x]. The goal 
of nEXPERT is to predict the current machine 
condition given the feature vectors. The data set 
is composed of 1300 input feature vectors 
(examples). Each of which is associated with a 
machine condition feature. Each input vector 

consist of six RTAC signal function parameters. 
Figure 6 shows the input data before and after 
normalization. Normalization removes 
dominance among the input feature vectors 
parameters, as shown in Figure 4 (b). The 
Kohonen NN learning and modified K-means 
clustering outputs are illustrated in Figure 5 and 
Figure 6, respectively. Eight clusters are obtained.

 

     
(a) Before                                           (b) After  

Figure 6: Input data before and after normalization (RTAC) 
 

     
 

Figure 7: Kohonen NN learning & clustering session output 
(RTAC) 

 Figure 8: Modified K-means clustering session output 
(RTAC) 

 
By using Boolean algebra in removing 

symbolic redundancy among the extracted rules 
that represent same cluster, the contents of Table 

2 is updated to new comprehensive set with less 
number of rules; as shown in Table 3. In other 
words, for example rules 1.1, 1.2, and 1.3 that 
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indicate by rule number 1 in Table 2 could be 
reduced to only two rules; as shown by rule 
number 1 in Table 3. This removal of symbolic 
redundancies in the antecedents, followed by the 

knowledge base formation phase of nEXPERT 
results in the formation of the symbolic rule base 
shown in Table 3. 

 
Table 2: Antecedents – to – cluster mapping (RTAC) 

Rule 
No. 

Antecedents part Cluster 
index 

1 1.1 (Rise shift= low)& (nmow = high)& (s1h1= high)& (ns1h2= low)& (s1h2= high)& (ns1h2= high) 
1.2 (Rise shift= low)& (nmow = low)& (s1h1= high)& (ns1h2= low)& (s1h2= high)& (ns1h2= high) 
1.3 (Rise shift= low)& (nmow = low)& (s1h1= low)& (ns1h2= low)& (s1h2= low)& (ns1h2= high) 
1.4 (Rise shift= low)& (nmow = low)& (s1h1= high)& (ns1h2= low)& (s1h2= low)& (ns1h2= high 

Cluster 1 

2 (Rise shift= low)& (nmow = low)& (s1h1= low)& (ns1h2= low)& (s1h2= high)& (ns1h2= high) Cluster 2 
3 (Rise shift= low)& (nmow = low)& (s1h1= high)& (ns1h2= high)& (s1h2= low)& (ns1h2= low) Cluster 4 
4 4.1 (Rise shift= low)&  (nmow = high)& (s1h1= high)& (ns1h2= high)& (s1h2= low)& (ns1h2= low). 

4.2 (Rise shift= low)& (nmow = high)& (s1h1= low)& (ns1h2= high)& (s1h2= low)& (ns1h2= low). 
Cluster 5 

5 5.1 (Rise shift= low)&  (nmow = low)& (s1h1= high)& (ns1h2= low)& (s1h2= low)& (ns1h2= low) 
5.2 (Rise shift= high)& (nmow = low)& (s1h1= low)& (ns1h2= low)& (s1h2= low)& (ns1h2= low) 
5.3 (Rise shift= high)&  (nmow = high)& (s1h1= low)& (ns1h2= low)& (s1h2= low)& (ns1h2= 

low) 

Cluster 6 

6 (Rise shift= high)& (nmow = high)& (s1h1= low)& (ns1h2= high)& (s1h2= low)& (ns1h2= low) Cluster 7 
7 (Rise shift= low)& (nmow = low)& (s1h1= low)& (ns1h2= low)& (s1h2= low)& (ns1h2= low) Cluster 8 

 
Table 3: Extracted symbolic rule base (RTAC) 

Rule  
No. 

Antecedents part Condition  
 

1 1.1 (Rise shift= low)& (s1h1= high)& (ns1h2= low)& (s1h2= high)& (ns1h2= high) 
1.2 (Rise shift= low)& (nmow = low)& (ns1h2= low)& (s1h2= low)& (ns1h2= high) 

Bad: loose flex pivot 

2 (Rise shift= low)& (nmow = low)& (s1h1= low)& (ns1h2= low)& (s1h2= high)& (ns1h2= high) Bad: loose linkage 
bearing (minimal) 

3 (Rise shift= low)& (nmow = low)& (s1h1= high)& (ns1h2= high)& (s1h2= low)& (ns1h2= low) Bad: spring at the 
 back of the wire 
pressed 

4 (Rise shift= low)&  (nmow = high)& (ns1h2= high)& (s1h2= low)& (ns1h2= low). Bad: board problem 
5 5.1 (Rise shift= low)& (nmow = low)& (s1h1= high)& (ns1h2= low)& (s1h2= low)& (ns1h2= 

low) 
5.2 (Rise shift= high)& (s1h1= low)& (ns1h2= low)& (s1h2= low)& (ns1h2= low) 

Bad: loose galvo 
linkage screw 

6 (Rise shift= high)& (nmow = high)& (s1h1= low)& (ns1h2= high)& (s1h2= low)& (ns1h2= low) Bad: Bent scanner 
7 (Rise shift= low)& (nmow = low)& (s1h1= low)& (ns1h2= low)& (s1h2= low)& (ns1h2= low) Good 

 

     
(a) Before                              (b) After  

Figure 9: Input data before and after normalization  (FTAC) 
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Figure 10: Kohonen NN learning output 
(FTAC) 

 Figure 11: Modified K-means clustering output 
((FTAC) 

   
 
3.3 Fall-Time Auto-Correlation (FTAC) Case 
Study 
 The data set composed of 1260 input 
feature vectors (examples). Each input vector 
consist of 6 FTAC function parameters, as 
indicated in Table 6 below.  

Figure 9 (a) and (b) show input data 
before and after normalization process. Figure 10 
and Figure 11 illustrate the output of Kohonen 
NN learning session, and modified K-means 
clustering session, respectively. nEXPERT system 
clusters the input data into various clusters that 
represent Good and Bad signals. nEXPERT 
system provides 13 symbolic rules that represent 
the various extracted knowledge.  
 
4 Conclusion 

Condition-monitoring case studies show 
that the proposed nEXPERT system successfully 
extracted knowledge in the form of production 
rules from numerical data set representing the 
salient features of the problem domain. This 
study has demonstrated that symbolic knowledge 
extraction can be performed using unsupervised 
learning Kohonen NN neural networks, where no 
target output vectors are available during training. 
The system is able to learn from examples via the 
neural network section. The extracted knowledge 
can form the knowledge base of an expert system, 
from which explanations may be provided, and it 
is quite possible to diagnose new unknown 
feature. Large, noisy and incomplete data set can 
be handled. The system proves the case of the 

viability of integrating neural network and expert 
system to solve real-world problems. 

Despite FTAC and RTAC are different 
approaches, but the same signature yields the 
same diagnosis.The difference between both 
approaches is that; RTAC produced 7 clusters 
with 9 symbolic rules (knowledge base) while 
FTAC managed to produce 7 clusters with 12 
symbolic rules. Obviously the approach that 
produced cluster with less number and 
comprehensible rules is considered a superior. In 
other words, RTAC show some superiority over 
the FTAC in this case study. 
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