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Abstract: - In this paper, nonlinear dynamical black-box models of a common rail injection system for a CNG engine are 
developed. In particular, the common rail pressure dynamics is modeled on the basis of three input signals, easily and cheaply 
measurable on board a vehicle. The nonlinear model is identified by means of Multi Layer Perceptron neural networks. Both 
non-autoregressive (NMAX) and autoregressive (NARMAX) models have been developed, showing satisfactory 
performance.  
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1   Introduction 
     Reducing pollutant emissions from engines is important 
to avoid the problems of a severe environmental pollution. 
For this purpose, strictly limits on the emissions are 
necessary [10]. At the same time, car manufacturers are in 
competition for improving performance in terms of 
drivability, safety, fuel consumption, reliability, noise 
reduction, power.  
     Recently, manufacturers have given a significant 
contribution to noise and consumption reduction, as well as 
torque and power performances improvement, by 
controlling the injection system, which attends to feed the 
motor with the proper amount of fuel in any operational 
condition. A thorough design of control strategies for the 
injection system greatly affects the combustion mechanism 
[13], [9], [3]. The development of control strategies for the 
injection system requires a mathematical model describing 
the dynamics of most significant variables. Simulation 
models increase the knowledge of the system and provides a 
better understanding of the relationships between variables. 
Moreover, simulation models can predict the effect of 
changes on the engine operational parameters and the 
influence of the control action on the behavior of the 
injection system. Hence such models allow to shorten the 
time for designing the control schemes, and avoid 
unnecessary solicitations to the actual system during the 
tuning procedure. 
     Obtaining a mathematical model for automotive systems 
is not a trivial task. First of all, it is necessary to trade off 
between accuracy in representing the dynamical behavior of 
the most significant variables and a low computational 
effort. Furthermore, the model has to be suitable for the 
control approach to be used. For example, high order 
models could be inadequate for control purposes. 

     The injection system consists of electro-mechanical 
elements, each of them accomplishing specific tasks and 
interacting with each others, so that a highly non linear 
process results. Nevertheless, often to develop a control 
strategy, a complete representation of all the internal 
dynamics may not be required. 
     The straightest way to model the injection systems is the 
use of a fluid-dynamic simulation software, such the 
AMESim package [4], on the basis of system geometrical 
data [1], [11]. This simulation environment is based on 
block libraries of mechanical elements, able to simulate 
complex fluid-dynamic phenomena. Despite of good 
prediction capabilities of such models, they cannot be used 
for control purposes, as they do not give any mathematical 
representation of the process dynamics. 
     Some injection system models for diesel [5], [9] and 
Compressed Natural Gas (CNG) [8] engines are based on 
equations describing the physics underlying the process. 
Following the Eulerian theory, each element of the system 
is first considered as a control volume and modeled 
separately, and then it is included in a pertinent way into the 
entire system. Then the fuel dynamics within each control 
volume can be derived by a proper mix of ideal gas law, 
conservation of the mass, conservation of energy and 
dynamic equilibrium equations [12], [14]. This approach 
leads to a distributed parameters representations, describing 
the system through sets of partial differential equations, or 
to a nonlinear state space representations. The main 
drawback of these methods is that, sometime, it is 
impossible to have a detailed insight of the geometry of the 
system components, in particular of the valves and the 
injectors, or it is difficult to model nonlinear interactions 
between the system variables. 
     However, the injection control leave apart the accurate 
representation of fuel dynamics in each subsystem. To this 



end, there are identification techniques leading to black box 
models, with a complexity adequate to the problem. For 
example, the method proposed in [6] identifies the dynamic 
characteristics of an electro-mechanical fuel metering 
system, leading to a third order transfer function 
representation. It relates the control signal to the axial 
displacement of a metering sleeve connected to the injector, 
without considering the fuel pressure variations and, 
consequently, the injection accuracy. So far, these 
approaches have not been extensively used for the 
identification of the injection systems, as they need a proper 
set of measured data on the real system. 
    In this paper we develop a nonlinear black-box model [7] 
for the rail pressure in a CNG engine. We use Multi Layer 
Perceptron (MLP) neural networks [2] to identify a 
nonlinear model wich shows good prediction accuracy and 
low computational effort. Thu, it is suitable for a further 
development of control strategies for the injection system. 
In particular, an accurate prediction of the rail pressure on a 
suitable time horizon allows the implementation of 
predictive control schemes on the rail pressure, which 
should be kept constant at any time. To allow an effective 
implementation of predictive control schemes, the inputs of 
the model are quantities which are easily and cheaply 
measurable with standard sensors already produced and 
installed on board of vehicles. 
     To generate the data for the system identification phase 
we exploit in this work an accurate 8th order mathematical 
model developed by the authors and presented in [8]. It is 
based on the Eulerian theory mentioned above and its 
parameters are determined or detected by known 
geometrical data. We use this model due to the lack of 
suitable experimental data; however, this approach gives us 
important directions on how to choose the I/O data set from 
the real system and to assess the suitability of the approach, 
in view of future developments, when an experimental setup 
will be available. 
 
 
2   System Description 
     The CNG Injection System is composed of a tank, a 
mechanical pressure reducer, an electro-hydraulic valve, a 
common rail and four electro-injectors (Fig. 1), see [8] for 
details. A set of sensors displaced among the circuit allow 
to measure tank, reducer and rail pressures, as well as 
current absorptions of the electro-hydraulic valve and the 
injectors. 
     The pressure reducer receives fuel from the tank at a 
pressure in the range between 200 and 20 bars and reduces 
it to a value of about 20 bar. The reference pressure is 
regulated by the equilibrium of the forces acting upon a 
mobile piston located inside the reducer chamber. It is 
coupled with the spherical shutter whose axial displacement 
controls the inlet section. Pressure forces push the piston at 
the top, while elastic force of a preloaded spring pushes it  
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Fig. 1: Block scheme of the CNG Common Rail Injection System. 
 
down and causes the shutter to open. The spring preload 
value sets the desired equilibrium reducer pressure: if the 
pressure exceeds the reference value the shutter closes and 
reduces the gas inflow, preventing a further pressure rise; on 
the contrary, if the pressure decreases, the piston moves 
down and the shutter opens, letting more fuel to enter so 
that the pressure in the reducer chamber increases.  
     An electro-hydraulic valve regulates the flow from the 
reducer pressure towards the common rail. The valve 
encompasses an electromagnet, with a mobile anchor, and a 
spherical shutter, integral with the anchor. In a non 
energized condition, a preloaded spring action against the 
hydraulic force makes the shutter and the anchor remain 
closed, and blocks the gas flow towards the rail. As the 
electromagnetic circuit is energized, the magnetic force 
overcomes the spring preload: the anchor and the poles 
come together and the pressure force shuttles the sphere to 
open the supply port. When the solenoid circuit is de-
energized, the anchor is forced down and the shutter is 
pushed against the seat. In this way, varying the supplying 
voltage duty cycle among the injection period and making 
the valve opened and closed in turn regulates the rail 
pressure. 
     To sum up, the common rail is a constant control 
accumulator connected to injectors. Its main task is to 
reduce pressure fluctuations due to mechanical part motions 
and injection flows. The injected fuel amount depends on 
the injector opening time and pressure [8]: the former is set 
by the Electronic Control Unit (ECU) according to the 
engine speed, the latter is almost equal to that in the rail and 
hence can be regulated by controlling the electro-hydraulic 
valve. 
     A complete injection cycle takes place in a 720° angular 
interval and consists of four injections starting every 180°. 
The injectors driving command is a square signal energizing 
the solenoid valve that attends to change the outlet section. 
In comparison to system dynamics, opening and closing 
transients are negligeable. 
 



3   Nonlinear Model Identification 
     In this section, the nonlinear model of the rail pressure is 
presented. The model is developed through the usual steps 
of system identification, i.e.: input selection, experiment 
definition and data collection, selection of the model 
structure, model identification, model validation [7]. 
     The selection of the input variables is a primary task in 
the definition of a model. The aim of the proposed model is 
the development of model-based control algorithms for the 
rail pressure. To this aim, models must be simple enough, 
with both static and dynamic good performance, and based 
on simple, easily accomplished, measurements. Most of the 
producers require for their prototypes control schemes using 
a limited number of cheap and commercially available 
sensors, possibly identical to those already adopted in 
current automotive systems. Therefore, input variables must 
be chosen among those that have a good influence on the 
output trend, and must be easily (cheaply) measurable.  
     After a thorough phase of investigation, three variables 
have been selected as candidate inputs for the model.  
• Engine Speed, in Revolutions Per Minute (RPM) of the 

crankshaft. When the engine speed increases, the 
injector opening time increases according to a look-up 
table set by the manufacturer. Consequently, the rail 
outflow increases and the rail pressure decreases.  

• Duty Cycle of the regulator valve opening with respect 
to one injection cycle (720° of crankshaft rotation).  

• Fuel Tank Pressure. This pressure has a decreasing 
trend, as the fuel is burned into the engine. As the tank 
pressure decreases, the rail pressure tends to decrease. 
The pressure reducer at the output of the tank is 
installed to reduce the effect of the changes in the tank 
pressure and keep the fuel outflow at a constant 
pressure, but nonlinear dynamics in the reducer prevent 
the output pressure to be constant. Therefore, the tank 
pressure still influences the rail pressure. 

     It is well known that in identification problems, data 
must be carefully selected, as identified models cannot 
provide more information than that provided by data. In our 
case, since an analytical model in the state-space generates 
data, input can be suitably chosen to stimulate the modes of 
the response in the frequency band of interest and with 
peculiar signal trends.  
In particular:  
• We have assigned a decreasing trend to the tank 

pressure, and tuned on experimental data, according to 
typical fuel consumption rates. 

• We have chosen the engine speed, which is actually set 
by the driver, according to typical driving profiles 
containing accelerations, decelerations and steady 
phases.  

• Duty cycle is an actuation signal of a closed-loop 
scheme rather than an exogenous signal. For generating 
this signal, we have pursued three strategies:  

o Simulating the system in open loop and imposing 
on the duty a pseudo-random trend;  

o Simulating the system in closed loop and 
generating the duty through a Proportional-Integral 
control scheme;  

o Simulating the system as in the previous point, and 
consider the PI-generated signal as a start point. 
Further, the signal is enriched through some post-
processing and the system simulated again in open 
loop by using the new duty cycle signal.  

After a thorough analysis phase, the third choice for the 
generation of the duty cycle trend has been adopted. 
     Fig. 2 shows the data set adopted for the identification of 
the model. Data have been sampled at 1 kHz; this sampling 
frequency is suitable for control purposes. The dataset, 
which consists of 296.000 points, has been split into two 
halves, used for learning and testing, respectively. 
     The aim of this paper is to build a dynamical model able 
to predict the trend of the rail pressure on the basis of the 
input selected above. Two kind of models have been taken 
into account: a Nonlinear Moving Average with exogenous 
inputs (NMAX) model, and a Nonlinear AutoRegressive 
Moving Average with eXogenous inputs (NARMAX) one.  
     The first model considered does not take as input past 
regressions of the output. After an extensive trial-and-error 
phase, the model with best performance has been selected 
as:  
 

prail(k+1) = f [ptank(k), ptank(k-1), RPM(k), RPM(k-1), 
duty(k), duty(k-1)]                                (1) 

 
The unknown function f in eq. (1) has been interpolated 
with a Multi Layer Perceptron (MLP) neural network on the 
basis of the data shown above. The first half of the dataset 
has been used for training the model, the remainder has 
been used for testing.  
The neural network has therefore six inputs and one output. 
A trial-and-error phase led to best performance with a 
network with five neurons in the hidden layer. 
Performances are satisfactory, as shown in Fig. (3), which 
illustrates a comparison between predicted and actual 
output, the residual, the histogram of the residual, and the 
autocorrelation function of the residual. All these tests were 
passed successfully.  
     To improve the modeling performance, a NARMAX 
model has been selected as follows:  
 
prail(k+1) = f [ptank(k), RPM(k), duty(k), prail(k)]  (2) 

 
The unknown function f in equation (2) has been 
interpolated with a Multi Layer Perceptron (MLP) neural 
network on the basis of the data shown above. The first half 
of the dataset has been used for training the model, the 
remainder has been used for testing.  
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Fig. 2: Dataset adopted for identification. (a) Tank pressure, (b) Engine Speed, (c) Duty Cycle, (d) Rail pressure. 



 
     The neural network has four inputs and one output. A 
trial-and-error phase led to best performance with a network 
with twenty neurons in the hidden layer. It is not surprising 
that a NARMAX model performs extremely well on a one-
step-ahead prediction. For this reason, performance 
evaluation in this case is not reported. For control purposes, 
a NARMAX model must perform a prediction along a time 
horizon sufficiently wide, to be suitable for predictive 
control schemes. In our model, the prediction horizon has 
been reckoned in 200 samples, which correspond to 0.2 
seconds. This time interval is adequate for the 
implementation of predictive control strategies. Fig. 4 
illustrates the satisfactory 200-step predictive performance 
along the whole testing dataset. A portion of Fig. 4(a) is 
magnified around a change in the working condition in Fig. 
4(b). Also in this case, the model exhibits good accuracy.  
 
4   Conclusion 
      
     Modern automotive systems require an intense modeling 
activity on all their subsystems for the development of 
control and diagnosis schemes. This paper deals with the 
development of nonlinear dynamical black-box models for 
the injection system of a common rail CNG engine. For this 
purpose, Multi Layer Perceptrons have been exploited to 
model the common rail pressure dynamics, leading to 
models with a prediction horizon suitable for the 
development of predictive control schemes.  
     The model has been identified on the basis on reliable 
data generated by a 8th order state space model. Further 
work will concern some improvement of the performance of 
the existing model and its tuning with data collected on an 
experimental setup.  
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Fig. 3: Performance of a NMAX model implemented by a 6-5-1 MLP in terms of: (a) comparison of predicted and actual output, (b) residuals,  
(c) histograms of the residuals, (d) autocorrelation function of the residuals. 
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Fig. 4: Performance of a NARMAX model implemented by a 4-20-1 MLP in a 200 steps ahead prediction: (a) comparison of 
predicted and actual output along the whole test dataset, (b) zoom around a change in the operating condition..

 
 
 


