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Abstract: Mining generalized association rules among items in the presence of taxonomy and with nonuniform 
minimum support has been recognized as an important model in data mining. In our previous work, we have 
investigated this problem and proposed two algorithms, MMS_Cumulate and MMS_Stratify. In real 
applications, however, the work of discovering interesting association rules is an iterative process. The analysts 
need to repeatedly adjust the constraint of minimum support and/or minimum confidence to discover real 
informative rules. How to reduce the response time for each remining process thus becomes a crucial issue. In 
this paper, we examined the problem of maintaining the discovered multi-supported generalized association 
rules when the multiple minimum support constraint is updated. Empirical evaluation showed that the proposed 
RM_MMS algorithm is very efficient and has good linear scale-up characteristic. 
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1   Introduction 
Mining association rules from a large database of 
business data, such as transaction records, has been a 
popular topic within the area of data mining [1, 2, 6]. 
This problem is originally motivated by application 
known as market basket analysis to find correlations 
among items purchased by customers. 
     An association rule is an expression of the form X 
⇒ Y, where X and Y are sets of items. Such a rule 
reveals that transactions in the database containing 
items in X tend to contain items in Y, and the 
probability, measured as the fraction of transactions 
containing X also containing Y, is called the 
confidence of the rule. The support of the rule is the 
fraction of the transactions that contain all items in 
both X and Y. For an association rule to be valid, the 
rule should satisfy a user-specified minimum support, 
called ms, and minimum confidence, called minconf, 
respectively. The problem of mining association 
rules is to discover all association rules that satisfy ms 
and minconf. For example, an association rule, 
Desktop ⇒ Ink-jet (sup = 30%, conf = 60%), says 
that 30% (support) of customers purchase both 
Desktop PC and Ink-jet printer together, and 60% 
(confidence) of customers who purchase Desktop 
PC also purchase Ink-jet printer. Such information is 
useful in many aspects of market management, such 
as store layout planning, target marketing, 
understanding customers’ purchasing behavior, etc. 

     In many applications, there are taxonomies 
(hierarchies), explicitly or implicitly, over the items. 
In some applications, it may be more useful to find 
associations at different levels of the taxonomy than 
only at the primitive concept level [3, 7]. For example, 
consider Figure 1, the taxonomy of items from which 
the previous association rule derived. It is likely to 
happen that the association rule, Desktop ⇒ Ink-jet 
(sup = 30%, conf = 60%), does not hold when the 
minimum support is set to 40%, but the following 
association rule may be valid, PC ⇒ Printer. 
 

Printer PC Scanner

Non-impact Dot-matrix Desktop Notebook

Laser Ink-jet  
Fig. 1 An example of taxonomy T. 

 
     In our previous work, we have investigated the 
problem of mining generalized association rules 
across different levels of taxonomy with multiple 
minimum supports [8]. We proposed two efficient 
algorithms, MMS_Cumulate and MMS_Stratify, 
which not only can discover associations that span 
different hierarchy levels but also have high potential 
to produce rare but informative item rules. In real 
applications, however, the work of discovering 
interesting association rules is an iterative process. 
The analysts need to repeatedly adjust the constraint 
of minimum support and/or minimum confidence to 



discover real informative rules. How to reduce the 
response time for each remining process thus become 
a crucial issue. 
     One way for dealing with this issue is to adopt the 
current mining approach to re-mine the database 
from scratch, which, however, has the following 
disadvantages: 
1. It is not cost-effective because the discovered 

frequent itemsets are not utilized. 
2. This is not acceptable in general since generating 

frequent itemsets is time-consuming. 
     To be more realistic and cost-effective, it is better 
to perform the association mining algorithms to 
generate the initial association rules, and when 
update to the multiple minimum supports occurs, 
then apply an updating method to re-build the 
discovered rules. The challenge falls into deploying 
an efficient updating algorithm to facilitate the whole 
mining process. This problem is nontrivial because 
update may invalidate some of the discovered 
association rules, and turn previous weak rules into 
strong ones. 
     In this paper, we consider the updating approach 
and propose an algorithm, called the RM_MMS 
(ReMining under Multiple Minimum Supports 
Update). Our algorithm, by utilizing the discovered 
frequent itemsets, can significantly reduce the 
number of candidate itemsets and database 
rescanning. Empirical evaluation showed that our 
algorithm is very efficient and has linear scalability. 
     The remaining of this paper is organized as 
follows. A review of related work is given in Section 
2. The problem statement is formalized in Section 3. 
In Section 4, we explain how to remine generalized 
association rules under multiple minimum supports 
update and propose an algorithm. The evaluation of 
the proposed algorithm is described in Section 5. 
Finally, our conclusion is stated in Section 6. 
 
 
2   Related Work 
The problem of mining association rules in presence 
of taxonomy information is first addressed in [4, 7], 
independently. In [7], they aims at finding 
associations among items at any level of the 
taxonomy under the ms and minconf constraint. In [4], 
they primarily devote to mining associations 
level-by-level in a fixed hierarchy. But they have 
generalized the uniform minimum support constraint 
to a form of level-wise assignment. 
     Another form of association rule model with 
multiple minimum supports has been proposed in [5]. 
Their method allows users to specify different 
minimum support to different item and can find rules 

involving both frequent and rare items. However, 
their model considers no taxonomy at all, and hence 
fails to find generalized association rules. 
 
 
3   Problem Formulation 
 
3.1  Mining generalized association rules with 

multiple minimum supports 
Let I = {i1, i2, …, im} be a set of items and DB = {t1, 
t2, …, tn} be a set of transactions, where each 
transaction ti = 〈tid, A〉 has a unique identifier tid and 
a set of items A (A⊆I). We assume that the taxonomy 
of items, T, is available and is denoted as a directed 
acyclic graph on I ∪ J, where J = {j1, j2, …, jp} 
represents the set of generalized items derived from I. 
An edge in T denotes an is-a relationship. That is, if 
there is an edge from j to i, we call j a parent 
(generalization) of i and i a child of j. For example, in 
Figure 1, I = {Laser printer, Ink-jet printer, Dot 
matrix printer, Desktop PC, Notebook, Scanner} 
and J = {Non-impact printer, Printer, Personal 
computer}. 
     Definition 1 Given a transaction t = 〈tid, A〉, we 
say an itemset B is in t if every item in B is in A or is 
an ancestor of some item in A. An itemset B has 
support s, denoted as s = sup(B), in the transaction set 
DB if s% of transactions in DB contain B. 
     Definition 2 Given a set of transactions DB and a 
taxonomy T, a generalized association rule is an 
implication of the form A ⇒ B, where A, B ⊂ I ∪ J, A 
∩ B = ∅, and no item in B is an ancestor of any item 
in A. The support of this rule, sup(A ⇒ B), is equal to 
the support of A ∪ B. The confidence of the rule, 
conf(A ⇒ B), is the ratio of sup(A ∪ B) and sup(A). 
     The condition in Definition 2 that no item in B is 
an ancestor of any item in A is essential; otherwise, a 
rule of the form, a ⇒ ancestor(a), always has 100% 
confidence and is trivial. 
     Definition 3 Let ms(a) denote the minimum 
support of an item a in I ∪ J. An itemset A = {a1, 
a2, …, ak}, where ai ∈ I ∪ J, is frequent if the support 
of A is larger than the lowest value of minimum 
support of items in A, i.e., sup(A) ≥ min ai ∈A ms(ai). 
     Definition 4 A multi-supported, generalized 
association rule A ⇒ B is strong if 

sup(A ⇒ B) ≥ min ai ∈A∪B ms(ai) 
and 

conf(A ⇒ B) ≥ minconf. 
     Definition 5 Given a set of transactions DB, a 
taxonomy T, the user-specified minimum supports 
for all items in T, {ms(a1), ms(a2), …, ms(an)}, and 
the minconf, the problem of mining multi-supported, 



generalized association rules is to find all association 
rules that are strong. 
     Example 1 Suppose that a shopping transaction 
database DB in Table 1 consists of items I = {Laser 
printer, Ink-jet printer, Dot matrix printer, 
Desktop PC, Notebook, Scanner} and taxonomy 
T as shown in Figure 1. Let the minimum confidence 
(minconf) be 60% and the minimum support (ms) 
associated with each item in the taxonomy be as 
follows: ms(Printer) = 80%, ms(Non-impact) = 65%, 
ms(Laser) =25%, ms(Dot matrix) = 70%, ms(Ink-jet) 
= 60%, ms(PC) = 35%, ms(Desktop) = 25%, 
ms(Notebook) = 25%, ms(Scanner) = 15%. The 
following generalized association rule, PC, Laser ⇒ 
Dot matrix (sup = 16.7%, conf = 50%), fails because 
its support is less than min{ms(PC), ms(Laser), 
ms(Dot matrix)} = 25%. But another rule, PC ⇒ 
Laser (sup = 33.3%, conf = 66.7%), holds because 
both its support and confidence are larger than 
min{ms(PC), ms(Laser)} = 25% and minconf, 
respectively. Table 2 lists the frequent itemsets and 
the resulting strong rules for this example. 

 
Table 1 A transaction database (DB). 

TID Items Purchased 
11 Notebook, Laser printer 
12 Scanner, Dot matrix printer 
13 Dot matrix printer, Ink-jet printer  
14 Notebook, Dot matrix printer, Laser printer 
15 Scanner 
16 Desktop computer 

 
Table 2 Frequent itemsets and resulting association 

rules for Example 1. 
Frequent Itemsets min ms (%) sup (%) 

{Scanner} 15 33.3 
{Notebook} 25 33.3 
{Laser} 25 33.3 
{PC} 35 50.0 
{Scanner, Printer} 15 16.7 
{Scanner, Dot matrix} 15 16.7 
{Laser, PC} 25 33.3 
{Notebook, Printer} 25 33.3 
{Notebook, Non-impact} 25 33.3 
{Notebook, Laser} 25 33.3 

Rules 
PC ⇒ Laser (sup = 33.3%, conf = 66.7%) 
Laser ⇒ PC (sup = 33.3%, conf = 100%) 
Notebook ⇒ Printer (sup = 33.3%, conf = 100%) 
Notebook ⇒ Non-impact (sup = 33.3%, conf = 100%) 
Notebook ⇒ Laser (sup = 33.3%, conf = 100%) 
Laser ⇒ Notebook (sup = 33.3%, conf = 100%) 

 

     As founded in [1], the work of association rules 
mining can be decomposed into two phases: 
1. Frequent itemsets generation: find all itemsets 

that sufficiently exceed the ms. 
2. Rules construction: from the frequent itemsets 

generate all association rules having confidence 
higher than the minconf. 

Since the second phase is straightforward and less 
expensive, we concentrate only on the first phase of 
finding all frequent itemsets. 
 
3.2  Remining generalized multi-supported 

association rules under support update 
As stated in previous section, the analysts need to 
repeatedly adjust the constraint of minimum support 
to discover real informative rules. This implies that if 
the constraint of minimum support is adjusted, the 
previous discovered associations might be invalid 
and some undiscovered associations should be 
generated. That is, the discovered association rules 
must be updated to reflect the new circumstance. 
Analogous to the associations mining, this problem 
can be reduced to the problem of updating the 
frequent itemsets. 
     Example 2 Consider Example 1 again. The ms for 
each items is updated as follows: ms(Printer) = 60%, 
ms(Non-impact) = 55%, ms(Laser) = 10%, ms(Dot 
matrix) = 50%, ms(Ink-jet) = 20%, ms(PC) = 55%, 
ms(Desktop) = 25%, ms(Notebook) = 35%, 
ms(Scanner) = 15%. Table 3 lists the frequent 
itemsets and the resulting strong rules.  

 
Table 3 Frequent itemsets and resulting association 

rules for Example 2. 
Frequent Itemsets min ms (%) sup (%) 

{Laser} 10 33.3 
{Scanner} 15 33.3 
{Dot matrix} 50 50.0 
{Printer} 60 66.7 
{Laser, Notebook} 10 33.3 
{Laser, Dot matrix} 10 16.7 
{Laser, PC} 10 33.3 
{Scanner, Printer} 15 16.7 
{Scanner, Dot matrix} 15 16.7 
{Laser, Notebook, Dot matrix} 10 16.7 
{Laser, Dot matrix, PC} 10 16.7 

Rules 
Laser ⇒ PC (sup = 33.3%, conf = 100%) 
Laser ⇒ Notebook (sup = 33.3%, conf = 100%) 
Laser, Dot matrix ⇒ PC (sup = 16.7%, conf = 100%) 
Laser, Dot matrix ⇒ Notebook (sup = 16.7%, conf =  

100%) 
 



    Comparing Table 3 to Table 2, we observe that 
four old frequent itemsets in Table 2 {Notebook}, 
{PC}, {Notebook, Printer}, and {Notebook, 
Non-impact} are discarded, while five new frequent 
itemsets, {Dot matrix}, {Printer}, {Laser, Dot matrix}, 
{Laser, Notebook, Dot matrix } and {Laser, Dot matrix, 
PC}, are added into Table 3.  
 
. 
4   The Proposed Method 
 
4.1   Algorithm basics 
The primary challenge of devising effective 
association rule remining algorithm is how to reuse 
the discovered frequent itemsets and avoid the 
possibility of re-scanning the database. 
     Let a k-itemset denote an itemset with k items. The 
basic process of our generalized association rules 
remining algorithm under multiple minimum 
supports update follows the level-wise approach 
adopted by most Apriori-like algorithms. However, 
the well-known Apriori pruning technique based on 
the concept of downward closure does not work for 
multiple support specification. For example, consider 
four items a, b, c, and d that have minimum supports 
specified as ms(a) = 15%, ms(b) = 20%, ms(c) = 4%, 
and ms(d) = 6%. Clearly, a 2-itemset {a, b} with 10% 
of support is discarded for 10% < min{ms(a), ms(b)}. 
According to the downward closure, the 3-itemsets 
{a, b, c} and {a, b, d} will be pruned even though 
their supports may be larger than ms(c) and ms(d), 
respectively. To solve this problem, we have adopted 
the sorted closure property [5] in our previous work 
for mining generalized association rules with 
multiple minimum supports. Hereafter, to distinguish 
from the traditional itemset, a sorted k-itemset 
denoted as 〈a1, a2, …, ak〉  is used.  
     Lemma 1 If a sorted k-itemset 〈a1, a2, …, ak〉, for k 
≥ 2 and ms(a1) ≤ ms(a2) ≤ … ≤ ms(ak), is frequent, 
then all of its sorted subsets with k−1 items are 
frequent, except the subset 〈a2, a3, …, ak〉. 
     Lemma 2 For k = 2, the procedure apriori-gen(L1) 
fails to generate all candidate 2-itemsets in C2. 
     For example, consider a sorted candidate 
2-itemset 〈a, b〉. It is easy to find if we want to 
generate this itemset from L1, both items a and b 
should be included in L1; that is, each one should be 
occurring more frequently than the corresponding 
minimum support ms(a) and ms(b). Clearly, the case 
ms(a) ≤ sup(b) < ms(b) fails to generate 〈a, b〉 in C2 
even sup(〈a, b〉) ≥ ms(a). 
     Lemma 3 For k ≥ 3, any k-itemset A = 〈a1, a2, …, 
ak〉 generated by procedure apriori-gen(Lk−1) can be 

pruned if there exists one (k−1) subset of A, say 〈ai1, 
ai2, …, aik−1〉, such that 〈ai1, ai2, …, aik−1〉 ∉ Lk−1 and ai1 
= a1 or ms(ai1) = ms(ai2). 
     For more details, please refer to [8]. 
 
4.2   Algorithm RM_MMS 
The basic process of the RM_MMS algorithm is as 
follows. First, count all 1-itemsets which is 
infrequent correspondently to the old multiple 
minimum supports (msold) setting. Second, create the 
new frequent 1-itemsets newL1  according to the new 
multiple minimum supports (msnew) setting. Next, 
create the frontier set F and use it to generate 
candidate 2-itemsets C2. Then, generate the frequent 
2-itemsets newL2  by scanning some part of C2 in DB. 
Finally, for k ≥ 3, repeatedly generate candidate 
k-itemsets Ck from Lk−1 and create frequent k-itemsets new

kL  until no frequent itemsets. In each iteration k for 
Ck generation, an additional pruning technique with 
enhancements applied in [8] are performed. 
     Lemma 4 An itemset is frequent with respect to 
msnew if it is frequent with respect to msold and msnew ≤ 
msold. 
     Lemma 5 An itemset is infrequent with respect to 
msnew if it is infrequent with respect to msold and msnew 

≥ msold. 
     Lemma 6 An itemset is uncertain of frequency 
with respect to msnew if it is frequent with respect to 
msold and msnew > msold, or if it is infrequent with 
respect to msold and msnew < msold. 
     For itemsets satisfying Lemma 4, there is no need 
to rescan the database DB to determine whether they 
are frequent. In Lemma 6, one case is that the 
itemsets which are frequent with respect to msold and 
msnew > msold are not required to rescan the database 
DB, but they are required to be calculated to 
determine whether they are frequent, and the other 
case is that the itemsets which are infrequent with 
respect to msold and msnew < msold need to rescan the 
database DB. 
     The main steps of  RM_MMS Algorithm are 
presented as follows: 
Inputs: (1) DB: the database; (2) the old multiple 
minimum supports (msold) setting; (3) the new 
multiple minimum supports (msnew) setting; (4) T: the 
item taxonomy; (5) old

kk
old LL U=  the set of old 

frequent itemsets. 
Output: new

kk
new LL U= : the set of new frequent 

itemsets corresponding to msnew. 
Steps: 



1. Divide the set of 1-itemsets C1 into two parts: one 
(X1) consists of items in oldL1 , and the other (Y1) 
contains those not in oldL1 . 

2. Add generalized items in T into DB as DB′. 
3. Count the supports of Y1 in DB′. 
4. Sort C1 in increasing order of their ms and create 

frontier set F and newL1 . 
5. Generate the set of candidate 2-itemsets C2 from 

F. 
6. Divide C2 into two parts: the itemsets in oldL2  and 

those not in oldL2 . For the itemsets in oldL2 , further 
divide them into two parts: X2a for msnew ≤ msold 
and X2b for msnew > msold. For those not in oldL2 , 
further divide them into two parts: Y2a for msnew < 
msold and Y2b for msnew ≥ msold. 

7. Count the supports of itemsets in Y2a over DB′. 
8. Create newL2 by combining X2a and those itemsets 

which are frequent in X2b and Y2a. 
9. Generate candidates C3 from L2. 
10. Repeat Steps 6-9 for new candidates Ck until no 

frequent k-itemsets new
kL created. 

     For more details of generating frontier set F, 
please refer to [8]. An example illustrates the 
RM_MMS algorithm is provided in Appendix, where 
item “A” stands for  “Printer”, “B” for “Non-impact 
printer”, “C” for “Laser printer”, “D” for “Dot matrix 
printer”, “E” for “Ink-jet printer”, “F” for “Personal 
computer”, “G” for “Desktop PC”, “H” for 
“Notebook”, and “I” for “Scanner”. 
 
 
5   Experiments  
In this section, we evaluate the performance of 
algorithm, RM_MMS, using the synthetic dataset 
generated by IBM data generator [2]. The parameter 
settings are shown in Table 4. The experiments were 
performed on an Intel Pentium-IV 2.80GHz with 
2096MB RAM, running on Windows 2000. 
     We conducted an experiment to compare the 
efficiency of these three algorithms under various 
sizes of database. The minimum supports were 
specified to items randomly, ranging from 1.0% to 
6.0%. Here, we adopt the ordinary case that the 
minimum support of an item a is no larger than any of 
its ancestors â , i.e., ms(a) ≤ ms( â ). We implemented 
the experiment in two cases: case 1 (the worst one) 
for msnew < msold1 and case 2 (the best one) for msnew ≥ 
msold2. The result is depicted in Figure 2. RM_MMS 
outperforms MMS_Stratify and MMS_Cumulate 
both in execution time and scalability. 

 
Table 4. Parameter settings for synthetic data  

Parameter Default 
|DB| Number of transactions 100,000 

|t| Average size of transactions 5 
N Number of items 200 
R Number of groups 30 
L Number of levels 3 
F Fanout 5 
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Fig. 2 Execution time for various sizes of 
transactions. 

 
 
6   Conclusion 
We have investigated in this paper the problem of 
remining association rules under multiple minimum 
supports update and presented an efficient algorithm, 
RM_MMS. Empirical evaluation showed that the 
algorithm is very effective and have good linear 
scale-up characteristic, compared with applying our 
previously proposed mining algorithms, 
MMS_Cumulate and MMS_Stratify, to complete the 
remining process under multiple minimum supports 
update. 
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Table 5 An example for illustration of RM_MMS. 

Database (DB)  ms % 
TID Items Purchased  Item msold msnew 
11 H, C  A 80 60 
12 I, D  B 65 55 
13 D, E  C 25 10 
14 H, D, C  D 70 50 
15 I  E 60 20 
16 G  F 35 55 

   G 25 25 
   H 25 35 

   I 15 15 
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Fig. 3 Illustration of algorithm RM_MMS 


