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Abstract: A high performance and high reliable web server system is the key to the success of all Internet 
services. This is the main reason for Internet service providers (ISPs) to choose, more and more, running their 
service through a cluster of servers. Some of the current commercial products rely on constant checking of 
servers' health that can itself be a significant overload. Our paper proposes an algorithm for a web switch that 
manages a cluster of web servers, evaluated through discrete event simulation as the first step in the construction 
of a new web switch. The web switch model is based on the estimation of the throughput that the servers would 
have in the next future to dynamically balance the workload. In order to reduce the checking time, estimations 
are only computed in a variable slot scheduling. Simulation results have shown that a commitment between 
overhead and performance should be established to obtain good results in a stressed web cluster of servers 
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1   Introduction 
As the widespread usage of web services grows, the 
number of accesses to many popular web sites is ever 
increasing and sometimes causes the servers to be 
overloaded. To avoid this problem, popular service 
providers have to utilize either large multiprocessors 
or distributed network servers in order to achieve 
reasonable quality of service levels. The 
clusterization of servers could guarantee a Service 
Level Agreement (SLA) and therefore users perceive 
the expected Quality of Service (QoS). There are 
several commercial products for load balancing and 
dynamically change groups of web servers. The 
corresponding switch algorithms and the tactics to 
select the preferred server are diverse in these 
implementations. However, some of them rely on 
checking of servers' status continuously, and this can 
cause significant overload in the web system. In order 
to build a new web switch with load balancing, it 
would be desirable to predict the performance of the 
servers and to adapt the groups of servers to the 
current load, but also to reduce this continuous 
checking. Thus, the first step to achieve these goals is 
simulating the architecture model of a web cluster 
including transactions, servers and the switch to 
verify that the proposed algorithm accomplish these 
performance requirements. 
The main focus of this research is the design of an 
algorithm for the Web switch that manages a cluster 
of Web servers that implement a Quality of Service 
(QoS) that satisfies several customer expectations. 
QoS referred to Internet services appears for the first 
time as Web Quality of Service in [3]. The term of 
Quality of Web Services (QoWS) that was introduced 

in [5], to designate different types of services that 
web servers can provide. We have developed an 
algorithm that resides in a Web switch and controls 
all incoming traffic of the whole web system. The 
web switch not only controls the status of the Web 
servers but also balances the workload according to 
the values of selected performance magnitudes. 
This paper presents a simulation model for an 
adaptive solution of a web switch, based on the 
estimation of the throughput the servers will have in 
the next future. Estimation is done in basis of 
previous throughput of the servers, peak 
characteristics of incoming traffic and the server’s 
current utilization. The dispatching algorithm also 
takes into account the burstiness factor of the web 
servers to control the duration of the slots. Thus, this 
research represents the first step in the construction of 
a new web switch; the performance evaluation of a 
model through discrete event simulation. 
There are several studies on this subject. Cardellini et 
al. [5] propose several policies that meet QoWS 
principles. They do not introduce prediction in the 
movement of servers between users, so a decision 
made by the switch can be erroneous at future time. 
The idea of prediction is considered by Yoon et al. 
[20] to decide the redistribution of the tasks between 
the nodes of the cluster. They work with clusters 
composed by heterogeneous nodes, one of them 
being the master node. In our study, the web switch is 
the master node. Lu et al. [9] combine a queuing – 
theoretic predictor with feedback control architecture 
to achieve relative delay guarantees in high 
performance server. They based their study in M/M/1 
model so no burst traffic is considered in this case. 



The rest of this paper is organized as follows: we first 
describe our Web cluster architecture in section 2. 
The dispatching algorithm is described completely in 
section 3. Section 3.1 introduces the fundamental 
concepts needed to understand how this paper deals 
with burstiness and performance characteristics. 
Performance metrics used in the algorithm are 
introduced in section 3.2. Section 3.3 presents the 
throughput predictors and section 3.4, clustering 
mechanism. Workload conditions and simulation 
results are depicted on section 4 and 5 respectively. 
Finally, section 6 presents some concluding remarks. 
 
 
2   Web Switch Architecture 
 
A set of servers plus a switch housed together in the 
same physical location compose a Web cluster. The 
switch, considered as a layer-7 web switch, is the first 
device belonging to the web system that users’ 
requests meet. The web switch could be considered a 
content-aware switch [6] that means that it can 
examine the content of HTTP incoming requests, and 
balance them according to the type of page requested 
by the user. After going through the switch, requests 
arrive to the selected Web Server and sometimes also 
to the corresponding back-end server to be serviced. 
Web servers in a cluster are almost identical in terms 
of hardware characteristics. Moreover they have the 
same HTML documents stored in their physical disks 
and identical applications installed. Then, an 
incoming request arriving to the system can be 
redirected to any of the web servers in the cluster. 
Furthermore, each server controls a back-end server 
to compute database searches of dynamic pages 
running CGIs, Servlets, etc. 
A VIP (Virtual IP Address) is used to identify the 
complete system in World Wide Web. This network 
address corresponds to the Web switch. Internally 
each server has its private IP address. The 
architecture of the web cluster is shown in figure 1. 
The switch takes over incoming requests, selects a 
server inside the cluster and routes the requests to the 
server. Therefore, the switch acts as a dispatcher of 
server incoming tasks. The web switch includes an 
algorithm that controls some non-functional 
parameters of the servers and also it chooses one of 
them basing its decision in a set of rules. Depending 
on the rules selected, the switch works in a complete 
different way 
In order to prevent poor performance situations by 
selecting a wrong server in a given time instant, 
forecasting parameters are calculated in the switch 
during running time. Overhead produced by the 

additional computation required to obtain these 
forecasting parameters is also computed. Hence, 
these parameters are obtained depending on the 
arrival rate of incoming requests to the cluster, 
increasing forecasting computation frequency when 
peak traffic is detected and the web servers may be 
immediately congested. Therefore, the forecasting 
dispatch algorithm may be considered performance-
adaptive and overhead controlled. In other words, our 
second goal is balancing the effectiveness of the 
forecasting and the price to be paid for it, in terms of 
added overhead. 
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Fig. 1. Web cluster architecture 

 
3   Dispatching Algorithm 
 
The switch is the part of the web system that manages 
the connections between external users and the web 
servers that compose the web cluster. Users rely on 
web servers demanding functional requirements, e.g. 
information requested and the applications needed to 
serve it, and non-functional requirements, as 
guaranteed performance. These requirements 
indirectly define the quality of web services that users 
are expecting. This quality is based on the same 
concepts of Quality of Service (QoS) on networks but 
applied on web architectures. Given a web cluster 
that provides demanding web services, a pre-defined 
Service Level Agreement (SLA) has to be defined. 
Thus, two types of users have been determined 
depending on two different web service profiles: 
priority users and best-effort users. The switch should 
guarantee this level of agreement for priority class 
users; therefore it has to transmit their requests to best 
performance servers while the corresponding service 
level for the rest of users may not be guaranteed.  
In the long run, the dispatching algorithm strategy is 
to select the web servers according to the SLA. The 
particular adaptive tactics for the selection of servers 
takes into account the current performance status and 
the future estimation of it.  
Two throughput estimators of performance have been 
considered for each server during each slot. Due to 



performance estimation values, a reorganization of 
servers could be required to continuously support the 
SLA constraints. The cluster is composed by two 
groups of servers, each of them attending requests for 
each type of user, respectively.  
 
3.1 Burstiness and Performance 
 
It is critical to understand the nature of network 
traffic in order to design a good dispatching 
algorithm for the Web switch. Several studies have 
revealed that workload in Internet traffic has self-
similar characteristics ([8],[14],[11]). This implies 
that significant traffic variance or burstiness is 
present in a wide range of time scales. Therefore 
burstiness needs to be controlled in a web site to 
procure a good performance of the whole system, at 
least when demand is high enough. Bursty arrivals of 
HTTP transactions to a web cluster requiring objects 
of several size scales seriously perturb the quality of 
web services perceived by users and may collapse the 
cluster service. 
Burstiness control has been included in present work 
in the form of a burstiness factor defined as a 
coefficient that enables the switch to restrain an 
eventual saturation of web servers. 
Given a measurement interval T and a number of 
slots n, the duration of each fixed slot k is obtained as  
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where every slot has identical length for every k. 
The mean arrival rate for each server i during the 
whole measurement interval is noted as λi. For each 
slot k and each server i, λi,k is the corresponding 
arrival rate. If λi,k > λi then the slot is considered as a 
“bursty” slot. Burstiness factor is defined as the 
relation between the cumulative number of slots 
where λi,k > λi called ni

+,  given  n slots [12]: 
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Burstiness factor is computed during running time by 
incrementing the total number of considered slots, n, 
and also considering those slots, ni

+, that incoming 
arrival frequency may produce congestion in the 
corresponding web server i. 
In this paper we consider a variable duration slot 
schedule. The value of the burstiness factor on the 
current slot is the magnitude that defines the duration 
of the next slot. Thus, if burst is detected in the 
servers during current slot, the following testing time 
is reduced to check the incoming traffic. If no burst 
appears, the duration of the following slot is enlarged 
in order to reduce the overhead. By controlling the 

duration of testing slots, the reduction on future 
performance of web servers may be forecasted.  
Let’s consider the observation time, T, divided into 
several slots of variable duration. Thus, the number 
of slots during running time is also variable. In fact, it 
is different from one slot to another depending on the 
duration of each slot. So, let us define ek as the 
current number of slots in the time tk where Dk is the 
duration of the last epoch as tk -  tk-1 in tk, as is 
illustrated in figure 2. 
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Fig. 2. Variable-Adaptive slotted time 

Several rules have been defined to control the 
duration of the slots in a variable slotted time 
schedule. At the end of the slot k, the proposed 
algorithm recalculates the number of slots ek+1, to use 
in the following slot, depending on the maximum 
burstiness detected among the set of servers, denoted 

as kb
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(

, and the 
number of slots previously defined ek.  

0

0
0

0

1

1
1

11

===

⎪⎩

⎪
⎨
⎧

≠
≤−

⋅+=

>−⋅+=

+

−
+

−+

kkkk

k

kk
kkkk

kkkkkk

bbifnee

band
bbifebee

bbifebee

()

)

))
)

))(

 

(4)

Once ek-1 is calculated, the duration of the following 
slot k+1, Dk+1, is obtained by applying the expression 
(3). 
The duration of the first considered slot must be long 
enough to avoid the first transient period resulting of 
the initialization of the system. 
The resulting dynamic computation of the slot 
duration will try to find the equilibrium between the 
amounts of tests (slots) and the detection of 
burstiness on time. 
 
3.2 Performance Measurement 
 
Incoming and outgoing traffic go through the switch, 
so it is possible to control the performance of the web 
servers and back-end servers, in terms of throughput 
and response time. This two-way architecture 



produces more overhead than the one-way scheme 
although it is capable to supply performance 
feedback. In order to compute the throughput from 
the servers and conduct the algorithm tactics, 
indispensable measurements have to be taken. The 
metrics used in the algorithm are basically: the 
throughput of the servers, the arrival rate of HTTP 
transactions and the latency time of each server.  
• Arrival rate: HTTP transactions arrive from 
outer part to the web cluster in a random behaviour. 
Several distributions could be considered but a clear 
picture of this is revealed in [2]. Since the nature of 
the Internet traffic is considered self-similar, the 
average value of this arrival rate is very useful to 
calculate burstiness factor as explained above.  
• Throughput: The average number of HTTP 
transactions per second is the main metric used to 
feed the predictors computation. The estimate 
servers’ behaviour relies on throughput 
measurements during the tests. The duration of every 
slot and therefore the number of slots also depends on 
the throughput values. 
• Latency time: The Service Level Agreement 
(SLA) is expressed in terms of the maximum delay of 
dynamic transactions for priority class customers. 
Since two classes of users are considered requesting 
information to the web system, only priority users 
have a restricted SLA in terms of latency time. SLA 
contract between priority class users and the Internet 
Service Provider (ISP) is normally signed in terms of 
maximum latency time. Latency time is regulated in 
ISP installation, no network delays from the ISP to 
the client are being considered.  
 
3.3 Throughput Forecasting 
 
This paper considers the need of approximately 
calculating next future performance behaviour of web 
servers. This computation is done to avoid the 
possible congestion of web servers due to an eventual 
increasing of the incoming arrival rate of HTTP 
transactions through the switch, together with web 
servers’ saturation. Therefore, estimation of 
immediately future performance level of the cluster 
and the burstiness or arrivals enable the switch to 
react in consequence. Both actions are adapted to the 
current web cluster circumstances. Thus, the 
dispatching algorithm strategy consists on detecting 
potential dangerous performance in both traffic ways. 
On one hand, the switch would check the burstiness 
of incoming traffic. Even short periods of burst may 
degrade the quality of web services perceived by the 
users in several scales. On the other hand, the average 
of service demand is approximately the same during 
longer periods. The switch has to manage the web 

cluster to these complementary (and also 
contradictory) expectations. 
These forecasting tasks avoid the use of delayed load 
information, also called “herd-effect” [10]. This 
effect implies that machines that appear to be 
underutilized quickly become overloaded because all 
requests are sent to those machines until new load 
information is propagated. Using forecasting 
information, we try to predict the behaviours of the 
web servers in a close future time to prevent from 
“herd-effect”. 
However, testing continuously the performance of 
servers increases definitively the algorithm overhead 
and, in consequence, the latency time of transactions. 
Therefore, both estimations are done according to an 
adaptive slotted testing period. To recap, the 
proposed algorithm is adaptive in two different 
viewpoints: the transactions are processed by 
adapting the availability of the faster server to the 
current traffic, but also by dynamically considering 
the measurement of this traffic to the expected 
behaviour. Both phenomena are interrelated, so that 
the proposed estimation techniques are based on 
complementary predictions. 
 
3.3.1   Filter Prediction 
  
Filter prediction is based on previous estimation of 
throughput and real throughput measured from the 
servers. For a slot k, the filter includes the throughput 
measurement of current and previous k-1 slot for each 
server i, namely Xk,i and Xk-1,i. Thus, let’s define ik

IX ,
~ , 

the mean estimated throughput at slot k for the server 
i as, 
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Thus, this estimated throughput depends on two 
terms: the last computed prediction and the average 
of the actual and previous measurements. The result 
of this computation is filtering throughput values 
based on the probability Ak [7]. This exponential 
smoothing places more weight on the recent historical 
prediction. Therefore, the Adaptive Estimated 
Probability, Ak, is defined as follows [16]: 
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Since the average number of slots computed at slot k, 
known as ek, is proportional inverse to the duration of 
the slot, Dk, the weight of Ak probability indirectly 
depends on burstiness (see formulas (4)). If the 
current slot is “long”, then estimation places even 
more weight to previous throughput estimation. On 
contrast, if current slot is “short”, the prediction 



TRANSIENT PHASE: 
while TRUE { 
 get_next_APPL_PDU(s); 
 if request(s) then { 
   //REQUEST 
   if Priority(s) then { 
     serverP=RoundRobin(P); 
     send_req(s,serverP);}  
   else { 
     serverB=RoundRobin(B); 
    send_req(s,serverB);}} 
 else     
   //RESPONSE 
   modify_THROUGHPUT(i); 
} 

COMPUTATION PHASE: 
for i=1 to m { 
   compute(XIk,i); 
   compute(XIIk,i); 
} 
if tlat(dyn,pri)>SLA then {
   s=eucl_distance(B); 
   move_server_to_P(s); 
} 
if tlat(dyn,pri)<SLA/2 and 
   tlat(beff)>SLA then { 
   s=eucl_distance(P); 
   move_server_to_B(s); 
} 
compute_next(ek,Dk); 

stresses throughput measured in servers during slots k 
and k-1. 
This filtering provides a set of throughput estimations 
for the corresponding slot, one for each server in the 
cluster. The main effect of this estimation is 
smoothing traffic peaks to hold an accurate 
performance estimation of the servers in a long run. 
 
3.3.2   Burst Prediction 
 
The difference of burstiness in two consecutive slots 
averaged by the difference of their respective 
measured throughputs, for each server i, is 
represented by a Locking Indicator in each slot k. 

( ) ( )ikikikikik XXbb ,1,,1,, −− −⋅−=β  (7)

This locking indicator computes the throughput 
variation during the last two periods. Thus, the 
locking indicator measures the difference between the 
current and the previous burstiness factors and if it is 
greater than zero, then multiplies it by the difference 
between measured throughputs at k and k-1 slots. The 
resulting product of the locking indicator expresses 
the amount of variation of servers’ performance due 
to the burstiness on transactions arrivals. If the 
burstiness detected in the slot is lower than the 
burstiness detected in the previous slot, then the 
locking factor is annulled. Therefore, the locking 
indicator is averaged dividing the utilization of the 
server,     Uk-1,i, by the burstiness factor of the server 
at the previous slot k-1 [4]. 
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The role of this second estimator is to prevent the 
servers’ performance computation degeneration 
caused by incoming traffic that shows bursty 
behaviour. 
 
3.4 Web Clustering  
 
Clustering among the servers is needed when there is 
no possibility to guaranteed SLA constraints for 
priority users. Therefore, it is necessary to control the 
latency time of responses addressed to priority users. 
In fact, dynamic requests need more computation 
than static due to database operations on back-end 
servers. So that, the latency time control of dynamic 
requests for priority users may ensure the servers’ 
mean response time under the SLA value. 
If latency time of dynamic requests for priority users 
is longer than the specified SLA then one server is 
selected from the best-effort set of servers and moved 
to the priority set of servers. Considering P as the set 

of servers that attend priority users’ requests and B, 
the set of servers that attend best-effort users’ 
requests, clustering algorithm is as follows: 
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Thus, if latency time of dynamic priority requests is 
shorter than half SLA and the latency time of best-
effort users is longer than SLA, one server is selected 
from P and moved to B. Each group should have at 
least one server. 
The selection procedure of a web server to be moved 
from a set is done according to the best performing 
tactics. So that, the corresponding server is chosen to 
help the set of servers that need to improve their 
mean response time. Therefore, this tactics consist on 
computing the Euclidean distance from the 
throughput estimation of server candidates to the 
origin (0,0). The selected server is the one that 
maximizes this distance among the m servers 
belonging to the current set at slot k. The more 
distance from the origin to the two-dimension 
estimation point, the faster is the considered web 
server. 
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3.5 Switching Algorithm Design 
 
The general structure of the switch algorithm is 
basically comprised in two parts, the computing 
phase and the transient phase. During testing time of 
each slot, the web switch is running on the transient 
phase. At the end of each slot, the computing phase 
prepares the system for the following slot.  
Transient and computing phases are detailed in 
figures 3 and 4 respectively.  

 

Fig. 3. Transient phase         Fig. 4. Computation phase 

 



4   Workload Conditions 
The expected workload model considered in this 
paper includes general features of web sites. Web 
content is mainly composed by two classes of web 
pages: static and dynamic content. Static content is 
referred to HTML files that are included into web 
servers. Content on the web site is now often 
personalized, and therefore dynamically generated. 
This dynamic generation inherently produces an 
associated performance cost (overhead) that users 
could not be aware. Therefore, users have to suffer 
from delays not only for the latency of the network 
but also for the processing time of dynamic requests 
at server side.  
In our simulation runs, we have considered five types 
of requests of both user classes, depending on the file 
size of the HTTP response. In order to compute the 
parameters of the simulation models of users and 
servers, several benchmark experiments have been 
performed. The laboratory scenario consists on a 
client and a server connected through a 10/100 Mpbs 
local area network. Workload has been generated by 
three different benchmarks: Webstone [19], Httperf 
[13] and Apache Benchmark [1].   
WebStone benchmark measures the throughput and 
latency of each HTTP transfer and reports a useful 
metric derived from Little’s Law. Results obtained by 
Webstone benchmark have been confronted with 
Apache benchmark and Httperf reports. Thus, 
saturation frequencies of HTTP requests (maximum 
throughput) per class (static and dynamic) of each 
server have been supplied by the tests performed with 
these three benchmarks. This set of saturation 
frequencies represents the 100% of simulated servers’ 
utilization.  
The arrival rate of incoming requests is Pareto-
distributed: 
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with α = 1.5 and b obtained form saturation rate for 
each request type. On the other hand, service times 
for static and dynamic requests at servers are 
modelled according to different hyperexponential 
distributions where average values were obtained 
from benchmarking. 
 
5   Simulation Results 
 
A simulation model of complete web cluster system 
has been constructed using QNAP2 [15]. The 
experimental model includes six servers and six back-
end servers that perform client transactions. 
Depending on the type of users, HTTP requests go to 

servers’ set P, for priority users’ requests or set B, for 
best-effort users’ requests. We have considered that 
the percentage of priority users’ requests is 50% of 
the overall incoming traffic and that the percentage of 
dynamic requests is 20%. SLA value for priority 
users is set to 4 seconds for the maximum expected 
mean response time. Three different switch 
algorithms have been implemented, namely, pure 
static, pure dynamic and adaptive. They have been 
simulated until confidence intervals arrived to the 
95%. In order to confront the different performance 
behaviour of switch algorithms, all of them have been 
tested under the same workload conditions.  Some 
interesting quality metrics have been also computed 
to examine the goodness of the estimations. 
Therefore, overhead control and throughput 
estimation error control are indexes to check the cost 
of our proposal in terms of time and error, 
respectively. 
 
5.1 Pure Static Algorithm 
 
The term static means that no movement of servers is 
permitted during the complete simulation interval, 
therefore priority and best-effort users’ requests are 
served by static groups of servers. In this case, there 
is neither need of throughput prediction nor need of 
taking measures of server throughputs. This implies a 
perfect situation in terms of overhead, because the 
algorithm runs in the switch and no additional 
measurements of server throughput should be taken 
to control the performance of the system.  
Figure 5 shows latency times for this algorithm. The 
horizontal axis shows the percentage of arrival rate 
needed to stress one server to the 100% utilization 
level. As the model is composed by 6 servers, 600% 
arrival rate level means a 100% utilization level of 
the whole set of the web servers  system. Priority and 
best-effort users perceive a very similar system 
response with this algorithm because no movement of 
servers is done and both groups of user’s requests are 
served by 50% of the web servers and back-end 
servers during simulation runs. SLA constraints are 
not guaranteed when arrival rate is at 300%, so 
servers cannot manage more than their 50% 
utilization level 
 
5.2 Pure Dynamic Algorithm 
 
This version of the algorithm involves movement of 
servers from group B to group P and viceversa when 
conditions specified in computing phase are met. So 
there is no need of divide simulation time under a 
slotted schedule because computing phase is executed 
always on the switch for every user request received. 



This means that the pure dynamic algorithm achieves 
the best performance of the whole system because 
switch controls if SLA constraints are guaranteed for 
every request. If the SLA constraints are not 
guaranteed, the procedure of clustering starts. The 
consequence is that the switch is usually quite busy 
making changes in web cluster groups of servers. 
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Fig. 5. Latency times of pure static algorithm 
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Fig. 6. Latency times of pure dynamic algorithm 

The overload of the system can be calculated on basis 
of arrival rate level of requests. Each time a request 
arrives to the system, the switch take measurements 
of server´s throughput and checks if reorganization of 
the two groups of servers is needed. We have not 
included in this algorithm throughput predictors; 
hence the switch rearranges the servers depending on 
real throughputs measured on them. Mean response 
times are shown in figure 6. We have omitted the 
complete latency time of best-effort users to focus on 
the latency time of priority users. We can observe 
that SLA constraints are not guaranteed when web 
cluster is at 600% of its utilization; this is because 
servers are starting to be collapsed. 
 
5.3 Predictive-Adaptive Algorithm 
 
The proposed intermediate solution is designed 
focusing on controlling the performance of the 
system in a slotted time schedule. The last version of 
the algorithm includes throughput predictors 

introduced in section 3.3., and transient and 
computing phases described in figures 3 and 4. The 
duration of the slots varies depending on burstiness 
factor, so that, in the worst case, the overhead will be 
as high as pure dynamic algorithm. Our intention is to 
find a balanced solution: able to obtain good response 
time for priority users, guaranteeing SLA constraints, 
and reducing the overhead level of the pure dynamic 
algorithm. 
Because of the use of throughput predictor, an 
inherent error is introduced in the clustering 
procedure. Thus, it is necessary to control this error to 
obtain the best performance of the web cluster. Figure 
7 shows these predictor errors and their behaviour 
during the 3000 seconds of simulation run. It can be 
observed that the error on predictions, measured in 
terms of requests per second, is being corrected 
during the simulation. There is an initial startup phase 
where filter predictor gives the worst estimation of 
the throughput of the servers in the next slot. 
However the error ratio descends to lower levels 
becoming as good as the burst predictor. The error on 
estimations is controlled each 300 seconds period. 
When simulation in almost ended, at 3000 seconds, 
the error value of filter estimator is 3.89E-02, while 
for the burst estimator is 2.73E-02. 
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Fig. 7. Throughput error of predictors in 

adaptive algorithm 
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Fig. 8. Latency times of  adaptive algorithm 

Overhead introduced by this third version of the 
algorithm should be compared with the two opposite 



previous versions. In pure static algorithm no 
overhead is introduced because there is no clustering 
included in the algorithm, so no check needs to be 
performed. In pure dynamic algorithm, overhead is 
proportional to arrival rate level; in fact, the 
computing phase is executed for each request. 
Therefore, throughput levels of the web servers are 
measured almost every time. As it would be 
expected, the pure dynamic version has the worst 
overhead level that could be. However, simulation 
results of adaptive algorithm show that the mean 
value of computing phase executions is 4569 for a 
total of 57592 arriving requests. Thus, the 
comparison of overhead level is less than 8% of the 
pure dynamic algorithm. Mean response time of 
adaptive algorithm is represented in figure 8. 
Complete latency time of best-effort users has been 
omitted to focus on the latency time of priority users. 
Finally, we compare the latency times of dynamic 
requests for priority users in static, dynamic and 
adaptive algorithms in figure 9. Only the mean 
response times for priority dynamic requests are 
shown because they are the most important in terms 
of the performance of the web cluster. The three 
algorithms are simulated on identical workload 
conditions. All switching algorithms present a similar 
mean response time of web servers, whereas the 
mean arrival rate is less than one third of the servers’ 
utilization due to the clustering conditions still have 
not been reached. However, pure static algorithm 
cannot react from the increasing arrival. Therefore, 
the servers’ mean response time could be five times 
the one-third values when the arrival rate is close to 
the full utilization. On the contrary, the pure dynamic 
is the best switching algorithm for priority users, 
since the mean response time of servers is the lowest 
during the simulation runs. But the price to be paid 
for this advantage is a huge overhead that the 
implementation of the switch will have. The adaptive 
algorithm has a similar behaviour of the dynamic one. 
The mean response time is a bit longer, but the 
switching overhead is only about 8% of the pure 
dynamic scheduling, so that it compensates the effort 
of computing estimations. 
 
6   Conclusion 
This paper has presented a new proposal of adaptive 
switching algorithms for web clusters. The algorithm 
relies on throughput estimations on slotted time 
periods. In particular, the burst predictor detects the 
burstiness of traffic and the consequence of the 
variation on future servers’ throughput. The filter 
predictor reduces the impact of typical traffic peaks 
due to the Internet nature. Both estimators are 
combined to select the best performance server in the 

cluster to guarantee the SLA. Thus, the switching 
algorithm is three times adaptive: in the transient 
phase when the slot time of testing period is variable 
depending on the traffic conditions, in the computing 
phase when the best server on cluster is selected from 
estimations and also moving servers from predefined 
set of servers among classes of users. All these 
procedures are done controlling the error on 
estimations and the overhead produced. The proposal 
has been confronted by simulation with pure static 
and pure dynamic scheduling.  
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Fig. 9. Latency time for priority users dynamic 

requests 

 
This paper tries to establish new ways of 
implementing non-functional requirements on web 
switching algorithms. Therefore, the continuous 
refinement on the web switching design including not 
only performability but also availability, security, etc. 
estimations will improve the perceived service for 
users.  
This incipient work presented has to be developed in 
several ways. The overhead on computation of the 
predictors and the procedure of obtaining throughput 
measurements from servers are crucial points of this 
research. Other immediate future work will be to 
distribute the load proportionally on the servers by 
resource reservation mechanisms. The switch 
algorithm design research must be developed together 
with the new network protocol strategies considering 
the non-functional behaviour features of Internet 
requests. 
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