
Efficient Remining of Generalized Multi-supported Association Rules
under Support Update

WEN-YANG LIN 1 and MING-CHENG TSENG 2

1 Dept. of Information Management, 2 Institute of Information Engineering
I-Shou University

1, Section 1, Hsueh-Cheng Rd., Ta-Hsu Hsiang, Kaohsiung 84041
TAIWAN

Abstract: Mining generalized association rules among items in the presence of taxonomy and with nonuniform
minimum support has been recognized as an important model in data mining. In our previous work, we have
investigated this problem and proposed two algorithms, MMS_Cumulate and MMS_Stratify. In real
applications, however, the work of discovering interesting association rules is an iterative process. The analysts
need to repeatedly adjust the constraint of minimum support and/or minimum confidence to discover real
informative rules. How to reduce the response time for each remining process thus becomes a crucial issue. In
this paper, we examined the problem of maintaining the discovered multi-supported generalized association
rules when the multiple minimum support constraint is updated. Empirical evaluation showed that the proposed
RM_MMS algorithm is very efficient and has good linear scale-up characteristic.

Key-Words: Data remining, generalized association rules, multiple minimum supports, taxonomy.

1 Introduction
Mining association rules from a large database of
business data, such as transaction records, has been a
popular topic within the area of data mining [1, 2, 6].
This problem is originally motivated by application
known as market basket analysis to find correlations
among items purchased by customers.
 An association rule is an expression of the form X
⇒ Y, where X and Y are sets of items. Such a rule
reveals that transactions in the database containing
items in X tend to contain items in Y, and the
probability, measured as the fraction of transactions
containing X also containing Y, is called the
confidence of the rule. The support of the rule is the
fraction of the transactions that contain all items in
both X and Y. For an association rule to be valid, the
rule should satisfy a user-specified minimum support,
called ms, and minimum confidence, called minconf,
respectively. The problem of mining association
rules is to discover all association rules that satisfy ms
and minconf. For example, an association rule,
Desktop ⇒ Ink-jet (sup = 30%, conf = 60%), says
that 30% (support) of customers purchase both
Desktop PC and Ink-jet printer together, and 60%
(confidence) of customers who purchase Desktop
PC also purchase Ink-jet printer. Such information is
useful in many aspects of market management, such
as store layout planning, target marketing,
understanding customers’ purchasing behavior, etc.

 In many applications, there are taxonomies
(hierarchies), explicitly or implicitly, over the items.
In some applications, it may be more useful to find
associations at different levels of the taxonomy than
only at the primitive concept level [3, 7]. For example,
consider Figure 1, the taxonomy of items from which
the previous association rule derived. It is likely to
happen that the association rule, Desktop ⇒ Ink-jet
(sup = 30%, conf = 60%), does not hold when the
minimum support is set to 40%, but the following
association rule may be valid, PC ⇒ Printer.

Printer PC Scanner

Non-impact Dot-matrix Desktop Notebook

Laser Ink-jet
Fig. 1 An example of taxonomy T.

 In our previous work, we have investigated the
problem of mining generalized association rules
across different levels of taxonomy with multiple
minimum supports [8]. We proposed two efficient
algorithms, MMS_Cumulate and MMS_Stratify,
which not only can discover associations that span
different hierarchy levels but also have high potential
to produce rare but informative item rules. In real
applications, however, the work of discovering
interesting association rules is an iterative process.
The analysts need to repeatedly adjust the constraint
of minimum support and/or minimum confidence to

discover real informative rules. How to reduce the
response time for each remining process thus become
a crucial issue.
 One way for dealing with this issue is to adopt the
current mining approach to re-mine the database
from scratch, which, however, has the following
disadvantages:
1. It is not cost-effective because the discovered

frequent itemsets are not utilized.
2. This is not acceptable in general since generating

frequent itemsets is time-consuming.
 To be more realistic and cost-effective, it is better
to perform the association mining algorithms to
generate the initial association rules, and when
update to the multiple minimum supports occurs,
then apply an updating method to re-build the
discovered rules. The challenge falls into deploying
an efficient updating algorithm to facilitate the whole
mining process. This problem is nontrivial because
update may invalidate some of the discovered
association rules, and turn previous weak rules into
strong ones.
 In this paper, we consider the updating approach
and propose an algorithm, called the RM_MMS
(ReMining under Multiple Minimum Supports
Update). Our algorithm, by utilizing the discovered
frequent itemsets, can significantly reduce the
number of candidate itemsets and database
rescanning. Empirical evaluation showed that our
algorithm is very efficient and has linear scalability.
 The remaining of this paper is organized as
follows. A review of related work is given in Section
2. The problem statement is formalized in Section 3.
In Section 4, we explain how to remine generalized
association rules under multiple minimum supports
update and propose an algorithm. The evaluation of
the proposed algorithm is described in Section 5.
Finally, our conclusion is stated in Section 6.

2 Related Work
The problem of mining association rules in presence
of taxonomy information is first addressed in [4, 7],
independently. In [7], they aims at finding
associations among items at any level of the
taxonomy under the ms and minconf constraint. In [4],
they primarily devote to mining associations
level-by-level in a fixed hierarchy. But they have
generalized the uniform minimum support constraint
to a form of level-wise assignment.
 Another form of association rule model with
multiple minimum supports has been proposed in [5].
Their method allows users to specify different
minimum support to different item and can find rules

involving both frequent and rare items. However,
their model considers no taxonomy at all, and hence
fails to find generalized association rules.

3 Problem Formulation

3.1 Mining generalized association rules with

multiple minimum supports
Let I = {i1, i2, …, im} be a set of items and DB = {t1,
t2, …, tn} be a set of transactions, where each
transaction ti = 〈tid, A〉 has a unique identifier tid and
a set of items A (A⊆I). We assume that the taxonomy
of items, T, is available and is denoted as a directed
acyclic graph on I ∪ J, where J = {j1, j2, …, jp}
represents the set of generalized items derived from I.
An edge in T denotes an is-a relationship. That is, if
there is an edge from j to i, we call j a parent
(generalization) of i and i a child of j. For example, in
Figure 1, I = {Laser printer, Ink-jet printer, Dot
matrix printer, Desktop PC, Notebook, Scanner}
and J = {Non-impact printer, Printer, Personal
computer}.
 Definition 1 Given a transaction t = 〈tid, A〉, we
say an itemset B is in t if every item in B is in A or is
an ancestor of some item in A. An itemset B has
support s, denoted as s = sup(B), in the transaction set
DB if s% of transactions in DB contain B.
 Definition 2 Given a set of transactions DB and a
taxonomy T, a generalized association rule is an
implication of the form A ⇒ B, where A, B ⊂ I ∪ J, A
∩ B = ∅, and no item in B is an ancestor of any item
in A. The support of this rule, sup(A ⇒ B), is equal to
the support of A ∪ B. The confidence of the rule,
conf(A ⇒ B), is the ratio of sup(A ∪ B) and sup(A).
 The condition in Definition 2 that no item in B is
an ancestor of any item in A is essential; otherwise, a
rule of the form, a ⇒ ancestor(a), always has 100%
confidence and is trivial.
 Definition 3 Let ms(a) denote the minimum
support of an item a in I ∪ J. An itemset A = {a1,
a2, …, ak}, where ai ∈ I ∪ J, is frequent if the support
of A is larger than the lowest value of minimum
support of items in A, i.e., sup(A) ≥ min ai ∈A ms(ai).
 Definition 4 A multi-supported, generalized
association rule A ⇒ B is strong if

sup(A ⇒ B) ≥ min ai ∈A∪B ms(ai)
and

conf(A ⇒ B) ≥ minconf.
 Definition 5 Given a set of transactions DB, a
taxonomy T, the user-specified minimum supports
for all items in T, {ms(a1), ms(a2), …, ms(an)}, and
the minconf, the problem of mining multi-supported,

generalized association rules is to find all association
rules that are strong.
 Example 1 Suppose that a shopping transaction
database DB in Table 1 consists of items I = {Laser
printer, Ink-jet printer, Dot matrix printer,
Desktop PC, Notebook, Scanner} and taxonomy
T as shown in Figure 1. Let the minimum confidence
(minconf) be 60% and the minimum support (ms)
associated with each item in the taxonomy be as
follows: ms(Printer) = 80%, ms(Non-impact) = 65%,
ms(Laser) =25%, ms(Dot matrix) = 70%, ms(Ink-jet)
= 60%, ms(PC) = 35%, ms(Desktop) = 25%,
ms(Notebook) = 25%, ms(Scanner) = 15%. The
following generalized association rule, PC, Laser ⇒
Dot matrix (sup = 16.7%, conf = 50%), fails because
its support is less than min{ms(PC), ms(Laser),
ms(Dot matrix)} = 25%. But another rule, PC ⇒
Laser (sup = 33.3%, conf = 66.7%), holds because
both its support and confidence are larger than
min{ms(PC), ms(Laser)} = 25% and minconf,
respectively. Table 2 lists the frequent itemsets and
the resulting strong rules for this example.

Table 1 A transaction database (DB).

TID Items Purchased
11 Notebook, Laser printer
12 Scanner, Dot matrix printer
13 Dot matrix printer, Ink-jet printer
14 Notebook, Dot matrix printer, Laser printer
15 Scanner
16 Desktop computer

Table 2 Frequent itemsets and resulting association

rules for Example 1.
Frequent Itemsets min ms (%) sup (%)

{Scanner} 15 33.3
{Notebook} 25 33.3
{Laser} 25 33.3
{PC} 35 50.0
{Scanner, Printer} 15 16.7
{Scanner, Dot matrix} 15 16.7
{Laser, PC} 25 33.3
{Notebook, Printer} 25 33.3
{Notebook, Non-impact} 25 33.3
{Notebook, Laser} 25 33.3

Rules
PC ⇒ Laser (sup = 33.3%, conf = 66.7%)
Laser ⇒ PC (sup = 33.3%, conf = 100%)
Notebook ⇒ Printer (sup = 33.3%, conf = 100%)
Notebook ⇒ Non-impact (sup = 33.3%, conf = 100%)
Notebook ⇒ Laser (sup = 33.3%, conf = 100%)
Laser ⇒ Notebook (sup = 33.3%, conf = 100%)

 As founded in [1], the work of association rules
mining can be decomposed into two phases:
1. Frequent itemsets generation: find all itemsets

that sufficiently exceed the ms.
2. Rules construction: from the frequent itemsets

generate all association rules having confidence
higher than the minconf.

Since the second phase is straightforward and less
expensive, we concentrate only on the first phase of
finding all frequent itemsets.

3.2 Remining generalized multi-supported

association rules under support update
As stated in previous section, the analysts need to
repeatedly adjust the constraint of minimum support
to discover real informative rules. This implies that if
the constraint of minimum support is adjusted, the
previous discovered associations might be invalid
and some undiscovered associations should be
generated. That is, the discovered association rules
must be updated to reflect the new circumstance.
Analogous to the associations mining, this problem
can be reduced to the problem of updating the
frequent itemsets.
 Example 2 Consider Example 1 again. The ms for
each items is updated as follows: ms(Printer) = 60%,
ms(Non-impact) = 55%, ms(Laser) = 10%, ms(Dot
matrix) = 50%, ms(Ink-jet) = 20%, ms(PC) = 55%,
ms(Desktop) = 25%, ms(Notebook) = 35%,
ms(Scanner) = 15%. Table 3 lists the frequent
itemsets and the resulting strong rules.

Table 3 Frequent itemsets and resulting association

rules for Example 2.
Frequent Itemsets min ms (%) sup (%)

{Laser} 10 33.3
{Scanner} 15 33.3
{Dot matrix} 50 50.0
{Printer} 60 66.7
{Laser, Notebook} 10 33.3
{Laser, Dot matrix} 10 16.7
{Laser, PC} 10 33.3
{Scanner, Printer} 15 16.7
{Scanner, Dot matrix} 15 16.7
{Laser, Notebook, Dot matrix} 10 16.7
{Laser, Dot matrix, PC} 10 16.7

Rules
Laser ⇒ PC (sup = 33.3%, conf = 100%)
Laser ⇒ Notebook (sup = 33.3%, conf = 100%)
Laser, Dot matrix ⇒ PC (sup = 16.7%, conf = 100%)
Laser, Dot matrix ⇒ Notebook (sup = 16.7%, conf =

100%)

 Comparing Table 3 to Table 2, we observe that
four old frequent itemsets in Table 2 {Notebook},
{PC}, {Notebook, Printer}, and {Notebook,
Non-impact} are discarded, while five new frequent
itemsets, {Dot matrix}, {Printer}, {Laser, Dot matrix},
{Laser, Notebook, Dot matrix } and {Laser, Dot matrix,
PC}, are added into Table 3.

.
4 The Proposed Method

4.1 Algorithm basics
The primary challenge of devising effective
association rule remining algorithm is how to reuse
the discovered frequent itemsets and avoid the
possibility of re-scanning the database.
 Let a k-itemset denote an itemset with k items. The
basic process of our generalized association rules
remining algorithm under multiple minimum
supports update follows the level-wise approach
adopted by most Apriori-like algorithms. However,
the well-known Apriori pruning technique based on
the concept of downward closure does not work for
multiple support specification. For example, consider
four items a, b, c, and d that have minimum supports
specified as ms(a) = 15%, ms(b) = 20%, ms(c) = 4%,
and ms(d) = 6%. Clearly, a 2-itemset {a, b} with 10%
of support is discarded for 10% < min{ms(a), ms(b)}.
According to the downward closure, the 3-itemsets
{a, b, c} and {a, b, d} will be pruned even though
their supports may be larger than ms(c) and ms(d),
respectively. To solve this problem, we have adopted
the sorted closure property [5] in our previous work
for mining generalized association rules with
multiple minimum supports. Hereafter, to distinguish
from the traditional itemset, a sorted k-itemset
denoted as 〈a1, a2, …, ak〉  is used.
 Lemma 1 If a sorted k-itemset 〈a1, a2, …, ak〉, for k
≥ 2 and ms(a1) ≤ ms(a2) ≤ … ≤ ms(ak), is frequent,
then all of its sorted subsets with k−1 items are
frequent, except the subset 〈a2, a3, …, ak〉.
 Lemma 2 For k = 2, the procedure apriori-gen(L1)
fails to generate all candidate 2-itemsets in C2.
 For example, consider a sorted candidate
2-itemset 〈a, b〉. It is easy to find if we want to
generate this itemset from L1, both items a and b
should be included in L1; that is, each one should be
occurring more frequently than the corresponding
minimum support ms(a) and ms(b). Clearly, the case
ms(a) ≤ sup(b) < ms(b) fails to generate 〈a, b〉 in C2
even sup(〈a, b〉) ≥ ms(a).
 Lemma 3 For k ≥ 3, any k-itemset A = 〈a1, a2, …,
ak〉 generated by procedure apriori-gen(Lk−1) can be

pruned if there exists one (k−1) subset of A, say 〈ai1,
ai2, …, aik−1〉, such that 〈ai1, ai2, …, aik−1〉 ∉ Lk−1 and ai1
= a1 or ms(ai1) = ms(ai2).
 For more details, please refer to [8].

4.2 Algorithm RM_MMS
The basic process of the RM_MMS algorithm is as
follows. First, count all 1-itemsets which is
infrequent correspondently to the old multiple
minimum supports (msold) setting. Second, create the
new frequent 1-itemsets newL1 according to the new
multiple minimum supports (msnew) setting. Next,
create the frontier set F and use it to generate
candidate 2-itemsets C2. Then, generate the frequent
2-itemsets newL2 by scanning some part of C2 in DB.
Finally, for k ≥ 3, repeatedly generate candidate
k-itemsets Ck from Lk−1 and create frequent k-itemsets new

kL until no frequent itemsets. In each iteration k for
Ck generation, an additional pruning technique with
enhancements applied in [8] are performed.
 Lemma 4 An itemset is frequent with respect to
msnew if it is frequent with respect to msold and msnew ≤
msold.
 Lemma 5 An itemset is infrequent with respect to
msnew if it is infrequent with respect to msold and msnew

≥ msold.
 Lemma 6 An itemset is uncertain of frequency
with respect to msnew if it is frequent with respect to
msold and msnew > msold, or if it is infrequent with
respect to msold and msnew < msold.
 For itemsets satisfying Lemma 4, there is no need
to rescan the database DB to determine whether they
are frequent. In Lemma 6, one case is that the
itemsets which are frequent with respect to msold and
msnew > msold are not required to rescan the database
DB, but they are required to be calculated to
determine whether they are frequent, and the other
case is that the itemsets which are infrequent with
respect to msold and msnew < msold need to rescan the
database DB.
 The main steps of RM_MMS Algorithm are
presented as follows:
Inputs: (1) DB: the database; (2) the old multiple
minimum supports (msold) setting; (3) the new
multiple minimum supports (msnew) setting; (4) T: the
item taxonomy; (5) old

kk
old LL U= the set of old

frequent itemsets.
Output: new

kk
new LL U= : the set of new frequent

itemsets corresponding to msnew.
Steps:

1. Divide the set of 1-itemsets C1 into two parts: one
(X1) consists of items in oldL1 , and the other (Y1)
contains those not in oldL1 .

2. Add generalized items in T into DB as DB′.
3. Count the supports of Y1 in DB′.
4. Sort C1 in increasing order of their ms and create

frontier set F and newL1 .
5. Generate the set of candidate 2-itemsets C2 from

F.
6. Divide C2 into two parts: the itemsets in oldL2 and

those not in oldL2 . For the itemsets in oldL2 , further
divide them into two parts: X2a for msnew ≤ msold
and X2b for msnew > msold. For those not in oldL2 ,
further divide them into two parts: Y2a for msnew <
msold and Y2b for msnew ≥ msold.

7. Count the supports of itemsets in Y2a over DB′.
8. Create newL2 by combining X2a and those itemsets

which are frequent in X2b and Y2a.
9. Generate candidates C3 from L2.
10. Repeat Steps 6-9 for new candidates Ck until no

frequent k-itemsets new
kL created.

 For more details of generating frontier set F,
please refer to [8]. An example illustrates the
RM_MMS algorithm is provided in Appendix, where
item “A” stands for “Printer”, “B” for “Non-impact
printer”, “C” for “Laser printer”, “D” for “Dot matrix
printer”, “E” for “Ink-jet printer”, “F” for “Personal
computer”, “G” for “Desktop PC”, “H” for
“Notebook”, and “I” for “Scanner”.

5 Experiments
In this section, we evaluate the performance of
algorithm, RM_MMS, using the synthetic dataset
generated by IBM data generator [2]. The parameter
settings are shown in Table 4. The experiments were
performed on an Intel Pentium-IV 2.80GHz with
2096MB RAM, running on Windows 2000.
 We conducted an experiment to compare the
efficiency of these three algorithms under various
sizes of database. The minimum supports were
specified to items randomly, ranging from 1.0% to
6.0%. Here, we adopt the ordinary case that the
minimum support of an item a is no larger than any of
its ancestors â , i.e., ms(a) ≤ ms(â). We implemented
the experiment in two cases: case 1 (the worst one)
for msnew < msold1 and case 2 (the best one) for msnew ≥
msold2. The result is depicted in Figure 2. RM_MMS
outperforms MMS_Stratify and MMS_Cumulate
both in execution time and scalability.

Table 4. Parameter settings for synthetic data

Parameter Default
|DB| Number of transactions 100,000

|t| Average size of transactions 5
N Number of items 200
R Number of groups 30
L Number of levels 3
F Fanout 5

0

100

200

300

400

500

1 2 3 4 5 6 7 8 9

Number of Transactions (x 10,000)
Ti

m
e

(s
ec

.)

MMS_Cumulate
MMS_Stratify
RM_MMS (Case1)
RM_MMS (Case2)

Fig. 2 Execution time for various sizes of
transactions.

6 Conclusion
We have investigated in this paper the problem of
remining association rules under multiple minimum
supports update and presented an efficient algorithm,
RM_MMS. Empirical evaluation showed that the
algorithm is very effective and have good linear
scale-up characteristic, compared with applying our
previously proposed mining algorithms,
MMS_Cumulate and MMS_Stratify, to complete the
remining process under multiple minimum supports
update.

References:
[1] R. Agrawal, T. Imielinski, and A. Swami,

“Mining association rules between sets of items
in large databases,” Proc. 1993 ACM-SIGMOD
Int. Conf. Management of Data, 1993, pp.
207-216.

[2] R. Agrawal and R. Srikant, “Fast algorithms for
mining association rules,” Proc. 20th Int. Conf.
Very Large Data Bases, 1994, pp. 487-499.

[3] D.W. Cheung, S.D. Lee, and B. Kao, “A general
incremental technique for maintaining
discovered association rules,” Proc.
DASFAA'97, 1997, pp. 185-194.

[4] J. Han and Y. Fu, “Discovery of multiple-level
association rules from large databases,” in Proc.

21st Int. Conf. Very Large Data Bases, pp.
420-431, Zurich, Swizerland, 1995.

[5] B. Liu, W. Hsu, and Y. Ma, “Mining association
rules with multiple minimum supports,” Proc.
5th Int. Conf. Knowledge Discovery and Data
Mining, 1999, pp. 337-341.

[6] A. Savasere, E. Omiecinski, and S. Navathe,
“An efficient algorithm for mining association
rules in large databases,” Proc. 21st Int. Conf.
Very Large Data Bases, 1995. pp. 432-444.

[7] R. Srikant and R. Agrawal, “Mining generalized
association rules,” Proc. 21st Int. Conf. Very
Large Data Bases, 1995, pp. 407-419.

[8] M.C. Tseng and W.Y. Lin, “Mining generalized
association rules with multiple minimum
support,” Proc. Int. Conf. Data Warehousing
and Knowledge Discovery, pp. 11-20, 2001.

Appendix

Taxonomy

IA

B D

C E

F

G H

Table 5 An example for illustration of RM_MMS.

Database (DB) ms %
TID Items Purchased Item msold msnew
11 H, C A 80 60
12 I, D B 65 55
13 D, E C 25 10
14 H, D, C D 70 50
15 I E 60 20
16 G F 35 55

 G 25 25
 H 25 35

 I 15 15

CI, CE, CG, CH, CD, CF, IE, IG, IH, ID,
IF, IB, IA, DF, DB

C, I, E, G, H, D, F, B, A

C, I, D, A

A, B, C, D, E, F, G, H, I1C

C, F, H, I
Scan DB

1C not in oldL1Load
1C in

A 66.7 %

E
D 50.0 %
B 50.0 %

16.7 %
G 16.7 %

2C

in2C 2C not inLoad

 F

Generate

Generate F

Generate 2C

ID, IA, CH, CF
msnew ≤ msold msnew < msold msnew ≥ msold

CI, CE, CG, CD, IE, IG,
IH, IF, IB, DF, DB

IE, IG, IH, IF, IB

msnew > msold
Cal.

ID, IA, CH, CF CI 0 %
CE 0 %
CG 0 %
CD
DF
DB

16.7 %
16.7 %
33.3 %

Scan DB

Generate

CH, CD, CF, ID, IA

CHD, CDF3C

Generate 3C

in3C Load not in3C

msnew < msold
Scan DB

∅ CHD, CDF

CHD, CDF

∅

CHD 16.7 %
CDF 16.7 %

4C
4CGenerate

Generate

∅

oldL1
oldL1

newL1

newL1

oldL2
oldL2

oldL2

newL2

newL3

oldL3
oldL3

oldL3

newL3

newL2

Fig. 3 Illustration of algorithm RM_MMS

