
Process Monitoring in Operating System Linux

ZDENEK SLANINA, VILEM SROVNAL
Department of Measurement and Control

VSB Technical University of Ostrava
17. listopadu 15, 708 33 Ostrava-Poruba

CZECH REPUBLIC

Abstract: The article deals with a design of system module for the selected processes monitoring in the operating
system RT-Linux. The designed module will be able to observe states of selected processes in real-time (start, stop,
interruption ...) and visualize changes of states on the remote Linux system. For the better explanation of problems are
given basic characteristics of operating systems Linux and RT-Linux. There are described the initiate problems
solution, process states monitoring and time sequence of task processing in real time.

Key-Words: Linux, RT-Linux, process, scheduling, monitoring, embedded systems, real-time systems

1 Introduction
The present technological processes control uses
number of technical resources as intelligent sensors,
microcontrollers, PLC's, personal computers and
workstations. The communication between resources is
realized by different types of industrial buses, computer
networks and operating systems.
 If control systems are realized with personal
computers, these computers demand the real-time
processing mode. There are required the preemptive
multi-processing of concurrent tasks or the pseudo-
parallel technique of processing.
 The real-time operation systems are ready to process
external events any time. The processing of demanded
solutions is obtained in prior given intervals. The
system can accept data as casual events or data are
periodically scanned in intervals in advance with
respect of appropriate application.
 Real-time systems have to react at signals from
external environment, events, according to given time
pre-limits. The proper behavior of such system depends
not only on evaluation's results executed by processes,
but also on the elapsed time for their evaluation. The
delayed reaction need not to be up-to-date for the
appropriate control action, the delay can cause crash of
the corresponding application [4], [5].
 The design of control system needs the knowledge
of its behavior in many situations as standard or
emergency and so on. The creation of monitoring
kernel module is very useful for the system debugging
and error detection especially in the real-time
processing.

2 Operating system Linux

2.1 Basic description
The operating system Linux is obtainable in the form
of free distributed implementation of UNIX kernel [1].
This is the base of lowest operating system level. The
operating system core is compiled and installed on the
computer with many specific free distributed
programs, which make possible to design the complex
operating system. Such installations are called Linux
systems while kernels are not unique. The complicate
installation originates a Linux distribution [2].
Distributions are realized by various mediums (floppy,
CD). There are combined kernels and many next
support programs, programming languages and
utilities. The X-Windows server is involved as
graphical user interface of UNIX systems too.
 The kernel is the crucial part of each operating
system. Linux kernel is compiled by several important
subsystems (modules), which are briefly described
below. The created interface between the user,
operating system and hardware is shown on the figure
1.
 Files and devices are controlled by the small
number of functions in Linux. These functions are
called as system calls. They are Linux components and
make interface between the operating system and
applications [3].
 The problem is the efficiency direct using of these
functions for inputs and outputs. The performance of
system goes down as a result of switching between
user and kernel mode all the time. Function’s libraries
are used scores of time. It is possible to use the
function, which is dedicated directly to work with the
specific device. Linux provides a range of standard

libraries as the sophisticated interface for devices and
disc files.

Fig. 1 Interface between user and hardware

2.2 Kernel modules
Virtual File System (VFS) creates the universal
interface for the using of various file systems. The
each type of file systems provides the implementation
of specific set of operations, which are common for all
file systems.
 If any system component sends the request to use
the one of file systems, its request goes through VFS.
VFS forwards it to the relevant file system driver. VFS
provides the user interface both for file systems (FAT,
ext2...) and devices. The kernel provides the unified
interface for user applications.
 Devices include partly hardware devices (hard disc,
tape memory...) partly software devices (/dev/random -
device for generating of random data...). Special
services require networks. While these services are
non-standard (different then for file systems), they
belong to the VFS too. Users communicate as with
network devices as with standard devices.
 The memory manager provides following
functions:

- Virtual address space – the operating system
provides the virtual memory. The size of
virtual memory is much greater than the size
of physical memory in the system.

- Memory protection - each process in the
system has its own virtual address space.
Virtual address spaces are completely
mutually separated. The running application
process doesn't affect other processes. The
hardware mechanism of virtual memory
protects relevant memory areas against
writing. The code and data are protected in the
memory against destructive operations of
other applications.

- Memory mapping – the memory mapping
serves for mapping program's images and data

files to the address space of the process. When
the memory mapping is used the content of
file is directly linked with the virtual address
space of the process.

- Physical memory allocation – the memory
manager subsystem allows each running
process to allocate appropriate part of the
system physical memory.

1. Virtual memory sharing – while the virtual
memory allocate to the process the separated
address space, within the running of processes
are situations when processes need to share
virtual memory among themselves. Dynamic
libraries are the one example of sharing code
by several processes. The shared memory is
also a buffer, which is used in the
interprocesses communication when
information is exchanged among processes.
The Linux supports the interprocesses
communication by using UNIX system V IPC
mechanism.

 Linux provides the virtual memory system as the
extension of RAM memory. The efficient size of
memory is much greater. The kernel swaps contents of
just unused memory blocks on the disc and releases
memory for other functions. If it is requested the
content of blocks is loaded back to the memory. These
operations are the fully transparent for users. Running
Linux programs allocate only the appropriate size of
accessible physical memory and don't take care of the
virtual disc space. Of course, disc operations are not as
quick as on the physical memory - RAM.
 Linux use the plain file or the special disc area for
swapping. The advantage of independent disc segment
is speed. The advantage of swap file is possibility to
change size of swap space simply. If the size of swap
space is known, then is better using a disc segment. In
case of no direct demands is better using a swap file.
Linux provides multiple usages of swap areas or swap
files.
 The process management module control
multitasking. It concerns the creating of processes and
switching processor among active processes. Linux
threads implementation is called one-to-one executed
at kernel level. Each thread means independent process
for the kernel. The scheduler of processes doesn't
make differences between processes and threads.
Disadvantage of this model is too big overhead
through threads switching. P-thread library is provided
for threads, which are implementing in agreement with
POSIX standard.
 The data structure task_struct enable the process
management in Linux. The terms task and process are
equivalent in Linux. The task_struct describes
properties and states of processes in the system. These

data structures create the task vector, which is the
array of pointers to all structures task_struct in the
system. It means that maximal number of processes is
limited by the size of task vector (512 items
implicitly). The new structure task_struct is allocated
in the memory as the part of vector task during a
process creation. There is possible a reference by the
current pointer to the actual process for the searching
facilitation. Individual items of task_struct are
separated to several areas.
The first is a state - the state of the process changes
according to processing conditions. Processes in Linux
are found in following states:

- RUNNING - process is running now (actually
process) or it is ready to run (process waiting for
the processor).

- INTERRUPTIBLE - process is waiting for
processing and it is wake up by signal or timer
expiration.

- UNINTERRUPTIBLE - process waiting for
processing and it can't be wake up.

- ZOMBIE - finished process with structure
task_struct in vector task by any reason. This
process is inactive.

- STOPPED - process was stopped by any signal
usually. In that state is a debugged process by
example.

- EXCLUSIVE – this state is created as a logical
combination of states with state
INTERRUPTIBLE and UNINTERRUPTIBLE.

 The Linux and Unix use in the file descriptors
attributes for the unauthorized access protection. Each
file and directory has its owners. Attributes define the
access right for user (owner), group and anyone. The
basic file protection defines other three protection bits
as rights for read, write and execution. Each group of
users can have another access rights. For example, the
owner can read and write in the file, group can read
only and all other users (processes) have the access to
the file disabled.
 The group definition enables to assign privileges to
the groups of users, not only to one user or all users in
the system. The right for process execution is possible
assigned to number of groups (maximal number is 32
implicitly). These groups are saved to the group’s
vector in the structure task_struct of each process. If a
group has access rights to a file and the process
belongs to this group, then the process has group rights
to the file.
 There are user and group pairs of process attributes
in the structure above:

- uid and gid - identifiers of user and group in the
name of user running process

- effective uid and gid - some processes change their
uid and gid within running process, their own are
saved as attributes in inods of executing image.
These processes are called setuid processes and
they are very useful because they present way to
restrict access to services executed by name of
any other as network daemons. Effective uid and
gid are set according to attributes of setuid
process, values of uid and gid are unchanged.
Effective uid and gid use the kernel for checking
of access rights.

- filesystem uid and gid - similar to effective uid and
gid. They are used for access rights checking to
file system. It is necessary for connected file
systems, when NFS server in user mode need
access to files as some process. In this case,
filesystem uid and gid are changed instead of
effective uid and gid. This way eliminates the
situation when some sends to the server the kill
signal. Kill signals are submitted to processes with
effective uid and gid.

- saved uid and gid - values required by POSIX
standard and they are used in processes changing
uid and gid of the process using system calls.
When values of uid and gid are changed, real
values of uid and gid are saved in them.

 Each process has its process identifier. Identifier is
not an index in the task vector, it is only a number. In
the Linux there is no system process to depend on any
other processes. All processes have their generic
processes excluding the initial process. Each
task_struct structure of each process contains a pointer
to its generic process and siblings (rest processes with
the same generic process) and pointers to its descent
processes. Moreover all processes in the system are
related in the both directions list, its root is task_struct
structure of init process. The kernel uses this list to the
view above all processes in the system.
 The kernel keeps information about time of process
starting and the total processor time of process. The
kernel keeps also values, which processing time is the
process in the system and user mode. The Linux
supports interval timers of processes. Process can call
set timers using system calls to call signal after time
period is expired. These timers can be one-off or
periodic.
 All processes run partly in the user mode and partly
in the system mode. These modes are supported by the
low-level hardware. There is a specific security
mechanism for the switching between user and system
mode. In the user mode, a process has obviously minor
privileges than in the system mode.
 Always when system calls are used, the processing
is switched from the user mode to the system mode.

The kernel works in the name of process in the time of
system mode.
 Linux uses preemptive tasks planning. The one of
planning strategies is round-robin. The each process is
running a set time (for example 200 ms). When this
time expired, other process use processor and previous
process has to wait for the next opportunity to run.
This time period is called time-slice.
 The scheduler decides which process will run.
Linux scheduler selects the actual processes on the
base of priority algorithm. The scheduler saves the
actual process status, values of processor registries and
other context information to data structure task_struct
when the new process is choosing. Then the scheduler
restores the state of new planned process. The
scheduler keeps following information in structure
task_struct of each process for a realization of
planning strategies:

- policy - scheduling strategy is associated to the
relevant process. There are two types of processes
in Linux - standard and real-time. Real-time
processes have higher priorities than all other
processes. If real-time process is ready to go, it
will be run. Two strategies are applied for real-
time processes either round-robin or FIFO (First
In First Out). In round-robin scheduling is used
the cyclic switching of processes. They are
executed cyclic in queue. The strategy FIFO
means execution of processes in the order of ready
to execution.

- priority – the scheduler assigns the priority to the
process. It is a quantity of the time (in jiffy units),
that process can use, when it is running. The
priority of processes is possible to change using
system calls and with renice command.

- rt_priority - Linux supports real-time processes

with high priority than other processes in the
system. This item allows to scheduler assign to
each process its relative priority. The priority of
real-time processes is possible to change using
system calls.

- counter - number of time jiffy when the process is
running. At the process planning is this value set
as the priority value. The counter is decremented
with every time pulse.

 The scheduler is activated in several points in the
kernel: actual process is transferred to queue of
waiting processes; system call is finished; before the
switching of process from system to the kernel mode.
The next reason is the decrement of counter value to
zero.
 Process selection to execution – the scheduler
looks in the priority queue of processes. If the real-
time process is in the queue, its rate is higher than

standard processes. The weight of standard process is
equal to the counter value. The real-time process
weight is 1000 higher. It means that real-time
processes will execute before standard processes. The
actual process, which is running (value counter is
decremented) has handicap before other processes with
the same priority. When priorities of processes are
equal, the scheduler chooses the first process in the
queue. The actual process is scheduled for the end of
queue at the switching. Processes are executed one by
one in the balanced system with same priorities of
processes. It is round-robin planning – the cyclic
planning of processes. The sequence of waiting
processes is possible to change.
 Process switch - if switching conditions occurs, the
actual process is stopped and the new process is ready
to run. The running process uses registers and
processor and system memories. The every call of
routines sets parameters in registers and use values in
the stack, for example, to save a return address of
calling routine. If the process is suspending, it is
necessary to save its state including the program
counter and all registers of processor to its task_struct
structure. Then the state of new planned process is
necessary to restore. This operation is a machine
dependent, each processor use an own way with the
hardware support.
 The process switch is the last scheduler's operation.
The saved context of previous process is image of
hardware context in time of end of process scheduling.
So when is loaded a new process, there are know
information about the situation before, including the
content of counter of instructions and registers.

3 Operating system RT-Linux
There are two different approaches to obtain RT tasks
executing in Linux:

1. Improving the Linux kernel preemption.
2. Adding a new software layer beneath Linux

kernel with full control of interrupts and
processor key features.

These two approaches are known as "preemption
improvement" and "interrupt abstraction" respectively.
This second approach is the one used by RTLinux.
 RT-Linux scheduler uses Linux kernel as its
inactive task. Linux is running in the case that no real-
time process in the real-time mode is active. The
process in Linux unblocks interruption or prevent
switch in any time. This mechanism is possible thanks
to the software emulation of hardware interruption.
 There are important features, which are achieved in
real-time processing in the kernel mode:

- Thread processing is in the operating memory of
kernel.

- Threads processing is in the kernel mode and
threads have complete access to basic layer.

- Application is compiled and installed in the same
memory space like real-time operating system.
System calls are implemented using simple
system call that doesn't use software interruption
by the reason of decrement time of operating
system overhead.

 RT-Linux is following the POSIX 1003.13 minimal
realtime operating system standard. The design of RT-
Linux is subordinated to POSIX requirements. The
system can run on i386, PPC and ARM architectures.
 Following tools are provided for applications
debugging:

- Debugging at source code level with SMP support
at the target machine, cross-debugging is not
possible.

- Tracing - kernel tracing and application events.
- POSIX tracing.

 Memory management:
- static
- dynamic - dynamic memory allocation is not

available (functions malloc and free); RT-Linux
doesn't allows it nor use internally

- protected address space - application threads and
RT-Linux threads run at same address space; by
some point of view is Linux host system for RT-
Linux; Linux has complete control above system
memory

 Interprocess communication:
- FIFO - communication mechanism is determined

to communication between real-time processes
and Linux user processes (not compatible with
POSIX norm)

 Synchronization:
- mutexes - POSIX mutexes; system allows

PRIORITY_PROTECT protocol for handling
with priority inversion problem

- condition variables - POSIX condition variables
- semaphores - POSIX semaphores

 Nowadays are developed various new components
for RT-Linux for more effective work with, for
measurement and control is Linux interface Comedi,
etc.

4 Monitoring module
The basic goal of monitoring module is the maximal
usage of data structure task_struct contains all
information about processes in system Linux. Then the
process monitoring is possible separate to two basic
parts.
 The first part is a process status, which is read from
the task vector. This procedure has to be very fast. In
the case when this procedure is integrated with

scheduler, it will have following consequences. Each
reading of status evokes a delay of process switching;
it can be a problem in real-time systems. The effective
processor time is decreased as a result of following
actions: switch for status reading; own reading;
compare with table of desired monitored processes;
writing of data in case of positive result; switching
back to the actual process. On the other side, when the
monitoring is finished, the processor will have more
system time for other process services.
 If the actual process is the one of monitored
processes, the status information of actual process is at
disposal to the second part of monitoring system. The
second part is a visualization system, which is running
slowly. Changes in kernel are very quick and in the
case of exact visualization, it is not scan able by the
operator. The second part writes data in the given
format on the appropriate device. It is possible use as
the device a monitor, hard disk or Ethernet. In the case
of remote visualization and unavailability of devices
above is possible to create the special device for direct
connection with PC buses (PCI, PC/104 ...).
 The format of written data is depended on the used
device, for example, in the memory medium (hard
disk) is saved names of processes and times. For the
visualization on the monitor is used the one of graphic
libraries (GtK).

Fig. 2: The monitoring example

 The monitoring example is shown on the figure 2.
There is an example of processes which are scanning
by the monitoring module. There are processes with
numbers (1 to 7). Processes 2 to 6 are application
processes which are debugging. Processes 1 and 7 are
system processes, e.g. drivers for measurement cards,
etc. The monitoring module allows saving time data to
the file. It is possible analyze a system behavior after
the system halt: events in system; exact times of input
or output events; times of processing; feedback
reactions... It is possible to visualize a behavior on the
remote computer.
 The block diagram of monitoring system is shown
on the figure 3.

Fig. 3 The block diagram of process monitoring

5 Conclusion
The main goal of this project is a support of embedded
systems design. The designer obtains information of
process behavior in the phase of design, testing and real
operation. Because in phase of testing is difficult catch
all situations, usage of such system could be expedient.
It is possible a testing if the chosen hardware is suitable

for the real-time application or it is necessary use a
more powerful hardware.
 Acknowledgement: The project is solving on VSB
Technical University of Ostrava, Czech Republic. The
Ministry of Education of Czech Republic supplied the
results of the project LN00B029 with subvention. The
Grant Agency of Czech Republic supplied the results
of the project 102/02/1032 with subvention.

References:

[1] Sobell M.G.: A practical guide to Linux,
Addison-Wesley 1997

[2] Matthew N., Stones R.: Beginning Linux
programming, Wrox Press 2000

[3] Rubini A., Corbet J.: Linux device drivers,
Computer Press 2001

[4] Srovnal, V.: Operating Systems for Real-time
Control, VŠB Technical University of Ostrava
2003 (In Czech)

[5] Kocis T., Srovnal V.: Operating Systems for
Embedded Computers. In : Programmable
Devices and Systems 2003-IFAC Workshop,
Pergamon Press-Elsevier 2003, pp. 359-364

