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ABSTRACT 
Time-frequency analysis has been found to be effective in monitoring the transient or time-varying 
characteristics of machinery vibration signals, and therefore its use in machine condition monitoring 
is increasing. This paper proposes the application of time-frequency methods, which can provide 
more information about a signal in time and in frequency and gives a better representation of the 
signal than the conventional methods in machinery diagnosis. In this paper, we review the machine 
diagnosis techniques based on the verification of classical vibration parameters. Then the necessity of 
using time-frequency analysis in machinery diagnostics is discussed. Finally, the theory of the Short-
Time Fourier Transform, the Wigner-Ville distribution and the Wavelet transforms are briefly studied 
and their advantages are shown by some practical examples. 
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1. INTRODUCTION  
In recent years, the objective of diagnostic of machine by vibration analysis has been considerably 
changed. The initial objective was the security of machine against the important damages. If the 
vibration amplitude (displacement, velocity or acceleration) reaches to the limit value, the alarm rings 
and the machine stops. This type of maintenance is called preventive maintenance. But to day, our 
objective is not only to protect the machine but also to detect and identify defaults in the first step in 
order to have the necessary time to schedule repairs with minimum disruption to operations and 
production [1]. This new type of maintenance is called predictive maintenance. The key factor of the 
predictive maintenance is diagnostic. A diagnosis is not an assumption; it is a conclusion reached 
after a logical evaluation of the observed symptoms. Then, the diagnostic is based on a systematic 
inspection in vibration signal to find all susceptible defects, which may affect the machine. 
 
There are several conventional methods, which have been applied for a long time to fault detection 
and identification. Some of these methods provide a representation of signals in time domain and 
others provide a representation in frequency domain [2]. 
 
For example, overall level measurement is the most common vibration measurement in use in time 
domain. It is a simple and inexpensive type of measurement to undertake. There are charts available 
which indicate the levels deemed acceptable, for example VDI 2056. The greatest limitation is the 
lack of sensitivity and information available in the data. Great many indicators have been also 
developed for machine condition monitoring and fault detection, such as crest factor and Kurtosis. 
The crest factor is the ratio of the peak on the RMS signal, where the RMS signal is defined by the 
following:�
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Figure 1 shows an example of crest factor severity chart that can be applied to bearings from class 
2 operating at 1800 rpm [3]. 
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Figure 1: Crest factor  for  class 2 bear ings 
 
The Kurtosis is defined as the 4th order moment of the time signal distribution: 
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where  yk  is the sampled signal for k = 1 to N, et Ym is the mean signal. 
The severity of damage, using the Kurtosis, can be categorized as the following criteria:  
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If the decision criteria based on the time analysis allows for diagnosing a default, they don't allow for 
identifying its cause. In addition, we need to take into consideration not only the increase in the 
power of the signal, but also the development of its form and a spectral analysis is needed. 
An alternative techniques have been also applied to verifying the variation in the form of a signal 
such as Cepstrum and the envelop method (Hilbert transform) of the narrow band of the signal. 
Cepstrum is the inverse Fourier transform of the logarithmic spectrum of the signal: 
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Cepstrum allows for detecting repetitive impacts in the time domain by identifying the impact period. 
In all of these methods, it is assumed that signal is stationary but this assumption is not always true. 
In some cases, when defects begin, vibration signal becomes non-stationary and in this case, the 
conventional methods (FFT) are not applicable. On the other hand, there are presently several types 
of variable speed rotating machinery for which the stationary or pseudo-stationary vibration signals 
cannot be assumed. In recent years, a number of new analysis methods have been developed in the 
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field of signal processing called joint time-frequency analysis methods. The time-frequency analysis 
not only enables us to represent the signal in three dimensions (time-frequency-amplitude) but also 
permit us to detect and follow the development of the defects, which generate weak vibration power. 
A weak vibration power can modify the form of the signal to a considerable extent, as happens when 
defects produce the amplitude modulation or frequency modulation of certain characteristic 
components for examples the journal bearing of a shaft with a slow or very slow rotational velocity, a 
rotating oven, dryer cylinders, the press sections of a paper machine, etc.; 
 
Although the time-frequency methods are regarded as advanced diagnostic techniques, which offer 
high sensitivity to faults and a good diagnostic capability, there is a little tendency to use these 
methods in the field of machinery diagnostics. The research into the development of the theory of 
joint time-frequency methods and other non stationary signal processing methods are fast progressing 
but it seems that some works are needed to motivate the industrial people and show them the 
capability of these new methods in condition monitoring of mechanical systems. 
The objective of this work is on the one hand, to demonstrate the accuracy which can be obtained by 
using the joint time-frequency analysis methods in field of machinery diagnostics and on the other 
hand, to introduce an in-house user-friendly time-frequency software which has been developed to 
facilitate the use of time-frequency methods by engineers whether or not they are familiar with time-
frequency analysis. 
 
2. TIME-FREQUENCY ANALYSIS  
The primary objective of all research into signal processing is to find an efficient method, which 
would generate results rapidly and clearly, and in a manner which could be relatively easily 
interpreted. Using the time-frequency representation of the signal energy is one of the attempts to 
show a signal in three dimensions and obtain clear interpretation. 
 
2.1 Short-Time Four ier  Transform  
The short-time Fourier transform (STFT) was the first time-frequency method, which was applied  by 
Gabor [4] in 1946 to speech communication. The STFT may be considered as a method that breaks 
down the non-stationary signal into many small segments, which can be assumed to be locally 
stationary, and applies the conventional FFT to these segments. 
The STFT of a signal )(τts  is achieved by multiplying the signal by a window function, )(τh , 

centered at τ, to produce a modified signal. Since the modified signal emphasises the signal around 
time τ, Fourier Transforms will reflect the distribution of frequency around that time. 
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The energy density spectrum at time τ may be written as follows: 
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For each different time, we get a different spectrum and the ensemble of these spectra provides the 
time-frequency distribution ),( ωtP , which is called Spectrogram. 

The major disadvantage of the STFT is the resolution tradeoff between time and frequency. 
Resolutions in time and frequency will be determined by the width of window )(τh . A large window 



 

width provides good resolution in the frequency domain, but poor resolution in the time domain. 
Conversely, a small window width provides good resolution in the time domain and poor resolution 
in the frequency domain, following the Heisenberg principle. This limitation of the STFT is arising 
from using a single window for all frequencies and therefore, the resolution of analysis is the same at 
all locations in the time-frequency plane (figure 2-a). 

 
2.2 Wavelet Transforms 
The wavelet transform is another linear time-frequency representation, similar to the spectrogram but 
with more flexibility in time and frequency resolution. In the STFT, the length of window function 
will remain constant during the analysis of the signal. In the wavelet transform, by translation and 
dilation / contraction of a window function called the mother wavelet function, we build up a family 
of window functions of variable lengths:  
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where )t(ψ , s and τ  are respectively a mother wavelet function, the scale of wavelet transform, and 
time shift. The wavelet transform is defined as 
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where ),( τψ sxW  are called wavelet coefficients. 

The variable window length property of the wavelet transform gives us the possibility of having the 
time and frequency resolutions dependent on the frequency under consideration. Figure 2 illustrates 
this point by showing the cells of resolution in the time-frequency plane for the STFT and the wavelet 
transform.  
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Figure 2: Time-frequency plane of (a) the STFT (b) the wavelet transform 
 
One important advantage of the wavelet transform is its ability to carry out local analysis. This 
property is of significant value in revealing any small change in the signal and distinguishes the 
wavelet transform from other signal analysis techniques. If we consider the result obtained by 
applying the wavelet transform on a Dirac pulse at time 1.00 =t sec (Figure 3), we see a triangular 

shape, which points at 0tt = in the time-frequency plane. An impulse excites all the frequencies. 

Figure 3 shows that the signal is more localized in high frequencies than in low frequencies.  
 



 

 
Figure 3: wavelet transform of a Dirac function 

 
The variable time and frequency resolution of the wavelet transform is one of its advantages; 
however, in the discrete wavelet transform, the frequency axis has logarithmic scale (octave). The 
octave scale of the frequency axis does not permit either fine frequency resolution of the high 
frequencies. This characteristic of the frequency axis in the wavelet transform makes it a specialized 
method to be used for signals, which contain long-duration events at the low frequencies and short-
duration events at the high frequencies. The octave scale of the frequency axis in the wavelet 
transform may at times be considered to be a disadvantage of this method. 
 
To resolve the inconvenience of the wavelet transform, another method based on the principle of the 
wavelet transform has been introduced. This method is called the wavelet packet transform, and gives 
a frequency axis with linear scale at the expense of losing the excellent time resolution of the high 
frequencies of the wavelet transform. Figure 4 shows the wavelet packet transform of a Dirac pulse at 
time 1.00 =t sec. 

 
 
 
 
 
 
 
 
 

Figure 4: Wavelet packet transform of a Dirac function 
 
2.3 Wigner-Ville Distr ibution and Cohen’s Class Time-Frequency Distr ibutions 
One interesting time-frequency energy distribution is the Wigner-Ville distribution (WVD) [5], 



 

which has recently been applied to the field of mechanical signal analysis. This distribution is a 
bilinear function, in contrast to the transforms discussed above, which are linear transforms.   In a 
linear transform, the similarity of the signal to a window function is measured using the correlation 
function; on the other hand, the Wigner-Ville distribution is the Fourier transform of the 
instantaneous auto-correlation of the signal. Thus, its time-frequency representation is independent of 
the window function. 

If the instantaneous correlation, ),( 0tRx τ , at time 0t  with a time lag τ , is defined as  
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its Fourier transform may be written as follows: 
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The WVD satisfies a large number of desirable mathematical criteria and has excellent resolution in 
the time and frequency domains, but it has two major problems. First, it is not always non-negative, 
which, since energy is always positive, makes it difficult to interpret the Wigner-Ville representation 
as the energy distribution of the signal in the time-frequency plane. Secondly, because it is bilinear, it 
produces interference terms or cross terms for multi-component signals [6]. The interference term is 
located between two components of a multi-component signal in the time-frequency representation, 
and it oscillates with a frequency proportional to the distance between these two components, as 
shown in Figure 5 for two parallel chirps. 

 
Figure 5: Wigner-Ville distr ibution of two parallel chirps 

 
In numerical method, we cannot use a signal from -∞ to +∞, and therefore we use a window function 
to cut the signal in the time domain. This time-window version of the WVD is called the pseudo-
WVD [5]. Windowing in the time domain provides some smoothing in the frequency direction of the 
WVD and reduces the interference terms oscillating perpendicularly to the frequency axis, but at the 
expense of loosing many properties of the WVD. In addition to the interference terms, the alias 



 

problem may affect the discretization of WVD if the signal is real-valued and sampled at the Nyquist 
rate. To prevent this problem, Ville [7] suggested using the analytical signal, a complex signal in 
which the imaginary part is equal to the Hilbert transform of the real part. With the analytical signal, 
the spectral domain will be [0, ½] of the real signal and consequently the aliasing will not happen. On 
the other hand, since the spectral domain is divided by two, the number of components in the time-
frequency plane is also reduced by half. In addition, application of the analytical signal eliminates the 
negative part of the frequency axis, so that the interference terms generated between negative and 
positive frequency components are eliminated, leading to a considerable decrease in the number of 
interference terms. 

Since the development of the WVD, there have been several attempts to find other formulas to express 
the energy of the signal in the time-frequency plane. Cohen classified these formulas by giving a general 
formula for all time-frequency energy distributions. This formula is defined as:  
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where τθ  and  are respectively a frequency lag and a time lag. In addition, ),( τθϕ  is a kernel 
function that, when changed, gives different time-frequency distributions with different properties. 

One desirable choice for the kernel function is a separable smoothing function in both the time and 
frequency domains which attenuates the interference terms of the WVD in both the frequency and 
time directions. The distribution attained in this way  is called the smoothed-WVD, and is defined as: 

ξξωξω dduutuWVDtSWVD xx   ) ,( ),(),( �� −−Φ=      (11) 

where ),( ωtΦ  is a two dimensional smoothing function. 

The smoothed-WVD may be considered as an intermediate distribution between the STFT and the 
WVD. It has some of their advantages and none of their problems. The WVD provides the best 
resolution in time and in frequency, but produces some significant interference terms in the time and 
in frequency directions. The STFT is a linear transform and does not suffer from interference terms, 
but it is unable to give satisfactory resolution simultaneously in time and in frequency.  The 
smoothed-WVD provides the best compromise between these two problems: interference terms and 
resolution in time and frequency. Figure 6 shows the STFT and the smoothed Wigner-Ville 
distribution of two parallel chirps. This figure shows that the smoothed-WVD provides better 
resolution and clearer representation of the signal than the STFT.  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: STFT and smoothed Wigner-Ville distr ibution of two parallel chirps 



 

In addition to the WVD, other energy distributions have been developed to give the time-frequency 
representation of the signal. The Margenau-Hill distribution [8], the Choi-Williams distribution [9] 
and the Born-Jordan distribution [10] are some interesting members of Cohen’s class. 
 
3. SOFTWARE FOR TIME-FREQUENCY ANALYSIS 
Today, one of the most important factors limiting the progress of machine diagnostic techniques is 
the lack of familiarity of mechanical engineers with new signal processing methods. The complicated 
theory of time-frequency analysis and the absence of operational software for time-frequency analysis 
restrict engineers from using these methods in machine diagnosis. An in-house user-friendly software 
has been developed in collaboration with International Measurement Solutions (IMS) company to 
facilitate the use of time-frequency methods by engineers whether or not they are familiar with time-
frequency analysis [11]. This software permits the use of different methods of time-frequency 
analysis such as the Short-Time Fourier Transform, the Wigner-Ville Distributions, and the Wavelet 
Transforms. The program allows the user to carry out different distributions of Cohen’s class of time-
frequency methods such as the Choi-Williams Distribution and the Born-Jordan-Cohen Distribution. 
In addition, it provides different kinds of wavelet transforms, for example: the wavelet transform, the 
wavelet packet transform and the adaptive wavelet transform. In addition, a new technique of “zoom 
in wavelet transform” makes possible to obtain very satisfactory frequency resolution. This program 
has been developed especially for the diagnosis of defects in machinery, and includes most of the 
commonly used methods of time-frequency analysis. The program has some interesting options, 
which are of considerable practical value in such cases. For example, denoising by wavelet transform, 
which is an important tool in the analysis of noisy signals, allows the user to obtain an improved 
time-frequency representation. 
 
4. INDUSTRIAL APPLICATION OF THE TIME-FREQUENCY ALGORITHM 
In this section, the efficiency of the time-frequency methods in an industrial case is demonstrated. 
This case comes from the defective gear-train of a hoist drum in a large shovel operating at an open-
pit iron mine. The data are measured by IMS company in order to diagnose the problem in the 
machine. 
 
A minimum length of time is required to perform FFT analysis of each process. The time resolution 
required will depend on the period of each tooth mesh and the desired level of accuracy. Sometimes, 
it is not possible to measure the signal for long enough to provide the periodicity of shock in the FFT 
spectrum. In this particular case, the process did not even last one revolution of the driven gear.  The 
case was investigated by time-frequency distribution precisely because it is known that time-
frequency methods do not need as much time signal as the FFT spectrum. 
 
Figures 7 shows, respectively, the time signal of the damaged gearbox measured by IMS company 
and its spectrum, the STFT, the Wigner-Ville distribution and the smoothed Wigner-Ville 
distribution. The spectrum of the signal displays a large peak around 200 Hz with a lot of sidebands 
and some smaller peaks in the vicinity of 400 Hz, 800 Hz and 1200 Hz. The frequencies of 200 Hz 
and 400 Hz have been identified as gear mesh frequencies of the gear box. 
 
Gears generate a mesh frequency equal to the number of teeth on the gear multiplied by the rotational 
speed of the shaft driving it. A high vibration level at the mesh frequency may be caused by tooth 



 

error, wear of the meshing surfaces or any other problem that would cause the profiles of meshing 
teeth to deviate from their ideal geometry. Usually, the amplitude at the gear mesh frequency is not 
used to detect a gear a gear damage because others operating parameters such as loads can affect this 
amplitude. Instead of that, analyzing the sidebands and the harmonics of the gear mesh frequency can 
identify the default.  Sidebands at the mesh frequency are the result of a modulation that typically is 
due to a failure of mating teeth or to a bent or misaligned shaft [2]. For example, a cracked tooth will, 
due to its weakened mechanical condition, deflect more under load than the other (healthy) teeth 
when it goes into mesh. This results in a signal with amplitude modulation. Thus, an increasing level 
in the sidebands spaced with rotation speed in the frequency spectrum results from the cracked tooth. 
On the other hand, a bad backlash will generate a vibration at the second harmonic of the gear mesh 
frequency and wear of the meshing surfaces will produce a lot of harmonics of the gear mesh 
frequency accordingly with the severity of the wear [2]. 
 
Thus, we can suspect from the spectrum analysis, a broken teeth or a bent shaft (due to sidebands) 
and probably wear of the meshing surface (due to gear mesh harmonics). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7 Time, spectrum, STFT, Wigner-Ville distr ibution and smoothed Wigner-Ville distr ibution, 

of defective gearbox signal. 
 



 

The Short-Time Fourier transform clearly displays time-frequency representation of the signal. There 
are a gear meshing frequency at approximately 200 Hz and some pulses at approximately 400 Hz that 
appears at each 0.66 sec (1.5 Hz). It is known that pulses can appear in the vibration signal of a 
gearbox if there is a broken tooth. Then we may suspect that there is a broken tooth in this gearbox at 
the gear mesh frequency of 400 Hz and it is also possible to find which gear has the default from its 
rotating speed (1.5 Hz).  
 
The Wigner-Ville distribution did not provide a good representation of the signal due to the cross 
terms, which are generated between the signal components. The smoothed Wigner-Ville shows 
similar characteristics of the signal even more clearly than the STFT and we can calculate the 
frequency of repetition of pulses with more precision by the smoothed Wigner-Ville than by the 
STFT; 
 
The wavelet transform of the signal (figure 8) shows the three repetitive pulses in the frequency band 
320-640 Hz. The frequency resolution is too poor for clearly identifying the gear mesh frequency. 
The frequency of the periodicity of the signal may be calculated from the wavelet transform more 
precisely than from the STFT, because the time resolution in this band of the wavelet transform is 
finer than in the STFT. But in the three-dimensional representation of the signal, the STFT provides 
better representation than does the mean square wavelet. 
 
 
 
 
 
 
 
 
 
 

Figure 8 Wavelet transform of defective gearbox signal. 
 

The wavelet packet transform (figure 9) provides not only better frequency resolution, but also better 
time-frequency representation (three-dimensional) than does the wavelet transform. 
 
 
 
 
 
 
 
 
 
 
 

Figure 9 Wavelet packet transform of defective gearbox signal. 



 

 
5. CONCLUSION 
It has been shown that, although the majority of conventional methods may give good results when 
detecting a single fault in various simple elements of machines, no single technique can provide all 
the answers for all cases. It is difficult to decide which method gives the best result, in particular 
when the precise type of fault is not known. Time-frequency analysis provides a means to accurately 
identify the changing frequencies that occur with degradation; these spectral changes in turn reflect 
the state of the process. In this paper, a number of time-frequency methods that can be used to 
analyze non-stationary and time-varying signals have been described. The advantages and 
disadvantages of each method of time-frequency analysis have been discussed, and the benefits to be 
obtained from the application of these techniques in the monitoring and fault-detection of machinery 
have been highlighted. An in-house user-friendly time-frequency software has been introduced in this 
work. This software has been developed by authors in collaboration with IMS to analyze of non 
stationary signals which may come from machine. Finally, the advantages of the time-frequency 
methods have been demonstrated by using these methods on vibration signals from an industrial 
gearbox. The application on gear box has shown that the smoothed Wigner-Ville distribution, Short-
Time Fourier transform and Wavelet packet transform were the best methods for diagnosing and locating a 
broken tooth in the analyzed case.  
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