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Abstract: - We present in this paper a series of operators coming from discrete (neural networks) or continuous
(differential equations) dynamical systems and able to give adequate responses to low level image processing
tasks like contrasting, segmenting and contouring objects of interest in bio-medical images. These operators are
essentially based on a biomimetic approach, i.e. on the homogeneity reinforcement due to the lateral inhibition
in retina or on the boundary enhancement due to chemotactic motion of bacteria. They realize image treatments
in part analogous to those done by the natural vision and will be certainly improved by the new discoveries
about natural and artificial retinas.
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1 Introduction
Like the medieval surgeon Henri de Mondeville
whose Chirurgia in 1314 first proposed precise
opening procedures based on the anatomy (Fig. 1),
the modern surgical community [1] uses pre-treated
anatomical images coming from the present imaging
devices like MRI (Fig. 4). Pre-processing essentially
involves after denoising 3 fundamental steps :
contrasting, segmenting and contouring.

                  
Figure 1: anatomic image from the Chirurgia by H.

de Mondeville (1314)
The natural vision executes also these 3 tasks, the
first being based on the architecture of the primary
visual cortex which permits with the effect known
as lateral inhibition the reinforcement of the image
homogeneities. This effect is due to the fact that
nearest neurons are exciting themselves and also
inhibit the neurons of the next near layer ; it causes
for example the Herman grid illusion, which
empeaches the perception of all white circles in the

Fig. 2, the black homogeneity forcing the peripheral
circles to become grey, and in the same way it
reinforces the homogeneous parts of an image (Fig.
3) in particular on its boundaries (Fig. 4) realizing
concretely the Mach (boundary brightness
overshoot) and the Marr (Laplacian 0-crossing edge
enhancement) effects.

               
Figure 2: Herman illusion

Figure 3: contrast enhancement with the initial
image (left) and the contrasted image (right)

Because the objects of medical interest are often
homogeneous with respect to their environment (a



tumour or an organ are made of cells coming from
the same cellular clone), they are especially well
enhanced by using lateral inhibition algorithms.

2 Discrete operators
If we call at time t G(t) the pixel grey level vector
(G(t)={g(i,t)}i∈I, where g(i,t) is the grey level at the
pixel i of the image I), J(t) the synaptic weights
matrix, B(t) a threshold vector and h the Heaviside
function, we can consider the following discrete
neural networks operator:
G(t+1)=h[J(t)G(t)-B(t)]
J(t)=J(t-1)+γ<G(t),G(t-1)>/||G(t)||.
The second equation above is called the Hebbian
rule and permits the progressive evolution of the
image [2,3]. If J(0) respects the lateral inhibition
rule, then it increases the correlations between the
nearest neighbours components of G(t) having
similar grey levels and contrarily pushes the very
different components at distance 2 to vanish if they
are very different from the components of a
homogeneous region (cf. Fig. 4).

      
Figure 4: MRI image of tumour (left) and contrasted

grey level at the border of the tumour (right)

The updating of the Òneuro-pixelsÓ is in general
parallel [4] allowing rapid calculations.

3 Continuous operators
3.1 A chemotactic operator
If we denote at time t g(x,t) the grey level function
and b(x,t) the bacteria density at each image pixel x,
we can consider the following equations, which
constitute a new image processing operator [5]:
∂b/∂t = Lb∇gmax ∆b - χ∇(b∇g),
∂g/∂t = Lg ∆g - Kg(b+ε)/(b+1),
with Neumann conditions on the image boundary.
These equations implies that the bacteria move
towards the concentration of grey considered as a
chemo-attractant to consume. They also diffuse as

the grey level with respectively the viscosities Lb

and Lg. The Fig. 5 below shows the progressive
treatment of the image of a Chilean forest presenting
the same characteristics of homogeneity than a

tumour (the trees replacing the cells). After reaching
its asymptotics, the dynamics of contrasting stops
and can be followed by a contouring.

                  

Figure 5: initial image of forest (top), asymptotic
image (medium) and contouring (bottom)

3.2 A viability contouring operator
If we minimize the following functional [7], which
provides a new snakes operator:
[αS(K(t)) + βV(K(t)) + γ∫∂K(t) 1/          ∇g(x)             dx],
where K(t) is a compact object of interest moving
toward a limit set K(°), we can obtain [6,7,8], by
minimizing its external surface S as well as its inner
volume V, real gloves (precise contour) contrarily to
mittens (convex envelop) often observed with the
Mumford-Kass-Terzopoulos algorithm (cf. Fig. 6).

   
Figure 6: contouring the tumour of the Fig. 4 by

using the viability operator above

We see on the Fig. 6 the use of the contouring done
slice by slice before 3D spline smoothing for
determining an optimal surgical trajectory (1]. We



can impose to the contour to remain bicubic spline
at each time step [7].

3.3  A scissor operator
The contouring after contrast enhancement can be
also obtained by changing the location of the
contour at each iteration passing locally from pixel p
to pixel q (p→q), by minimizing the functional [9]:

α∆g(q)+β/∇g(q)+γ<∇g(p),pq>+δ ∫[p,q]g(s)ds

Figure 7: scissor asymptotic contour [8]

As in the viability contouring, which solves globally
the problem of entering into the concavities of the
boundaries, the scissor operator avoids the convex
envelop of the objects of interest and well restitutes
the aster like shapes (cf. Fig. 7)

3.4 A non-isotropic diffusion reaction operator
If we consider the grey level function g(x,0) as the
initial image, we can follow the transient behavior
of the well-known non-linear diffusion operator
defined by [10]:

∂g/∂t = Ldiv(1[0,s](∇(G*g).∇g)), with G∼N(0,σ),
and with Neumann conditions. The problem of this
algorithm is that its asymptotics corresponds to a
constant grey level suppressing the objects of
interest inside the image (cf. Fig. 8).

     

Figure 8: MRI image of the Fig. 4 treated at a
transient step (left) and at its asymptotic state (right)

For that reason, we consider now a new non-
isotropic reaction-diffusion operator defined in [5]:

∂g/∂t-div(L∇g)=0

dL/dt+L/τ = P∇g, if ∇g> s

             =∇g2
P∇g +3(s

2
-∇g2

)Id/2, if ∇g† s,

where Pv.||v|| is given by the matrix:

                         v2
2
    -v1v2 

                         -v1v2       v1
2

In the equations above, the diffusion constant L
becomes variable with the time t and its evolution
equation is similar to the neural network operator
described in Section 2. Treated images are obtained
at the asymptotic state of the dynamics as for neural
networks with lateral inhibition (cf. Fig. 9).

 
Figure 9: ultrasound image of the heart (top left),

Canny-Deriche segmentation (top right),
convergence to the asymptotics (medium left) and

viability contouring (medium right and bottom)

3.5 Gaussian stamping
Let us define the characteristic line of a peak as the
set of points where the mean Gaussian curvature of
the peak vanishes (cf. Fig. 10 & 11). Its equation
writes [11,12,13]:

H=∂2g/∂x2∂2g/∂y2—(∂2g/∂x∂y)2 = 0
If H’ = |H|, let consider the potential-Hamiltonian
system obtained as follows:
dx/dt = - α∂H’/∂x[H(x,y)/G(x,y)] + β∂H/∂y
dy/dt = - α∂H’/∂y[H(x,y)/G(x,y)] - β∂H/∂x,

where G(x,y)=       grad(g) 2.



 
Figure 10: grey landscape and characteristic lines

          

Figure 11: initial image of isotopic DNA chip  (top
left), filtered image (top right), function HÕ for close

peaks (medium), succeeding (separated peak,
bottom left) and failed trajectories (close peaks,

bottom right)

We have considered on Fig. 11 the new height
function HÕ(x,y) instead of the function g(x,y) at
each pixel (x,y) and we have displayed after the
plane potential-Hamiltonian differential system
above of which the characteristic line is a limit
cycle, called the Hamiltonian contour. Its first term
is of steepest descent nature and along the flow, the
orbits converge to the zeros of H’(x,y). On the set of
the zeros of H’(x,y), the second Hamiltonian term of
the differential system which is of convective type
becomes preponderant. Parameters α  and β can be

used to tune the speed of convergence of the
differential system to the limit cycle. The usual
discretization of Runge-Kutta yields ultimately for
the differential system an algorithm which is quite
easy to implement. On each pixel (boundary effects
are neglected), the function H(i,j) reads:

H(i,j)=[g(i+2,j)-2g(i+1,j)+g(i,j)][g(i,j+2)-
2g(i,j+1)+g(i,j)]-[g(i+1,j+1)-g(i,j+1)-g(i+1,j)+g(i,j)]2

An important property of the characteristic line is
that in the case of a Gaussian peak, it contours the
projection of a volume equal to 2/3 of the total
volume of the peak. This property remains exact in
case of moderate kurtosis and skewness of the peak.
An advantage of this technique is that we do not
perform a direct segmentation of the grey levels.
Thus the segmentation is much finer than the
corresponding one performed in the watershed lines
method (or in its variant with markers). We only
segment the upper part of the peak and we multiply
by 3/2 the activity integrated in the interior of the
characteristic line. This approach is interesting
because the lower part of the peak is often noisy.
The method seems particularly efficient when the
peaks are well separated. If they are close (see Fig.
11), then we need to tune the parameters α and β.

Finally, we affect to each gene whose activity is
represented by a peak on the DNA chip image (see
Fig. 11) a standardized rectangle containing an
activity coded through a grey level scale and
eventually we reorganize (see Fig. 12) these
rectangles in order to detect a co-expression of
genes whose proteins are located in same part of the
metabolic graph.

                
Figure 12: standardization of the DNA chip image
(the black rectangle localize the sub-image treated

in the Fig. 11 above)



3.6 Comparison with the watershed contouring
The watershed line is a concept firstly defined by
geographers in order to characterize the main
features of a landscape [14-18]: a drop of rain that
reaches the ground will flow down to a sea or an
ocean. In the case of France, the watershed line
splits the country in two parts, the atlantic zone and
the mediterranean zone. Those zones are called
’catchment basins’, and the oceans are the minima of
them. They define a partition of the relief, and the
frontiers of catchment basins define on the pixels
plane the watershed line. We can easily understand
the interest of this concept in image processing: grey
level images can be considered as relief structures,
and the watershed line is a good way to separate
light (low) zones from dark (high) ones. It is
particularly interesting to determine the watershed
line of the symmetrical landscape obtained by
considering the new grey level 1-g, where g is the
initial normalized grey level (if we have taken the
maximum of g as a normalized value equal to 1).
The watershed line verifies a variational principle:
when progressively fulfilling with water a
catchment basin, its inner area passes through a
series of inflexion points corresponding to the
successive saddle points reached by the water. Each
inflexion point corresponds to a local maximum of
the second derivative of this inner area.

   
Figure 13: the DNA chip image of the Fig. 11
treated by a watershed method (left) and the

corresponding contouring (right)

The watershed line is computed on discrete image,
by immersion simulation, locating the watershed
line on the meeting points of several catchment
basins (cf. Fig. 13). First discrete algorithms of
watershed computing by immersion simulation were
proposed in [19-22] for a discrete operator related to
the watershed. In our case, the watershed line is

computed on the inverse image, in order to have one
and only one local maximum (of the original image)
into each catchment basin. Then the resulting
labelling (still not a partition) is used on the original
image. We used the Vincent-Soille algorithm [14]
on discrete images with a linear complexity (about
7,25 N, where N denotes the number of pixels in the
image), which can be used also in 3 dimensions.

4 Conclusion and outlook
We have proposed in this paper a collection of
methods for solving tasks of low level image
processing like contrasting, segmenting and
contouring. A common feature of all these methods
is the use of dynamical systems (both discrete and
continuous) transforming the initial grey landscape
in an asymptotic image representing the final state
of the processing. The dynamical methods used for
treating medical images will certainly know a rapid
development parallel to those of the diffusion-
reaction operators often used to model biological
systems. These operators are indeed very robust to
parameter changes and well studied mathematically,
especially concerning the existence and unicity of
solutions and also for all problems related to the
convergence to their asymptotic state. They realize
image treatments in part analogous to those done by
the natural vision [23] and will be certainly
improved by the new discoveries about natural and
artificial retinas. The general present tendency to
copy the natural vision processing and cognitive
treatment in the human brain for finding new
pertinent image processing algorithms will also push
in the same direction. We could call this general
movement the dynamical bio-image processing: it
proposes a unified methodology for processing bio-
images and for explaining the dynamical
phenomenology observed inside these bio-images.
Because these methods often suggest adapted
acquisition devices acquiring only the variables
necessary to feed the future modelling of the
dynamical objects of interest inside the bio-images
or to allow their matching [24], we can finally
consider the possibility of a feedback on the primary
level of acquisition we could call the dynamical
model driven acquisition. The whole methodology
made of the dynamical bio-image processing and of
the dynamical model driven acquisition could be
defined as the dynamical bio-imaging and could be
useful in the medical and biological community for
studying the complex dynamical living systems.
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