
A Predictive-Adaptive Algorithm for a Web Switch

Kaja Gilly1, Salvador Alcaraz1, Carlos Juiz2 and Ramon Puigjaner2
1Universidad Miguel Hernández, Departamento de Física y Arquitectura de Computadores, Avda. del Ferrocarril, 03202

 Elche (Spain)
2Universitat de les Illes Balears, Departament de Ciències Matemàtiques i Informàtica, Carretera de Valldemossa, km 7.5,

 07071 Palma de Mallorca (Spain)

Abstract: A high performance and high reliable web server system is the key to the success of all Internet
services. This is the main reason for Internet service providers (ISPs) to choose, more and more, running their
service through a cluster of servers. Some of the current commercial products rely on constant checking of
servers' health that can itself be a significant overload. Our paper proposes an algorithm for a web switch that
manages a cluster of web servers, evaluated through discrete event simulation as the first step in the construction
of a new web switch. The web switch model is based on the estimation of the throughput that the servers would
have in the next future to dynamically balance the workload. In order to reduce the checking time, estimations
are only computed in a variable slot scheduling. Simulation results have shown that a commitment between
overhead and performance should be established to obtain good results in a stressed web cluster of servers

Key-Words: - Adaptive Switching, QoS, Web cluster, Load balancing, Overhead

1 Introduction
As the widespread usage of web services grows, the
number of accesses to many popular web sites is ever
increasing and sometimes causes the servers to be
overloaded. To avoid this problem, popular service
providers have to utilize either large multiprocessors
or distributed network servers in order to achieve
reasonable quality of service levels. The
clusterization of servers could guarantee a Service
Level Agreement (SLA) and therefore users perceive
the expected Quality of Service (QoS). There are
several commercial products for load balancing and
dynamically change groups of web servers. The
corresponding switch algorithms and the tactics to
select the preferred server are diverse in these
implementations. However, some of them rely on
checking of servers' status continuously, and this can
cause significant overload in the web system. In order
to build a new web switch with load balancing, it
would be desirable to predict the performance of the
servers and to adapt the groups of servers to the
current load, but also to reduce this continuous
checking. Thus, the first step to achieve these goals is
simulating the architecture model of a web cluster
including transactions, servers and the switch to
verify that the proposed algorithm accomplish these
performance requirements.
The main focus of this research is the design of an
algorithm for the Web switch that manages a cluster
of Web servers that implement a Quality of Service
(QoS) that satisfies several customer expectations.
QoS referred to Internet services appears for the first
time as Web Quality of Service in [3]. The term of
Quality of Web Services (QoWS) that was introduced

in [5], to designate different types of services that
web servers can provide. We have developed an
algorithm that resides in a Web switch and controls
all incoming traffic of the whole web system. The
web switch not only controls the status of the Web
servers but also balances the workload according to
the values of selected performance magnitudes.
This paper presents a simulation model for an
adaptive solution of a web switch, based on the
estimation of the throughput the servers will have in
the next future. Estimation is done in basis of
previous throughput of the servers, peak
characteristics of incoming traffic and the server’s
current utilization. The dispatching algorithm also
takes into account the burstiness factor of the web
servers to control the duration of the slots. Thus, this
research represents the first step in the construction of
a new web switch; the performance evaluation of a
model through discrete event simulation.
There are several studies on this subject. Cardellini et
al. [5] propose several policies that meet QoWS
principles. They do not introduce prediction in the
movement of servers between users, so a decision
made by the switch can be erroneous at future time.
The idea of prediction is considered by Yoon et al.
[20] to decide the redistribution of the tasks between
the nodes of the cluster. They work with clusters
composed by heterogeneous nodes, one of them
being the master node. In our study, the web switch is
the master node. Lu et al. [9] combine a queuing –
theoretic predictor with feedback control architecture
to achieve relative delay guarantees in high
performance server. They based their study in M/M/1
model so no burst traffic is considered in this case.

The rest of this paper is organized as follows: we first
describe our Web cluster architecture in section 2.
The dispatching algorithm is described completely in
section 3. Section 3.1 introduces the fundamental
concepts needed to understand how this paper deals
with burstiness and performance characteristics.
Performance metrics used in the algorithm are
introduced in section 3.2. Section 3.3 presents the
throughput predictors and section 3.4, clustering
mechanism. Workload conditions and simulation
results are depicted on section 4 and 5 respectively.
Finally, section 6 presents some concluding remarks.

2 Web Switch Architecture

A set of servers plus a switch housed together in the
same physical location compose a Web cluster. The
switch, considered as a layer-7 web switch, is the first
device belonging to the web system that users’
requests meet. The web switch could be considered a
content-aware switch [6] that means that it can
examine the content of HTTP incoming requests, and
balance them according to the type of page requested
by the user. After going through the switch, requests
arrive to the selected Web Server and sometimes also
to the corresponding back-end server to be serviced.
Web servers in a cluster are almost identical in terms
of hardware characteristics. Moreover they have the
same HTML documents stored in their physical disks
and identical applications installed. Then, an
incoming request arriving to the system can be
redirected to any of the web servers in the cluster.
Furthermore, each server controls a back-end server
to compute database searches of dynamic pages
running CGIs, Servlets, etc.
A VIP (Virtual IP Address) is used to identify the
complete system in World Wide Web. This network
address corresponds to the Web switch. Internally
each server has its private IP address. The
architecture of the web cluster is shown in figure 1.
The switch takes over incoming requests, selects a
server inside the cluster and routes the requests to the
server. Therefore, the switch acts as a dispatcher of
server incoming tasks. The web switch includes an
algorithm that controls some non-functional
parameters of the servers and also it chooses one of
them basing its decision in a set of rules. Depending
on the rules selected, the switch works in a complete
different way
In order to prevent poor performance situations by
selecting a wrong server in a given time instant,
forecasting parameters are calculated in the switch
during running time. Overhead produced by the

additional computation required to obtain these
forecasting parameters is also computed. Hence,
these parameters are obtained depending on the
arrival rate of incoming requests to the cluster,
increasing forecasting computation frequency when
peak traffic is detected and the web servers may be
immediately congested. Therefore, the forecasting
dispatch algorithm may be considered performance-
adaptive and overhead controlled. In other words, our
second goal is balancing the effectiveness of the
forecasting and the price to be paid for it, in terms of
added overhead.

Internet

Client
1

Client
2

Client
n

Web Cluster

HTTP-Request

HTTP-Request

HT
TP
-R
eq
ue
st

Web switch

Web

Server
1

Web

Server
2

Web

Server
m

Back-end
1

Back-end
2

Back-end
m

HTTP-Response

HTTP-Response

HTTP-Response

Fig. 1. Web cluster architecture

3 Dispatching Algorithm

The switch is the part of the web system that manages
the connections between external users and the web
servers that compose the web cluster. Users rely on
web servers demanding functional requirements, e.g.
information requested and the applications needed to
serve it, and non-functional requirements, as
guaranteed performance. These requirements
indirectly define the quality of web services that users
are expecting. This quality is based on the same
concepts of Quality of Service (QoS) on networks but
applied on web architectures. Given a web cluster
that provides demanding web services, a pre-defined
Service Level Agreement (SLA) has to be defined.
Thus, two types of users have been determined
depending on two different web service profiles:
priority users and best-effort users. The switch should
guarantee this level of agreement for priority class
users; therefore it has to transmit their requests to best
performance servers while the corresponding service
level for the rest of users may not be guaranteed.
In the long run, the dispatching algorithm strategy is
to select the web servers according to the SLA. The
particular adaptive tactics for the selection of servers
takes into account the current performance status and
the future estimation of it.
Two throughput estimators of performance have been
considered for each server during each slot. Due to

performance estimation values, a reorganization of
servers could be required to continuously support the
SLA constraints. The cluster is composed by two
groups of servers, each of them attending requests for
each type of user, respectively.

3.1 Burstiness and Performance

It is critical to understand the nature of network
traffic in order to design a good dispatching
algorithm for the Web switch. Several studies have
revealed that workload in Internet traffic has self-
similar characteristics ([8],[14],[11]). This implies
that significant traffic variance or burstiness is
present in a wide range of time scales. Therefore
burstiness needs to be controlled in a web site to
procure a good performance of the whole system, at
least when demand is high enough. Bursty arrivals of
HTTP transactions to a web cluster requiring objects
of several size scales seriously perturb the quality of
web services perceived by users and may collapse the
cluster service.
Burstiness control has been included in present work
in the form of a burstiness factor defined as a
coefficient that enables the switch to restrain an
eventual saturation of web servers.
Given a measurement interval T and a number of
slots n, the duration of each fixed slot k is obtained as

1−−== kkk tt
n
TD (1)

where every slot has identical length for every k.
The mean arrival rate for each server i during the
whole measurement interval is noted as λi. For each
slot k and each server i, λi,k is the corresponding
arrival rate. If λi,k > λi then the slot is considered as a
“bursty” slot. Burstiness factor is defined as the
relation between the cumulative number of slots
where λi,k > λi called ni

+, given n slots [12]:

n
n

b i
ik

+

=,

(2)

Burstiness factor is computed during running time by
incrementing the total number of considered slots, n,
and also considering those slots, ni

+, that incoming
arrival frequency may produce congestion in the
corresponding web server i.
In this paper we consider a variable duration slot
schedule. The value of the burstiness factor on the
current slot is the magnitude that defines the duration
of the next slot. Thus, if burst is detected in the
servers during current slot, the following testing time
is reduced to check the incoming traffic. If no burst
appears, the duration of the following slot is enlarged
in order to reduce the overhead. By controlling the

duration of testing slots, the reduction on future
performance of web servers may be forecasted.
Let’s consider the observation time, T, divided into
several slots of variable duration. Thus, the number
of slots during running time is also variable. In fact, it
is different from one slot to another depending on the
duration of each slot. So, let us define ek as the
current number of slots in the time tk where Dk is the
duration of the last epoch as tk - tk-1 in tk, as is
illustrated in figure 2.

k
k e

TD = (3)

D1 D2 Dk Dn

t0 t1 t2 tk-1 tk tn-1 tn

en

T: time interval

n: number of slots

T

Dk: duration of slot k

ek: number of slots in tk
Fig. 2. Variable-Adaptive slotted time

Several rules have been defined to control the
duration of the slots in a variable slotted time
schedule. At the end of the slot k, the proposed
algorithm recalculates the number of slots ek+1, to use
in the following slot, depending on the maximum
burstiness detected among the set of servers, denoted

as kb
)

, the minimum burstiness, denoted as kb
(

, and the
number of slots previously defined ek.

0

0
0

0

1

1
1

11

===

⎪⎩

⎪
⎨
⎧

≠
≤−

⋅+=

>−⋅+=

+

−
+

−+

kkkk

k

kk
kkkk

kkkkkk

bbifnee

band
bbifebee

bbifebee

()

)

))
)

))(

(4)

Once ek-1 is calculated, the duration of the following
slot k+1, Dk+1, is obtained by applying the expression
(3).
The duration of the first considered slot must be long
enough to avoid the first transient period resulting of
the initialization of the system.
The resulting dynamic computation of the slot
duration will try to find the equilibrium between the
amounts of tests (slots) and the detection of
burstiness on time.

3.2 Performance Measurement

Incoming and outgoing traffic go through the switch,
so it is possible to control the performance of the web
servers and back-end servers, in terms of throughput
and response time. This two-way architecture

produces more overhead than the one-way scheme
although it is capable to supply performance
feedback. In order to compute the throughput from
the servers and conduct the algorithm tactics,
indispensable measurements have to be taken. The
metrics used in the algorithm are basically: the
throughput of the servers, the arrival rate of HTTP
transactions and the latency time of each server.
• Arrival rate: HTTP transactions arrive from
outer part to the web cluster in a random behaviour.
Several distributions could be considered but a clear
picture of this is revealed in [2]. Since the nature of
the Internet traffic is considered self-similar, the
average value of this arrival rate is very useful to
calculate burstiness factor as explained above.
• Throughput: The average number of HTTP
transactions per second is the main metric used to
feed the predictors computation. The estimate
servers’ behaviour relies on throughput
measurements during the tests. The duration of every
slot and therefore the number of slots also depends on
the throughput values.
• Latency time: The Service Level Agreement
(SLA) is expressed in terms of the maximum delay of
dynamic transactions for priority class customers.
Since two classes of users are considered requesting
information to the web system, only priority users
have a restricted SLA in terms of latency time. SLA
contract between priority class users and the Internet
Service Provider (ISP) is normally signed in terms of
maximum latency time. Latency time is regulated in
ISP installation, no network delays from the ISP to
the client are being considered.

3.3 Throughput Forecasting

This paper considers the need of approximately
calculating next future performance behaviour of web
servers. This computation is done to avoid the
possible congestion of web servers due to an eventual
increasing of the incoming arrival rate of HTTP
transactions through the switch, together with web
servers’ saturation. Therefore, estimation of
immediately future performance level of the cluster
and the burstiness or arrivals enable the switch to
react in consequence. Both actions are adapted to the
current web cluster circumstances. Thus, the
dispatching algorithm strategy consists on detecting
potential dangerous performance in both traffic ways.
On one hand, the switch would check the burstiness
of incoming traffic. Even short periods of burst may
degrade the quality of web services perceived by the
users in several scales. On the other hand, the average
of service demand is approximately the same during
longer periods. The switch has to manage the web

cluster to these complementary (and also
contradictory) expectations.
These forecasting tasks avoid the use of delayed load
information, also called “herd-effect” [10]. This
effect implies that machines that appear to be
underutilized quickly become overloaded because all
requests are sent to those machines until new load
information is propagated. Using forecasting
information, we try to predict the behaviours of the
web servers in a close future time to prevent from
“herd-effect”.
However, testing continuously the performance of
servers increases definitively the algorithm overhead
and, in consequence, the latency time of transactions.
Therefore, both estimations are done according to an
adaptive slotted testing period. To recap, the
proposed algorithm is adaptive in two different
viewpoints: the transactions are processed by
adapting the availability of the faster server to the
current traffic, but also by dynamically considering
the measurement of this traffic to the expected
behaviour. Both phenomena are interrelated, so that
the proposed estimation techniques are based on
complementary predictions.

3.3.1 Filter Prediction

Filter prediction is based on previous estimation of
throughput and real throughput measured from the
servers. For a slot k, the filter includes the throughput
measurement of current and previous k-1 slot for each
server i, namely Xk,i and Xk-1,i. Thus, let’s define ik

IX ,
~ ,

the mean estimated throughput at slot k for the server
i as,

2
)1(~~ ,1,

,1,
ikik

kikkik
XX

AIXAIX −
−

+
⋅−+⋅= (5)

Thus, this estimated throughput depends on two
terms: the last computed prediction and the average
of the actual and previous measurements. The result
of this computation is filtering throughput values
based on the probability Ak [7]. This exponential
smoothing places more weight on the recent historical
prediction. Therefore, the Adaptive Estimated
Probability, Ak, is defined as follows [16]:

12
12

+⋅
−⋅

=
k

k
k e

e
A (6)

Since the average number of slots computed at slot k,
known as ek, is proportional inverse to the duration of
the slot, Dk, the weight of Ak probability indirectly
depends on burstiness (see formulas (4)). If the
current slot is “long”, then estimation places even
more weight to previous throughput estimation. On
contrast, if current slot is “short”, the prediction

TRANSIENT PHASE:
while TRUE {
 get_next_APPL_PDU(s);
 if request(s) then {
 //REQUEST
 if Priority(s) then {
 serverP=RoundRobin(P);
 send_req(s,serverP);}
 else {
 serverB=RoundRobin(B);
 send_req(s,serverB);}}
 else
 //RESPONSE
 modify_THROUGHPUT(i);
}

COMPUTATION PHASE:
for i=1 to m {
 compute(XIk,i);
 compute(XIIk,i);
}
if tlat(dyn,pri)>SLA then {
 s=eucl_distance(B);
 move_server_to_P(s);
}
if tlat(dyn,pri)<SLA/2 and
 tlat(beff)>SLA then {
 s=eucl_distance(P);
 move_server_to_B(s);
}
compute_next(ek,Dk);

stresses throughput measured in servers during slots k
and k-1.
This filtering provides a set of throughput estimations
for the corresponding slot, one for each server in the
cluster. The main effect of this estimation is
smoothing traffic peaks to hold an accurate
performance estimation of the servers in a long run.

3.3.2 Burst Prediction

The difference of burstiness in two consecutive slots
averaged by the difference of their respective
measured throughputs, for each server i, is
represented by a Locking Indicator in each slot k.

() ()ikikikikik XXbb ,1,,1,, −− −⋅−=β (7)

This locking indicator computes the throughput
variation during the last two periods. Thus, the
locking indicator measures the difference between the
current and the previous burstiness factors and if it is
greater than zero, then multiplies it by the difference
between measured throughputs at k and k-1 slots. The
resulting product of the locking indicator expresses
the amount of variation of servers’ performance due
to the burstiness on transactions arrivals. If the
burstiness detected in the slot is lower than the
burstiness detected in the previous slot, then the
locking factor is annulled. Therefore, the locking
indicator is averaged dividing the utilization of the
server, Uk-1,i, by the burstiness factor of the server
at the previous slot k-1 [4].

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅−=

−

−
−

ik

ik
ikik

II
ik

II

b
U

XX
,1

,1
,,1,

~~ β (8)

The role of this second estimator is to prevent the
servers’ performance computation degeneration
caused by incoming traffic that shows bursty
behaviour.

3.4 Web Clustering

Clustering among the servers is needed when there is
no possibility to guaranteed SLA constraints for
priority users. Therefore, it is necessary to control the
latency time of responses addressed to priority users.
In fact, dynamic requests need more computation
than static due to database operations on back-end
servers. So that, the latency time control of dynamic
requests for priority users may ensure the servers’
mean response time under the SLA value.
If latency time of dynamic requests for priority users
is longer than the specified SLA then one server is
selected from the best-effort set of servers and moved
to the priority set of servers. Considering P as the set

of servers that attend priority users’ requests and B,
the set of servers that attend best-effort users’
requests, clustering algorithm is as follows:

⎪⎩

⎪
⎨
⎧

>−

<
++−−

>−−++

SLAuserseffortbestt
and

SLAuserspridynt
ifBP

SLAuserspridyntifBP

lat

lat

lat

)(

2),(
;

),(;

(9)

Thus, if latency time of dynamic priority requests is
shorter than half SLA and the latency time of best-
effort users is longer than SLA, one server is selected
from P and moved to B. Each group should have at
least one server.
The selection procedure of a web server to be moved
from a set is done according to the best performing
tactics. So that, the corresponding server is chosen to
help the set of servers that need to improve their
mean response time. Therefore, this tactics consist on
computing the Euclidean distance from the
throughput estimation of server candidates to the
origin (0,0). The selected server is the one that
maximizes this distance among the m servers
belonging to the current set at slot k. The more
distance from the origin to the two-dimension
estimation point, the faster is the considered web
server.

() () miXX ik
II

ik
I ∈∀

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+ ,~~max
2

,
2

, (10)

3.5 Switching Algorithm Design

The general structure of the switch algorithm is
basically comprised in two parts, the computing
phase and the transient phase. During testing time of
each slot, the web switch is running on the transient
phase. At the end of each slot, the computing phase
prepares the system for the following slot.
Transient and computing phases are detailed in
figures 3 and 4 respectively.

Fig. 3. Transient phase Fig. 4. Computation phase

4 Workload Conditions
The expected workload model considered in this
paper includes general features of web sites. Web
content is mainly composed by two classes of web
pages: static and dynamic content. Static content is
referred to HTML files that are included into web
servers. Content on the web site is now often
personalized, and therefore dynamically generated.
This dynamic generation inherently produces an
associated performance cost (overhead) that users
could not be aware. Therefore, users have to suffer
from delays not only for the latency of the network
but also for the processing time of dynamic requests
at server side.
In our simulation runs, we have considered five types
of requests of both user classes, depending on the file
size of the HTTP response. In order to compute the
parameters of the simulation models of users and
servers, several benchmark experiments have been
performed. The laboratory scenario consists on a
client and a server connected through a 10/100 Mpbs
local area network. Workload has been generated by
three different benchmarks: Webstone [19], Httperf
[13] and Apache Benchmark [1].
WebStone benchmark measures the throughput and
latency of each HTTP transfer and reports a useful
metric derived from Little’s Law. Results obtained by
Webstone benchmark have been confronted with
Apache benchmark and Httperf reports. Thus,
saturation frequencies of HTTP requests (maximum
throughput) per class (static and dynamic) of each
server have been supplied by the tests performed with
these three benchmarks. This set of saturation
frequencies represents the 100% of simulated servers’
utilization.
The arrival rate of incoming requests is Pareto-
distributed:

1
)(

+
⋅

=
α

αα
x

bxP (11)

with α = 1.5 and b obtained form saturation rate for
each request type. On the other hand, service times
for static and dynamic requests at servers are
modelled according to different hyperexponential
distributions where average values were obtained
from benchmarking.

5 Simulation Results

A simulation model of complete web cluster system
has been constructed using QNAP2 [15]. The
experimental model includes six servers and six back-
end servers that perform client transactions.
Depending on the type of users, HTTP requests go to

servers’ set P, for priority users’ requests or set B, for
best-effort users’ requests. We have considered that
the percentage of priority users’ requests is 50% of
the overall incoming traffic and that the percentage of
dynamic requests is 20%. SLA value for priority
users is set to 4 seconds for the maximum expected
mean response time. Three different switch
algorithms have been implemented, namely, pure
static, pure dynamic and adaptive. They have been
simulated until confidence intervals arrived to the
95%. In order to confront the different performance
behaviour of switch algorithms, all of them have been
tested under the same workload conditions. Some
interesting quality metrics have been also computed
to examine the goodness of the estimations.
Therefore, overhead control and throughput
estimation error control are indexes to check the cost
of our proposal in terms of time and error,
respectively.

5.1 Pure Static Algorithm

The term static means that no movement of servers is
permitted during the complete simulation interval,
therefore priority and best-effort users’ requests are
served by static groups of servers. In this case, there
is neither need of throughput prediction nor need of
taking measures of server throughputs. This implies a
perfect situation in terms of overhead, because the
algorithm runs in the switch and no additional
measurements of server throughput should be taken
to control the performance of the system.
Figure 5 shows latency times for this algorithm. The
horizontal axis shows the percentage of arrival rate
needed to stress one server to the 100% utilization
level. As the model is composed by 6 servers, 600%
arrival rate level means a 100% utilization level of
the whole set of the web servers system. Priority and
best-effort users perceive a very similar system
response with this algorithm because no movement of
servers is done and both groups of user’s requests are
served by 50% of the web servers and back-end
servers during simulation runs. SLA constraints are
not guaranteed when arrival rate is at 300%, so
servers cannot manage more than their 50%
utilization level

5.2 Pure Dynamic Algorithm

This version of the algorithm involves movement of
servers from group B to group P and viceversa when
conditions specified in computing phase are met. So
there is no need of divide simulation time under a
slotted schedule because computing phase is executed
always on the switch for every user request received.

This means that the pure dynamic algorithm achieves
the best performance of the whole system because
switch controls if SLA constraints are guaranteed for
every request. If the SLA constraints are not
guaranteed, the procedure of clustering starts. The
consequence is that the switch is usually quite busy
making changes in web cluster groups of servers.

0

5

10

15

20

25

30

35

40

0% 100% 200% 300% 400% 500% 600%

% arrival rate level for one web and back-end server

9
5
-p

e
rc

e
n

ti
le

 o
f

L
a
te

n
c
y
 T

im
e
 (

s
e
c
.)

Static priority user requests

Dynamic priority user requests

Static best-effort user requests

Dynamic best-effort user requests

SLA

Fig. 5. Latency times of pure static algorithm

0

5

10

15

20

25

30

35

40

0% 100% 200% 300% 400% 500% 600%

% arrival rate level for one web and back-end server

9
5

-p
e

rc
e

n
ti

le
 o

f
L

a
te

n
c

y
 T

im
e

 (
s

e
c

.)

Static priority user requests

Dynamic priority user requests

Static best-effort user requests

Dynamic best-effort user requests

SLA

Fig. 6. Latency times of pure dynamic algorithm

The overload of the system can be calculated on basis
of arrival rate level of requests. Each time a request
arrives to the system, the switch take measurements
of server´s throughput and checks if reorganization of
the two groups of servers is needed. We have not
included in this algorithm throughput predictors;
hence the switch rearranges the servers depending on
real throughputs measured on them. Mean response
times are shown in figure 6. We have omitted the
complete latency time of best-effort users to focus on
the latency time of priority users. We can observe
that SLA constraints are not guaranteed when web
cluster is at 600% of its utilization; this is because
servers are starting to be collapsed.

5.3 Predictive-Adaptive Algorithm

The proposed intermediate solution is designed
focusing on controlling the performance of the
system in a slotted time schedule. The last version of
the algorithm includes throughput predictors

introduced in section 3.3., and transient and
computing phases described in figures 3 and 4. The
duration of the slots varies depending on burstiness
factor, so that, in the worst case, the overhead will be
as high as pure dynamic algorithm. Our intention is to
find a balanced solution: able to obtain good response
time for priority users, guaranteeing SLA constraints,
and reducing the overhead level of the pure dynamic
algorithm.
Because of the use of throughput predictor, an
inherent error is introduced in the clustering
procedure. Thus, it is necessary to control this error to
obtain the best performance of the web cluster. Figure
7 shows these predictor errors and their behaviour
during the 3000 seconds of simulation run. It can be
observed that the error on predictions, measured in
terms of requests per second, is being corrected
during the simulation. There is an initial startup phase
where filter predictor gives the worst estimation of
the throughput of the servers in the next slot.
However the error ratio descends to lower levels
becoming as good as the burst predictor. The error on
estimations is controlled each 300 seconds period.
When simulation in almost ended, at 3000 seconds,
the error value of filter estimator is 3.89E-02, while
for the burst estimator is 2.73E-02.

0

1

1

2

2

3

3

0 500 1000 1500 2000 2500 3000 3500
Simulation Time (sec.)

T
h

ro
u

g
h

p
u

t
(r

e
q

.
/

s
e
c
.)

Filter Predictor

Burst Predictor

Fig. 7. Throughput error of predictors in

adaptive algorithm

0,0000

5,0000

10,0000

15,0000

20,0000

25,0000

30,0000

35,0000

40,0000

0% 100% 200% 300% 400% 500% 600%

% arrival rate level for one web and back-end server

9
5
-p

e
rc

e
n

ti
le

 o
f

L
a
te

n
c
y
 T

im
e
 (

s
e
c
.)

Static priority user requests

Dynamic priority user requests

Static best-effort user requests

Dynamic best-effort user requests

SLA

Fig. 8. Latency times of adaptive algorithm

Overhead introduced by this third version of the
algorithm should be compared with the two opposite

previous versions. In pure static algorithm no
overhead is introduced because there is no clustering
included in the algorithm, so no check needs to be
performed. In pure dynamic algorithm, overhead is
proportional to arrival rate level; in fact, the
computing phase is executed for each request.
Therefore, throughput levels of the web servers are
measured almost every time. As it would be
expected, the pure dynamic version has the worst
overhead level that could be. However, simulation
results of adaptive algorithm show that the mean
value of computing phase executions is 4569 for a
total of 57592 arriving requests. Thus, the
comparison of overhead level is less than 8% of the
pure dynamic algorithm. Mean response time of
adaptive algorithm is represented in figure 8.
Complete latency time of best-effort users has been
omitted to focus on the latency time of priority users.
Finally, we compare the latency times of dynamic
requests for priority users in static, dynamic and
adaptive algorithms in figure 9. Only the mean
response times for priority dynamic requests are
shown because they are the most important in terms
of the performance of the web cluster. The three
algorithms are simulated on identical workload
conditions. All switching algorithms present a similar
mean response time of web servers, whereas the
mean arrival rate is less than one third of the servers’
utilization due to the clustering conditions still have
not been reached. However, pure static algorithm
cannot react from the increasing arrival. Therefore,
the servers’ mean response time could be five times
the one-third values when the arrival rate is close to
the full utilization. On the contrary, the pure dynamic
is the best switching algorithm for priority users,
since the mean response time of servers is the lowest
during the simulation runs. But the price to be paid
for this advantage is a huge overhead that the
implementation of the switch will have. The adaptive
algorithm has a similar behaviour of the dynamic one.
The mean response time is a bit longer, but the
switching overhead is only about 8% of the pure
dynamic scheduling, so that it compensates the effort
of computing estimations.

6 Conclusion
This paper has presented a new proposal of adaptive
switching algorithms for web clusters. The algorithm
relies on throughput estimations on slotted time
periods. In particular, the burst predictor detects the
burstiness of traffic and the consequence of the
variation on future servers’ throughput. The filter
predictor reduces the impact of typical traffic peaks
due to the Internet nature. Both estimators are
combined to select the best performance server in the

cluster to guarantee the SLA. Thus, the switching
algorithm is three times adaptive: in the transient
phase when the slot time of testing period is variable
depending on the traffic conditions, in the computing
phase when the best server on cluster is selected from
estimations and also moving servers from predefined
set of servers among classes of users. All these
procedures are done controlling the error on
estimations and the overhead produced. The proposal
has been confronted by simulation with pure static
and pure dynamic scheduling.

RESPONSE TIME FOR PRIORITY USERS (DYNAMIC REQUESTS)

0

5

10

15

20

25

0% 100% 200% 300% 400% 500% 600%

% arrival rate level for one web and back-end server

9
5
-p

e
rc

e
n

ti
le

 o
f

L
a
te

n
c
y
 T

im
e
 (

s
e
c
.)

STATIC algorithm

ADAPTIVE algorithm

DYNAMIC algorithm

SLA

Fig. 9. Latency time for priority users dynamic

requests

This paper tries to establish new ways of
implementing non-functional requirements on web
switching algorithms. Therefore, the continuous
refinement on the web switching design including not
only performability but also availability, security, etc.
estimations will improve the perceived service for
users.
This incipient work presented has to be developed in
several ways. The overhead on computation of the
predictors and the procedure of obtaining throughput
measurements from servers are crucial points of this
research. Other immediate future work will be to
distribute the load proportionally on the servers by
resource reservation mechanisms. The switch
algorithm design research must be developed together
with the new network protocol strategies considering
the non-functional behaviour features of Internet
requests.

References:
[1] Apache Benchmark. http://www.apache.org
[2] Barford, P., Bestavros, A, Bradley, A. and

Crovella, M. E., “Changes in Web client access
patterns: Characteristics and caching
implications”. World Wide Web, 2(1-2):15-28,
Mar. 1999.

[3] Bhatti, N., Bouch, A. and Kuchinsky, A.,
"Integrating user-perceived quality into Web
server design".Computer Networks. Amsterdam,
Netherlands: 1999.

[4] Buzen, J. P., “Operational Analysis: an
Alternative to Stochastic Modelling”, in
Performance of Computer Installations. North
Holland, Jun. 1978, pp. 175-194

[5] Cardellini, V. and Cassalicchio, E., Colajanni,
M., Mambelli, M. “Web Switch Support for
Differentiated Services”. ACM Performance
Evaluation Review, 29, 2001.

[6] Casalicchio, E., Colajanni, M., “Scalable Web
cluster with static and dynamic contents”. Proc.
IEEE Int'l Conf. on Cluster Computing,
Chemnitz, Germany. Dec, 2000.

[7] Casetti, C., Gerla, M., Mascolo, S., Sanadidi, M.
and Wang, R., “TCP Westwood: Bandwidth
Estimation for Enhanced Transport over Wireless
Links2”, In Proceedings of ACM MOBICOM
’01, Jul. 2001.

[8] Crovella, M. and Bestavros, A., “Self-Similarity
in World Wide Web Traffic: Evidence and
Possible Causes”, Proceedings of
SIGMETRICS'96: The ACM International
Conference on Measurement and Modeling of
Computer Systems. Philadelphia, Pennsylvania.
1996.

[9] Lu, Y., Abdelzaher, T., Lu, Ch., Sha, L. and Liu,
X. “Feedback Control with Queueing-Theoretic
Prediction for Relative Delay”. Real-Time and
Embedded Technology and Applications
Symposium, Toronto, Canada, May 2003.

[10] Dahlin, M. “Interpreting Stale Load
Information,” Proceedings of the 19th
International Conference on Distributed
Computing Systems, May 1999.

[11] Kant, K., "On Aggregate Traffic Generation
with Multifractal Properties", Proceedings of
GLOBECOM 2000, Rio de Janeiro, Brazil.".

[12] Menascé, D.A., Almeida, V.A.F "Scaling for E-
Business". Prentice Hall, 2000.

[13] Mosberger, D. and Jin, T. “httperf: A Tool for
Measuring Web Server Performance”. First
Workshop on Internet Server Performance. in
WISP, pp. 59 - 67, Madison, WI, June 1998,
ACM

[14] Pitkow, J.E. "Summary of WWW
characterizations". Computer Networks and ISDN
Systems, vol.30, num.1-7, pp.551-558, 1998

[15] Simulog Corp, The QNAP Reference Manual.
V.4.

[16] Unger, S., Gansterer, W. and Juiz, C.,
“Simulation and Extensions of the VTP Protocol”.

Submitted to the Networking 2004 Int. Conf.,
Athens, Greece.

[17] Vazhenin, D., Vazhenin, A. On-line WWW-
Monitor. 3rd WSEAS Int.Conf. on Software
Engineering, Parallel & Distributed Systems.
(SEPADS 2004)

[18] Vink, B, Bruneel, H. “Multi-Server Queues
Subject to Server Interruptions”. 5th WSEAS Int.
Conf. on Applied Mathematics (MATH 2004)

[19] Webstone Benchmark.
 http://www.mindcraft.com/webstone/
[20] Yoon, W.O., Jung, J.H. and Choi, S.B.

“Dynamic Load Balancing Algorithm using
Execution Time Prediction on Cluster Systems”.
The 2002 International Technical Conference On
Circuits/Systems, Computers and
Communications. Phuket, Thailand, July, 2002

