
The Helicoidal Life Cycle – A Tool for Software 
Development and Enhancement 

 
Antonio Carlos Pinto Dias Alves 

Unidade Gestão de Riscos 
Banco do Brasil S.A. 

Rua Senador Dantas, 105, sala 1704 – Centro - CEP 20031-201 – Rio de Janeiro, RJ 
Brasil 

 
 
 
Abstract: - In recent years we have been seeing great advances in methodologies and languages for the 
development of computational systems. For example, in the field of object oriented applications, UML is 
being recognized as a standard language in some kinds of designs. Unfortunately, at the same time, one 
can see the loss of importance a tool once considered of great value, the system life cycle, is getting. This 
work presents a tool, the Helicoidal Life Cycle Model, which is not a mere evolution of the spiral model. 
With this life cycle model, it is possible to make precise measurements of terms and costs as well as 
“see” the stages of system development. The practical application of this tool in the development of 
some designs will be shown as much as that the helicoidal life cycle represents the most general model a 
life cycle can achieve. 
 
Key-Words: - Software Management, System Life Cycle, Metrics. 
 
1  Introduction 
 

Traditional life cycles like waterfall, prototyping, 
spiral; structured life cycles and those cycles that are 
object-oriented (like Schlaer-Mellor) all have the 
prime objective of allowing a high-level 
management of the state of development in 
computational projects. 

The older one, Waterfall [1][2][3], although it is 
loosing importance, still can have great utility, 
especially in some safety critical systems and when 
revisions in old systems are necessary. This case had 
happened some years ago in many Y2K projects. 
Prototyping [1][2] is an evolutionary principle for 
structuring the life cycle. Increments are delivered to 
the customer as they are developed and so an initial 
version (or prototype) is progressively transformed 
into the final application. More generally, 
prototyping is viewed as a tool in the process of 
understanding the user’s requirements. The most 

“modern” traditional life cycle is the spiral [1][2][4] 
and it was developed to allow a more effective 
project management, including foreseeing the 
various iterations by which medium to high 
complexity (from 100.000 to over 1.000.000 code 
lines) projects pass by. 

Lately, some researchers proposed the structured 
life cycle [5] that was intended to be a control 
instrument in projects that use structured techniques 
of development. As the object-oriented languages 
and techniques had arisen, the object-oriented 
development theory was posed. This kind of 
development first models the entire problem instead 
of allowing lines and lines of indiscriminate code. In 
general, this requires more time in analysis but, as it 
sees the whole process, a well-succeeded model can 
solve as much the original problem as others that 
can arise during the development process. 

mailto:acpalves@bb.com.br


A methodology, the UP (Unified Process) uses  
UML to implement its methodological issues and 
includes its own life cycle model [6][7]. 

 
Among the many object-oriented development 

methods, a category includes, among others, the 
Booch, Rumbaugh and OMT methods. This 
approach makes iterations through analysis, design 
and coding, catching additional information in each 
passage until the final iteration be at the code level. 
Another category includes a method of life cycle 
very well succeeded, the Schlaer-Mellor, which 
automatically interprets object-oriented analysis 
models in object code, having for basis informations 
passed by CASE tools. The Schlaer-Mellor uses a 
concise notation to implement the automatic 
translation of methods in code and it partitions the 
problem in logical domains promoting the 
opportunity of code reuse at domain level. The 
benefits of reuse are specially obtained in large-
scale and/or long-term projects that foresee 
actualization or related projects in the future [7]. 

 
Back to traditional models, system analysis 

brings in an analysis of the problem. Afterwards, 
system design creates a design which implements 
this analysis and the code is then written in order to 
implement the design. The code testing can discover 
bugs, the design itself can change (demanding that 
the code also be redone) or even the entire system 
can change, because of new analysis that also 
change the design and the code. However, as anyone 
knows, many times the code changes because of new 
technologies, but neither the analysis nor the design 
are redone. 

 
In Schlaer-Mellor, the independent domains 

analysis occurs, in general, both in parallel and 
concurrently. Both the simulations and testing can 
happen at the analysis level. By the use of adequate 
tools, the model can translate directly in code. If 
there are changes in a domain, those changes do not 
necessarily affect other domains. In general, the 
analysis and coding phases remain in synchronism. 
Nevertheless, how can one quantitatively see the 
synchronism between these phases ? 
 
 

2  The metrics problem 
 

There were always attempts to make the 
formalization of phases in early life cycle models. 
These attempts defined the documents to be issued, 
phases to be accomplished and, in some cases, the 
iterations to be gone through. Unfortunately, 
information of great importance, the metrics, could 
never be explicitly incorporated in none of them. 

 
For example, in waterfall, prototyping and 

structured life cycles metrics are not even 
contemplated. A first tentative was done with the 
spiral life cycle where the rise of the radius leads 
towards the completeness of the system. However, 
both the axis that are defined in this model do not 
have any relevant meaning, having only the 
objective of taking the quadrants apart. The vertical 
axis, which is intended to show the cumulative costs 
of the project, in truth, shows nothing, since it 
assumes cyclical positive and negative values. 

 
In Schlaer-Mellor, there are defined steps and 

marks to track the progress of the project phases 
instead of percentage marks of the progress of those 
phases. In an object-oriented design it is possible to 
estimate the number of necessary objects from the 
number of entities (tactiles or untactiles) which the 
project have to deal with. Anyway, even the Schlaer-
Mellor does not allow the inclusion of metrics in the 
life cycle and, this way, it does not contribute for a 
quantitative managerial analysis. 
 
 
3  The helicoidal life cycle 
 

In the helicoidal life cycle the state of the 
development of a system is precisely defined by a 
point P in the space defined by a cylindrical 
coordinates system, where P= f (R,��T) as one can 
see in figure 1(a). 
 
    



            
 

 
 
Figure 1 – (a) Cylindrical coordinates space and (b) 

sectors and stages of the helicoidal life cycle 
 

Dimensions R,��T are defined as follows: R 
represents the amount of resources allocated to the 
phase of development under consideration (analysis, 
design, coding,…), for instance, crew members, 
monetary values, computational resources and so on. 
Phases are divided in cycles named iterations. 
Coordinate ��is related to the percentage of an 
iteration that is completed. Quarters, which are gone 
through in clockwise direction as in the spiral life 
cycle, can be associated a percentage of 25% each, 
for example, when one considers a cycle should be 
completed when ��reaches 360º. In an alternative 
way, each 360º gone through by ��can be linked to 
one of the quarters of the spiral cycle, for instance, 

the stage of customer evaluation. Perhaps the way 
that best allows the full use of the helicoidal cycle 
flexibility is that shown in figure 1(b). As in 
prototyping, we divide an iteration into slices like a 
pie. We call each slice a sector. Each sector is 
defined by an arbitrary angle ��and defines a stage. 
In figure 1(b) 5 stages of the first cycle of the 
analysis phase have been drawn. Sector 1, the first 
one, defines the stage of information gathering of 
customer needs. In the second stage, the risk 
analysis of the whole project is done. The third and 
fourth sectors show that the percentages of the 
iteration assigned for planning and engineering 
stages are bigger than for the early ones. Finally, the 
amplitude of sector 5 can show the percentage 
assigned to the stage of customer evaluation. Surely 
the amplitude of the angles that define each sector 
(as well as the nomination of the stages themselves) 
can be freely assigned by the user needs. 
 

 
 

Figure 2 – Helicoidal path made by a point “P” in 
the cylindrical coordinates space. Each time the 
point goes through 360º in “xy” plane, it completes 
an iteration. 
 

Variable T is the temporal dimension of the 
cycle. The bigger it is, more time has been wasted 
for a target stage to be completed. As in the spiral 
cycle, where each lap of the ellipse means the 
system development is going towards its end, the 
greater the value of “T” should the system be closer 
to its end. A point “P” in this cylindrical coordinates 
space then makes a helicoidal path as can be seen in 
figure 2. One can note that, if the gap in “T” 
assigned to a stage is very big, then that stage is 
probably wasting time (and money).  



 
Dimensions R,�����are independent from each 

other. This way, for instance, more or less resources 
can be allocated (varying R) without affecting the 
other dimensions. Alternatively, changing the 
allocation of resources, dimensions ��and T can vary 
with the progress of the system development. Sure it 
is that marks defined in the T dimension should have 
constant gaps and so only the slope of the helicoid 
will vary, as will be seen lately. As in the spiral 
model, axis x and y do not have any important 
meaning and act as separative for the quadrants, 
unless one desires to describe the point P in its 
parametric equations. 
 
 

 
 (a) 

   
(b) 

 
Figure 3 – Adding up resources to a project. Views 

(a) 3D and (b) Frontal. 
 
Figure 3 (a) and (b) shows an example of use. 

The iterations plotted are for the analysis phase. 
From the beginning up to time T1, the resources 

allocated sum R1. At this point, new resources are 
gathered (for example, one more analyst) and the 
size of R becomes R2. The other dimensions aren’t 
affected. A more realistic case is drawn in figure 4. 
Allocation of new resources makes the analysis 
phase gets under its way faster towards its end, as 
can be seen by smaller increments in the T 
dimension. 
 
 

 
 (a) 

 

 
(b) 

 
Figure 4 – Adding up resources to a project reduces 
costs and the spending of time. Views (a) 3D and (b) 
Frontal. 
 

In this new life cycle model, the diverse 
development phases are plotted in a very adequate 
way and can be very easily controlled as is plotted in 
figure 5. The helicoidal life cycle allows significant 
savings of time and resources because; conversely of 
all others kinds of life cycles, in this model the 



different development phases can superpose. We 
call this superposition an interaction. 

 
Figure 6 shows three phases of the development 

of a system: the analysis phase is the first to begin 
and design and coding phases are inside and outside 
it, respectively. As one can see, even the analysis 
phase still taking place, the design phase can begin 
without any loss in the control of resources. Also, it 
can be seen that the coding phase begins before the 
end of the design and analysis phases. Not only this 
superposition of phases is possible but also it really 
occurs nowadays in systems´ development. 
However, it is virtually impossible of being 
controlled in any other kind of life cycle model. As 
we have already seen, when two or more phases 
superpose we say there is an interaction between 
(among) them. 
 

 
 

Figure 5 – Different development phases shown in 
the Helicoidal life cycle. 

 
4  Examples 
 

The helicoidal life cycle had already been used 
for the control of development of some systems. 
Two are here presented for comparison. Based on 
previous experiences in similar projects, each of 
them was assigned a term for being finished as well 
as the time and money available for each phase, 
depending upon the life cycle that were to be used as 
paradigm. Both projects were assigned a crew 
composed by 3 systems analysts and 3 programmers 
analysts. 

The first project had been made by an assessor 
company and dealt with the task of building a 

system for a telemarketing company, since setting 
the interfaces with the local telephone company and 
the Pabx, installation of the Pabx itself, up to 
installation and configuration of the computer 
network, software testing, and so on. The project 
had been intended to be guided by the spiral life 
cycle and so, terms and costs were assigned to that 
kind of life cycle. Nevertheless, instead of following 
the spiral model, the manager of the project had 
chosen to try the helicoidal model. Figure 7 shows 
the results.  
 

 
(a) 

 

 
(b) 

 
Figure 6 – Interaction of different development 

phases in views (a) 3D (b) Frontal. 
 

In (a) one can see the overall reduced time in 
software development against what was expected 
from the spiral model. The use of the helicoidal 
model brought a reduction in development time of 
almost 50%. Figure 7(b) shows the reduction of 



costs in some phases of the process. That was 
achieved by allowing phases to interact. 
 

0

50

100

150

200

250

Spiral Helicoidal

Model

Development Time

 
 (a) 

 

0

50

100

150

Analysis Design Coding

Development Costs

Spiral Helicoidal
  

(b) 
 

Figure 7 – Helicoidal cycle against Spiral model 
(a) Overall reduced time in software development 

and 
(b) Reduction in costs by phase. 

 
 

The second project had dealt with the task of 
building a complete simulation environment for 
emulating and control some systems and faults of a 
nuclear power plant [8]. It demanded not only the 
software to be programmed but also a heavy 
hardware project had to be built. The Schlaer-Mellor 
cycle was then chosen to control the whole project 
because of its capabilities of partition the problem in 
logical domains and then integrating the code 
generated with the architecture built. However, 

despite using CASE tools, we decided to use the 
Schlaer-Mellor mainly as a methodology and let the 
helicoidal model guide the system life cycle. The 
results are shown if figure 8. In (a) we see that the 
overall reduced development time was about 30% 
over what had been presupposed. Application, 
architecture and implementation domain analysis, all 
experienced reductions in their terms and costs. For 
the application domain analysis, the cost reduction 
was of almost 50%.  

 

0

50

100

150

200

250

Schlaer-Mellor Helicoidal

Model

Development Time

 
(a) 

 

0

50

100

150

Aplic. Architect. Implem.

Development Costs

Sch-Mellor Helicoidal
 

 (b) 
 

Figure 8 – Helicoidal cycle against Schlaer-
Mellor model (a) Overall reduced time in 

software development and  
(b) Reduction in costs by phase. 

From many studies (which are not referenced 
here) we know that almost 40% of the time available 
for a technical team is spent in non-technical work, 
(like meetings, administrative tasks, etc.). The 



helicoidal life cycle can efficiently track where time 
(and money) is being wasted thus promoting 
efficient allocation of the resources available. The 
percentage of errors in design and coding was 
almost the same of what had been expected, 
showing that the controlled interaction 
(superposition) of phases does not contribute for a 
growing in design and/or coding errors. 
 
 
5  Reduction to conventional life cycles 
 

The helicoidal life cycle can be easily reduced to 
any of the conventional life cycles. Figure 9 shows 
how, by not allowing the phases to interact and 
simply inverting the diagram, the helicoidal cycle 
can be seen as the waterfall one. The reduction to 
the prototyping model is also possible as one can see 
in figure 10. This case is very interesting. Since 
prototyping already divides the cycle into sectors, 
the analogy is immediate. As we have already said, 
each sector defines a stage. Then iterations of the 
helicoidal model are grouped so an observer placed 
directly over them sees only one iteration. This 
iteration is the own prototyping cycle. 
 
 

 
 

Figure 9 – Reduction of the Helicoidal cycle to the 
Waterfall cycle. 

 
 

Sectors remain defining stages and variable “T” 
remains measuring the time spent in each stage, 
allowing the control of terms and costs. Another 
construction is possible. Each sector of the 
prototyping model can be assigned to an iteration of 
the helicoidal model. The control of these iterations 
brings to an optimal control of time and resources. 

The reduction to the spiral model is even easier 
as can be seen in figure 11. Each iteration of the 
helicoidal model can be immediately transcript to 
the spiral one by adjustment of the growing rate of 
the radial dimension of the spiral model to the 
growing rate of T in the helicoidal model. 
 

 
 

Figure 10 – Reduction of the Helicoidal cycle to the 
Prototyping one. 

 
 

In any reduction case some information is lost. 
For instance, in the case the reduction is to the spiral 
model, we lose the allocation of resources 
visualization by suppressing the model’s radial 
dimension. The loss of information is bigger in the 
case of reduction to the prototyping model and even 
bigger when the reduction is to the waterfall model. 

 
The structured life cycle as it was proposed by 

Yourdon [5] is, as long as we know, an adaptation of 
the waterfall model to structured techniques. So, the 
reduction of the helicoidal model to the structured 
one is done in the same way for the waterfall. The 
reduction to the Schlaer-Mellor can also be done in 
a convenient way and an example is then drawn in 
figure 12. 



 
(a) 

 

 
(b) 

 
Figure 11 – Reduction of the Helicoidal cycle to the 

Spiral cycle in views (a) Frontal  (b) Top. 
 
 
 

 
 

Figure 12 – Reduction of the Helicoidal cycle to the 
Schlaer-Mellor cycle. 

 
 

6  Conclusions 
 

From the considerations above, we can see that 
the helicoidal life cycle conveniently represents the 
different phases and stages of software 
development. On the contrary of traditional life 
cycles, it can track the costs and terms of projects in 
a very suitable way. We have seen that even the 
spiral cycle, in its attempt of tracking costs, can 
bring misinterpretations because of its system of 
axis, which is meaningless. On the other side, the 
helicoidal cycle shows dimensions that have strong 
meanings and so allow a precise control of the 
resources being used and the progress achieved. 
 

Moreover, the Helicoidal Life Cycle allows 
superposition of different development phases, thus 
promoting saving time and costs. Although some 
phases can be completely superposed by others, 
each one can be tracked independently whereas the 
whole system development can be tracked by a 
separate helicoidal life cycle that covers the inner 
ones in an onion style. So, from the examples of use 
presented, we saw that reductions in development 
time and costs cannot be ignored. In some cases, 
those reductions reached almost 50%. May be, when 
CASE tools specifically designed for use with the 
helicoidal cycle be in use, savings can be even 
bigger. 

 
Finally, by the examples of reduction to many 

other life cycles that were here presented we proved 
that the Helicoidal life cycle is the most general life 
cycle proposed until now. 
 
 
 
References: 
 
[1]  C. Ghezzi, M. Jazayeri, D. Mandrioli, 
Fundamentals of Software Engineering  (1 ed, New 
Jersey, Prentice Hall, 1991). 
 
[2]  R. S. Pressman, Software Engineering (New 
York, McGraw-Hill, 1992). 
 



[3]  J. F. Peters, W. Pedrycz, Software Engineering: 
An Engineering Approach (1 ed. New York, John 
Wiley & Sons, 2000). 
  
[4] B. W. Boehm, A spiral model of software 
development and enhancement, IEEE Computer, 
21(5), 1988, 61-72. 
 
[5]   E. Yourdon, Managing the system life cycle.  (2 
ed. New York, Prentice-Hall, 1988).   
 
[6]   I. Sommerville,  Engenharia de Software. (6 ed. 
São Paulo, Addison Wesley, 2003). 
 
[7]  E. X. Dejesus, Programação sem sustos, BYTE 
Brasil, 4(8), 1995, 130-136. 
 
[8]  A.C.P.D. Alves, A Low-Cost PWR Nuclear 
Power Plant Simulator for Initial Training of 
Operators and Educational Purposes, Proceedings of 
XI Enfir, Nova Friburgo, RJ, Brasil, 1997. 
  
 
 
 
 


	Antonio Carlos Pinto Dias Alves
	Abstract: - In recent years we have been seeing great advances in methodologies and languages for the development of computational systems. For example, in the field of object oriented applications, UML is being recognized as a standard language in some
	1  Introduction
	Traditional life cycles like waterfall, prototyping, spiral; structured life cycles and those cycles that are object-oriented (like Schlaer-Mellor) all have the prime objective of allowing a high-level management of the state of development in computat
	The older one, Waterfall [1][2][3], although it is loosing importance, still can have great utility, especially in some safety critical systems and when revisions in old systems are necessary. This case had happened some years ago in many Y2K projects. P
	2  The metrics problem
	There were always attempts to make the formalization of phases in early life cycle models. These attempts defined the documents to be issued, phases to be accomplished and, in some cases, the iterations to be gone through. Unfortunately, information of g
	3  The helicoidal life cycle
	4  Examples
	
	Figure 7 � Helicoidal cycle against Spiral model
	(a) Overall reduced time in software development and
	(b) Reduction in costs by phase.
	Figure 8 � Helicoidal cycle against Schlaer-Mell�


	5  Reduction to conventional life cycles

	6  Conclusions
	References:

