
1. Introduction

The two main challenges in designing future systems
on chip are managing the increasing complexity and
redesigning architectures and related design method-
ologies due the radical change in silicon properties
with future technologies. Among the most promising
attempts to solve these problems is the network on
chip (NOC) paradigm providing a unified communi-
cation infrastructure for a set of computational
resources and proposing a new type of design method-
ology aiming to support reuse and parallelism at all
levels [1]. Unfortunately this is not a trivial task and
current NOC proposals more or less fail in supporting
properly parallelism at the thread-level. Up to certain
degree they do support currently very popular type of
parallelism, instruction-level parallelism (ILP), in
which multiple instructions are tried to execute simul-
taneously in multiple functional units (FU) belonging
to a single processor. ILP can not be a main type of
parallelism in NOCs because large amounts of ILP is
hard to extract [2], ILP lacks the possibility of exploit-
ing control parallelism, the complexity of an efficient

ILP machine increases quadratically in respect to the
number of FUs due to need for forwarding, and the
clock cycle of an ILP NOC will inevitably become
very slow because signal propagation from an edge to
another on a chip will take even tens of clock cycles
with future silicon technologies [1]. Thread-level par-
allelism (TLP), i.e. executing a program consisting of
subtasks in multiple processors to solve a computa-
tional problem, avoids most of these problems by
inherently supporting control parallelism, being much
easier to extract, and being resistant for long latencies.
Efficient exploitation of TLP requires determining
how the functionality and data related to subtasks are
distributed to the threads (or processors), how threads
communicate with each other, and how synchronicity
is maintained between the subtasks. TLP architectures
can be classified to message passing architectures and
shared memory architectures according to the main
method of communication. In message passing archi-
tectures (MPA) threads communicate by sending mes-
sages to each others and a programmer is responsible
for explicitly defining communication, synchronizing
subtasks, and describing data and program partition-

E—A Language for Thread-Level Parallel Programming on
Synchronous Shared Memory NOCs

Martti Forsell
Computing Platforms

VTT Electronics
Box 1100, FIN-90571 Oulu

Finland

Abstract: As systems on chip are evolving to networks on chip (NOC) providing a unified communication infra-
structure for a number of computational resources, being able to easily implement computational tasks as a par-
allel program that can be efficiently executed by multiple resources together is becoming increasingly impor-
tant. Recent advances in thread-level parallel (TLP) architectures have made it possible to implement efficient-
ly an easy-to-use synchronous shared memory programming model (Parallel Random Access Machine, PRAM)
on a NOC. In this paper we describe a novel programming language, called e, for fine-grained TLP program-
ming on synchronous shared memory NOC architectures realizing the PRAM model. The language uses a famil-
iar c-like syntax and provides support for shared and private variables, arbitrary hierarchical groups of threads,
and synchronous control structures. This allows a programmer to use various advanced TLP programming tech-
niques like data parallelism, divide-and-conquer technique, different blocking techniques, and both synchronous
and asynchronous programming style. We will also shortly experiment the e-language with real parallel pro-
grams using our experimental e-compiler and scalable Eclipse NOC architecture.

Key-Words: Thread-level parallel programming languages, parallel random access machine, networks on chip

ing between threads making MPAs difficult to pro-
gram. In shared memory architectures (SMA) com-
munication happens just by referring to the shared
memory, data and program partitioning happens by
allocating data structures from the shared memory
making programming much easier. Unfortunately
most SMAs consist of multiple interconnected proces-
sor-cache pairs making cache coherency and syn-
chronicity maintenance very expensive. Recent
advances in TLP architectures [3, 4], however, suggest
that it possible to implement a cacheless and synchro-
nous SMA realizing the parallel random access
machine (PRAM) model [5] on a NOC.

In this paper we describe a novel programming lan-
guage, called e, for fine-grained TLP programming on
synchronous SMA NOCs realizing the PRAM model.
The language uses a familiar c-like syntax and pro-
vides support for shared and private variables, arbi-
trary hierarchical groups of threads, and synchronous
control structures. This allows a programmer to use
various advanced TLP programming techniques like
data parallelism, divide-and-conquer techniques, dif-
ferent blocking techniques, and both synchronous and
asynchronous programming style [6]. We made also a
short experimentation with the e-language by imple-
menting a number of familiar TLP algorithms with e,
compiling them with our experimental e-compiler and
executing them in our scalable high performance
Eclipse NOC architecture [4].

1.1 Related work

There exist a few TLP programming languages that
have quite similar properties as the language intro-
duced in this paper. These languages are targeted for
various PRAM models realized either as a simulator
or as an experimental hardware. Among the best
known are:

- Fork A feature-rich parallel programming language
supporting parallely recursive and synchro-
nous MIMD programming using a c-like syn-
tax [6]. Fork is targeted for arbitrary concur-
rent read concurrent write (CRCW) PRAM
model with a fixed number of threads and
hardware support for efficient multiprefix
operations. The model is realized e.g. in the
SB-PRAM parallel computer developed in the
University of Saarbrücken [6].

- ll A parallel language supporting parallely
recursive and synchronous MIMD program-
ming using Pascal-like syntax [7]. Ll allows
for a (virtual) processor to spawn new ones
executing the loop body in parallel giving bet-
ter support for the theoretical PRAM model
with unbounded set of processors.

Some other PRAM languages, like pm2 [8] and
Modula-2* [9], are more data parallelism oriented and
provide no support for explicit group concept. None of
these, however, can be implemented with a standard c-
compiler nor they are able provide direct support for
the two-component programming model of the
Eclipse combining both ILP and TLP exploitation in
an efficient way [10].

1.2 Organization of the paper

The rest of the paper is organized so that in section 2
we describe the novel e-language for fine-grained TLP
programming on synchronous SMA NOCs. Our short
experimentation implementing a number of real paral-
lel algorithms with e-language, compiling them with
our experimental e-compiler and executing them on
the different configurations of the Eclipse architecture
is described in section 3. Finally in section 4 we give
our conclusions.

2. E-language

E-language is a novel TLP programming language
created by the author especially for synchronous
shared memory NOC architectures, but it can be used
also for other (multichip) synchronous shared memo-
ry architectures like the IPSM [11]. It can be used as
an integral part of the application development flow in
which computational problems are transformed to ILP
and TLP optimized TLP binaries for the Eclipse archi-
tecture [10] (see Figure 1). The syntax of e-language
is an extension of the syntax of familiar c-language. E-
language supports parallely recursive and synchro-
nous MIMD programming for various PRAM models
including the exclusive read exclusive write (EREW)
PRAM model, the TLP programming model of
Eclipse.

Fig. 1. The application development flow for the
Eclipse architecture.

2.1 Variable declaration and referencing

Variables in e-language can be shared among a
group of threads or they can be private to a thread.
Private variables are expressed in a similar way than
variables in c-language. Shared globals are expressed
with adding a “_” to the end of their identifier. For
example declaration

int source_[1024];

defines a shared global source_ which is a 1024 ele-
ment table of integers. Shared locals are declared after
private locals within the brackets
begin_shared_locals_def and
end_shared_locals_def, e.g.

begin_shared_locals_def
int table[65536];
char c;
int i;

end_shared_locals_def

and should be followed immediately by a block in
which the shared locals are used. This block is
declared with the brackets
begin_shared_locals_block and
end_shared_locals_block. Referencing to shared

locals happens through a shared stack pointer locals
casted to type Shared, e.g.

(Shared)locals->X

where X is the identifier or expression referencing to
a shared variable, e.g. table[20] assuming the declara-
tion above. Shared variables can not be used as modal
parameters or as a result value of a function. If an
actual parameter is a shared variable, private copies of
value or reference will be used in the function execu-
tion.

2.2 TLP expressions

To support high-level TLP expressions threads are
automatically numbered from 0 to the number of
threads -1 as new groups are created. The thread num-
bering can be accessed by the built-in variables

_thread_id
_number_of_threads

Sometimes a programmer may prefer a static thread
numbering, which is invariant across the group bound-
aries. The static numbering can be accessed by the
built-in variables

_absolute_thread_id
_absolute_number_of_threads

2.3 Thread groups and control structures

E-language supports hierarchical groups of
threads. In the beginning of a program there exists a
single group containing all threads. A group can be
divided into subgroups so that in each thread of the
group is assigned into one of the subgroups. A sub-
group may be split into further subgroups, but the
existence of each level of subgroups ends as control
returns back to the corresponding parent group.
Dividing the current group into two subgroups hap-
pens by using the statement

_if_else_ (c,s1,s2);

in which a thread will be assigned to subgroup s1 if
condition c holds for it otherwise it will be assigned to

��������	
��

�����
���
 �������

��������

�	�
�
���
�������
��������

������
�������
�	�
�
��

��������

���� �
��

���!
�		�
���
��

���	 ���
����
	
������

��
�������

��" ���
��
��#�

�$��

%��&���

��
�����#�

�$��

'�		��
��
���

(����	������
���	
�#
���

�����# �#�
��
���

)��'�	���
#
� 	�

���� ��

*�� ���

+�������

��
���

� 		�
�
�#
	�
�����
��#�

�$�
�$��
!

� 		�
�
�#
	�
�����
	
�#
���
�#
���$�
" ��

subgroup s2. As a subgroup is created, variables
_thread_id and _number_of_threads are updated to
reflect the new situation. As the subgroups join back to
the parent group in the end of the statement the old
values of these variables are restored.

Synchronous shared memory NOC machineries,
like Eclipse, guarantee synchronous execution of
instructions at machine instruction level. In e-lan-
guage synchronicity through control structures having
private enter/exit conditions can be maintained with
special versions of control structures if_, if_else_,
while_, do_while_ and for_ supporting automatic
synchronization at the end of the structure, _if,
_if_else, _while, _do_while and _for supporting auto-
matic automatic subgroup creation, and _if_,
_if_else_, _while_, _do_while_ and _for_ supporting
both automatic synchronization and subgroup creation
(see Figure 2). Asynchronous control structures with
private enter/exit conditions if, if-else, while, do-
while and for (using the conventional c-language syn-
tax) can be used only at the leaf level of group hierar-
chy. Entering to an asynchronous area happens by
using an asynchronous control structure and returning
back to the synchronous area happens by an explicit
group-wide barrier statement synchronize assuming
all threads of the group will reach the barrier.

Fig. 2. The control structures of E-language.

In order to illustrate flexibility of e-language we
included some Eclipse specific primitives in e-lan-

guage because Eclipse barrier synchronization mecha-
nism provides limited support for constant time con-
current access and arbitrary multiprefix operations
[12]. This feature is limited to a special memory loca-
tions called active memory. A reference to an active
memory location of a thread can be made with the
active_memory_N_ variable, where N is the address
of the location. A constant time group-wise spread
from thread 0 to all threads of the group can be made
with function spread_. Finally an arbitrary multi-
prefix can be made with arbitrary_prefix_(operation),
where the operation is one of add, sub, and, or, max,
max unsigned, min, min unsigned.

2.4 Example program

Let us consider a recursive version of the random-
ized parallel quicksort algorithm [13] providing
O(log2 N) execution time with a high probability in an
EREW PRAM machine. The synchronous e imple-
mentation of the algorithm is shown in Figure 3. In an
Eclipse this version will execute in O(log N) with a
high probability because it utilizes Eclipse specific
constant time primitive spread_ and automatic group
creation structures _if_else_ and _if_.

3. Experimentation

In order to experiment e-language in real parallel
programming we wrote e-language versions of five
TLP programs representing widely used primitives of
parallel computing [13] (see Table 1). The programs
we compiled with our experimental e-compiler with
the level 2 optimizations (-O2) and external ILP
optimization (-ilp) on [10], and executed in three
configurations of our scalable Eclipse NOC
architecture with the IPSMSim simulator [14]. The
parameters of the configurations are listed in Table 2.

For each benchmark and configuration pair we
measured the execution time of the program excluding
the initialization of data, the utilization of FUs, the
source code size and executable size. The results of
our measurements are shown in Figure 4.

The rough scalability of execution time can be seen
clearly from the curves of the benchmarks except
rqsort, in which the size of the input data is linearly
dependent on the number of threads. The slight vari-

Structure Calling Create Synchronize
Area subgroups

--
if (c) s; Both - no
if (c) s1; else s2; Both - no
while (c) s; Both - no
do s while (c); Both - no
for (s1;s2;s3) s; Both - no
if_ (c,s); Both - yes
if_else_ (c,s1,s2); Both - yes
while_ (c,s); Both - yes
do_while_ (s,c); Both - yes
for_ (s1,s2,s3,s); Both - yes
_if (c,s); Synchronous 1 no
_if_else (c,s1,s2); Synchronous 2 no
_while (c,s); Synchronous 1 no
_do_while (s,c); Synchronous 1 no
_for (s1,s2,s3,s); Synchronous 1 no
if (c,s); Synchronous 1 yes
_if_else_ (c,s1,s2); Synchronous 2 yes
while (c,s); Synchronous 1 yes
_do_while_ (s,c); Synchronous 1 yes
for (s1,s2,s3,s); Synchronous 1 yes
--

Table 1. The benchmark programs.

Table 2. The configurations used in evaluations.

ance compared to a pure linear scalability is due to the
randomized nature of communication and that the
number of threads is fixed making larger configura-
tions relatively weaker than smaller ones. The utiliza-
tion of FUs does not achieve the level measured in our
earlier tests suggesting that the quality of the code pro-
duced by the gcc is not as good as that of hand com-
piling. The sizes of executables remained modest
although the start-up code and Eclipse-related run-
time libraries were included. The reason for this
behavior is that we used -mtraps flag in compilation
substituting some I/O routines with operating system
traps, the benchmarks were not I/O intensive, and
processors used VLIW coding.

In general, turning the relatively simple benchmark
algorithms to e-programs was as straight-forward as
we expected. However, it should be remembered that
TLP programming is not necessary trivial to those
used to sequential programming.

4. Conclusions

We have described a new parallel programming lan-
guage, called e, for fine-grained TLP programming on
synchronous shared memory NOC architectures real-
izing the PRAM programming model. It uses a famil-
iar c-like syntax and provides a versatile set of control

Fig. 3. An e-implementation of randomized parallel
quicksort algorithm.

structures, a concept of arbitrary hierarchical thread
grouping, shared and private variables as well as sup-
port for synchronous and asynchronous programming
styles. With these means a programmer is able to
express the (parallel) functionality in a sophisticated
way, make sure that the application is executed effi-
ciently in the TLP hardware, and avoid pitfalls of cur-
rent shared memory programming. According to our

#include "e.h"
#define max_size 65536
#define threshold_elements 30
int source_[max_size]; // declare shared table
void rqsort(int start, int length)
{

if (length<threshold_elements)
{

if (_thread_id==0 ,
qsort(start,start+length-1); // sequential quicksort

);
}
else
{

int offset1;
int offset2;
int element=source_[start+_thread_id];
int sort_element; // a random element
if (_thread_id==0 ,

sort_element=source_[start+random(length)];
);
active_memory_4_ = sort_element;
sort_element = spread_; // spread it to the group
_if_else_ (element<sort_element ,

source_[start+_thread_id]=element;
rqsort(start,_number_of_threads); // call recursively

,
offset1=length-_number_of_threads;
offset2=_number_of_threads;
_if_else_ (element==sort_element ,

source_[start+offset1+_thread_id]=element;
,

source_[start+offset1+offset2-
_number_of_threads+_thread_id]=element;

rqsort(start+offset1+offset2-
_number_of_threads,_number_of_threads);

);
);

}
};
int main()
{

int size=_number_of_threads;
source_[_thread_id] = random(size); // Fill with randoms
rqsort(0,size); // Sort in parallel
return 0;

}

Processors 4 (E4), 16 (E16), 64 (E64)
Threads per processor 512
Functional units 4
Bank access time 12 processor clock cycles
Bank cycle time 15 processor clock cycles
Length of FIFOs 16

block A parallel program that moves a block of integers
in the shared memory from a location to another

fir A parallel program that applies finite response filter
to a table of given integers in the shared memory

max A parallel program that finds the maximum of
given table of random integers in the shared
memory

prefix A parallel program that calculates the prefix sums
for given table of integers in the shared memory

rqsort A parallel program that sorts given table of T
random integers in the shared memory using the
iterative randomized parallel quicksort algorithm,
where T is the number of threads. (An iterative
version of the algorithm shown in Figure 3)

Fig. 4. The measured execution time, the utilization
of FUs and the size of source and executable.

experimentation with an experimental e-compiler and
scalable Eclipse NOC architecture, e-language pro-
vides ease of use and scalable performance.

Our future work includes refining some details of
the language and compiler. We plan also a thorough
evaluation of the whole application development
scheme being developed for the Eclipse architecture
using general purpose parallel applications as well as
some digital signal processing domain applications.
Finally, we hope to be able to enhance the architecture

of Eclipse so that it would provide at least partial sup-
port for stronger PRAM models like CRCW. The first
steps towards this direction have already been taken
[12]. From the e-language side there is no obstacle to
use such a strong model even now.

References:
[1] A. Jantsch and H. Tenhunen (editors), Networks

on Chip, Kluver Academic Publ., Boston, 2003.
[2] N. Jouppi and D. Wall, Available Instruction-Level

Parallelism for Superscalar and Superpipelined
Machines, ASPLOS 3, April 1989, 272-282.

[3] U. Vishkin, S. Dascal, E. Berkovich and J.
Nuzman, Explicit Multithreading (XMT) Bridging
Models for Instruction Parallelism, UMIACS TR-
98-05, 1998.

[4] M. Forsell, A Scalable High-Performance
Computing Solution for Network on Chips, IEEE
Micro 22, 5 (September-October 2002), 46-55.

[6] J. Keller, C. Keßler, and J. Träff: Practical PRAM
Programming, Wiley, New York, 2001.

[5] S. Fortune and J. Wyllie, Parallelism in Random
Access Machines, ACM STOC, New York, 1978,
114-118.

[7] C. Leon, F. Sande, C. Rodriguez and F. Garcia, A
PRAM oriented language, Euromicro PDP,
January 1995, 182-191.

[8] S. Juvaste, The programming language pm2 for
PRAM, Tech. Report B-1992-1, Dept of Computer
Science, Univ. of Joensuu, Finland, 1992.

[9] M. Philippsen and W. Tichy, Compiling for mas-
sively parallel machines, in Code Generation:
Concepts, Tools and Techniques (editors R.
Giegerich and S. Graham), Springer Workshops in
Computing, 92-111, 1992.

[10] M. Forsell, Parallel Application Development
Scheme for ECLIPSE network on chip architec-
ture, submitted to Journal of Systems
Architecture, 2003.

[11] M. Forsell, Implementation of Instruction-Level
and Thread-Level Parallelism in Computers,
Dissertations 2, Dept of Computer Science, Univ.
of Joensuu, 1997.

[12] M. Forsell, Barrier Synchronization Mechanism
for the ECLIPSE Architecture, in preparation.

[13] J. Jaja: Introduction to Parallel Algorithms,
Addison-Wesley, Reading, 1992.

[14] M. Forsell, Advanced Simulation Environment
for Shared Memory Network-on-Chips, IEEE
NORCHIP, November 2002, 31-36.

0

100

200

300

400

500

600

700

block fir max prefix rqsort

Co
de

 s
ize source

compiled

20

30

40

50

E4 E16 E64

Ut
ili

za
tio

n
of

 F
Us block

fir
max
prefix
rqsort

0,0E+00

2,0E+06

4,0E+06

6,0E+06

8,0E+06

1,0E+07

1,2E+07

1,4E+07

E4 E16 E64

Ex
ec

ut
io

n
tim

e block
fir
max
prefix
rqsort

