

Distributed Spatial Database for use with 3D Graphics Engines
DAVID A. HEITBRINK, SAM K. MAKKI, DEMETRIOS KAZAKOS

Department of Electrical Engineering & Computer Science
University of Toledo

Toledo, Ohio
U.S.A

Abstract: - Many modern applications employ a spatial database system to perform management of the large amount of spatial or
non linear data. These systems are employed in both real-time and non-real time applications, such as GPS/GIS systems, video
games, and scientific databases. Most of these applications are three dimensional, but some can be extended to higher
dimensions. The goal is to distribute the responsibilities of a real time three dimensional game server over multiple servers. By
distributing the game server we can split the responsibilities of a single server among many servers. This will allow for larger
world spaces, with more entities. An entity could be any dynamic object in the three dimension world space. The goal is to make it
possible for a series of desktop computers with broadband service to be able to host massive on-line games.

Key-words: - real-time, graphics, database, spatial, server, client

1 Introduction

The spatial databases are suitable storage for many
modern 3D applications, since traditional relational
databases are not suitable for these applications. Due to
that fact that the data in these applications are non-linear
and we can not simply store them in a sorted list. This is
because distances in multidimensional datasets are
relative to positions. In addition a good number of these
applications are real time as well, such as simulators, 3D
video games, and certain GPS applications and many
scientific databases.

Most multidimensional storage systems rely on trying
to partition the universe of discourse into sub-nodes, and
organize it into a tree based structure. The tree structure
employed by these systems presents a natural point at
which to divide the system database for distribution. The
tree structure also allows a relatively quick selection of
the related data from the portion of data, based on their
locations. Besides by assigning branches of the tree
structures to different servers we can distribute the
system in a fairly seamless manner. This also presents us
with the possibility of preserving the hierarchal nature of
our dataset over multiple servers.

Furthermore the tree based structures of spatial
databases allow for the efficient selection and culling of
unneeded data for a given area in 3D world space. The
primary use is for frustum culling, where only those
objects that the user can see are returned by the database,
and then only those objects are drawn. Also the data
should be returned in partial Z order, in other words the
objects are sorted by the depth at which they would
appear in a scene. Without this sort of system it would be
impossible to support large world spaces, as a vast
majority of the programs time would be spent drawing
things that the user cannot see, and the cost of Z-ordering

would be vastly more expensive. This is also employed
on the server side to cull updates to entities the client
would not be interested, in other words entities that the
client cannot see, or hear. This is slightly different for the
server as it is not only eliminates those entities that the
client will most likely not able to see in a certain time
frame, as the client predicts the movement of entities
between updates from the server.

Another related use of spatial database is for an on-
line game server. Spatial databases are also employed on
the servers to cull updates to entities the client would not
be interested, in other words entities that the client cannot
see, or hear. This is slightly different for the server as in
addition to eliminating those entities the client will most
likely not be visible in a certain time frame. The client
predicts the movement of entities between updates from
the server, so just because something is not immediately
visible to the client, they may see the object based on
prediction.

The two popular examples of these tree structures are
the R+ and Binary Spatial Partitions (BSP) trees. The R+
tree is based on minimum bounding boxes, whereas BSP
tree is based on arbitrarily subdividing space. However
the BSP tree is generally considered simpler in most
respects than R+ tree, since BSP is unbalanced tree while
R+ is a balanced tree.

In this paper we propose to develop a system where a
three dimensional spatial database can be distributed
among multiple computers. This system should be
applicable across other special database applications such
as warehouse management and GPS systems. These
systems tend to employ more complicated tree structures
such as R+ tree, and have ability to perform spatial joins
and other database operations. Applying a distributed
system allows to reduce the per server bandwidth
requirements for network usage, and reduces the

 1

computational requirements for each server. This should
also be extendable to peer-to-peer systems.

The remainder of this section will deal with the
background information needed to understand the
environment of a multi-player game server. Section 2,
will deal with issues that need to be dealt with
distributing a real time game server. Section 3 will
outline the proposed network topology for the distributed
database and current problems. Section 4 will outline a
functional specification for the distributed system, and
outline the network communications that will be used in
the system. Section 5 concludes a short summary of our
findings and discusses different applications that using
spatial database systems.

1.1 Binary Spatial Partitioning Tree

A Binary Spatial Partitioning (BSP) tree is a method
of spatial partitioning, and the most popular tree type for
the spatial database systems for use with real-time 3D
graphics [Fuchs]. It is useful as it provides an efficient
method for determining interest and data can be returned
in a partial z order at the same time, for almost no
additional overhead. It is a binary tree structure that splits
space into nodes based on if an object is in front of, or
behind some arbitrary line, or plane, depending on
dimensionality. All polygons that are intersected by this
plane are then subdivided. All the polygons that lie along
the plane are added to the node at that level. All nodes
contain data that can be seen as concave in nature, so that
when the objects at that node are drawn the order the
objects are drawn in will not effect z-ordering. Figure
1shows a room that a BSP tree has been constructed for.
Note that no one polygon can be spanned in two
separated nodes. In the case where a polygon spans
multiple nodes the polygon is divided. For example in
Figure 1, line “b” is divided into multiple sections;
otherwise the line would be contained in three nodes.

 BSP trees have been used in a number of
applications, such as in many modern video games. As
an example Quake video game uses BSP trees not only
on the client end to properly render a scene, but also on

the server end to determine what the client would be
interested in. This is also a good example of an
application of a spatial database system for a number of
reasons. The first it is simple, most games use a BSP
trees, or a Quad or Octal trees. These are all non-
balanced trees and are relatively easy to implement and
understand. Secondly there have been many different
implementations of these systems, and are readily
available to evaluate. The third reason is that there are a
few open-source game engines available which will
allow to sort of a “look under the hood” and to see how
these are implemented, and what can we change to
distribute such a system. Communications between
server and client consist of unreliable communication
through a channel. The bandwidth of the channel is
limited as not to overload with more updates then it can
process, and as not to let the client use more then its fair
share of bandwidth. The server then is connected to a
master server. This master server just keeps a list of
game servers that are running, and clients query this
server in order to find out what servers are available to
connect to. The server provides a “heartbeat” to the
master server to indicate that it is still running, and/or
update its stats. Often the client queries the individual
server to find out what is its status, i.e. who is playing,
what are the scores, what is the current map, what is the
next map and so on.

 2 1a a

 1 c bg 11

h b 12e
f

bc 22

The Quake II game server is a good example of an
Internet game server. The game runs in a continuous
loop. The server first receives all the packets that are
available and pre-processes them. The second thing the
server does is to calculate all the ping times of all the
connected clients, then sends the ping times to the
clients. After that the server runs the “game frame”. The
first step is to increment the current frame number and
the current time. Next in this process is to update server
controlled entities, such as monster with artificial
intelligence, and projectiles. The next step is to loop
through all the players, running any event the client has
sent to the server, such as a fire, or move forward. The
next step is to determine the player’s interest, i.e. what
sound can the client hear, and what can he see. Next the
client message is sent. This consists of adding the data
that is to be multi-casted with the data that is specific to
the client, i.e. the data that the client is interested in. The
next step is to send a heartbeat to the master server if
needed, then reset the current state for next frame, i.e.
reset various flags and so on.

The data that is sent from client to server consist of
chat message to players, events such as move forward,
fire, and jump. Also service messages are sent such as a
disconnect message, change request to change teams, or
administrative commands, the server will check the client
privilege level for administration commands. The server
then sends the client’s information about what is in its
area of interest, plus global information. The client is

d d 1 2
Figure 1

 2

sent only what it is interested in, and only data on
entities. Entities are defined as every thing that is
essentially moving. Also this data is sent as delta
updates, meaning no update will be given for something
that has not changed in the previous frame and the
difference of the previous position is given as an update.
This makes it vitally important to keep a consistent time,
since delta updates are time dependent. Also updates to
the client’s current state are given, i.e. where the client is,
what is his status and so forth. All of this data is
packaged into a single datagram and sent to the client.

The data being communicated between a client and
server can be broken down into two groups for real-time
non-critical applications, such as many simulators or
video games. The first is high priority time dependent
data. This data is absolutely critical that it is handled
quickly. This mostly consists of events generated by the
client, i.e. the client fires a gun, client moves forward.
Movement and firing are critical in most games. They
have important role in determining if something was hit
or not, besides if movement is not smooth, the game will
appear shaky and degrade the user perceived speed of the
connection. However there are several non-time critical
events. Messages in a game are a key example, rarely a
user notices or even care if there are messages, it take up
to 500ms to be posted, the only thing that is important
here is that, the messages be kept in order. Also
collisions and damage determination while not as time
insensitive as messages, they can be done in a less timely
manner with out degrading user performance.

The communication between the client and server is
as follows: 1) The client sends the server a heartbeat, this
is a continuously signal, and the purpose of this is, to
provide the server a signal that the client still exist. 2)
The client sends events to the server. The events are
messages such as, move commands, fire commands, and
so on. 3) The server then sends the client at regular
intervals the updates to the current game state. The server
however does not send the whole state to the client;
rather it sends, what is determined as being interesting to
the client. These updates should be sent every 100ms at
least. The state provides information on the location and
status of every entity. The status of an entity could
include things such as the current pose of an object, or
any other attributes it may have.

Another example of communication for client server
communication is for GIS/GPS systems. These tend to be
more complicated in many ways than either games or
simulator type applications. A typical web based GIS
system can be divided into five components, 1) the client,
2) the proxy server, 3) the database, 4) information
server, and 5) the sockets. The client in GIS system will
issue queries to the proxy server. For example the client
may query a five mile by five mile block of Manhattan.
The client will be expecting to receive a satellite photo of
the five mile by five mile region. The client then would

have a number of functions to process the image, such as
an ability to perform a fly-over a section, or perform
some feature extraction on the image.

The queries are then received by the proxy server.
The proxy server stands a gateway between the server,
and one or a number of databases that may need to be
queried. The server once it determines which database
should be queried; it constructs the query in format
required by the database server, and sends the query to
the database server.

The database server is where the data is actually
stored. This tends to be based on an R based trees. The
server receives simple queries and returns the results.

The client can also connect to an information server.
This server is responsible for processing systematic
queries such as: “All hospitals in 20 mile radius of 2456
Dorr St. Toledo OH” or a nearest neighbor query such as
“Closest hospital to 2456 Dorr St Toledo OH”. This type
of server is also often multi-threaded as to process
multiple requests at one time.

The differences between the client server relations in
these two systems are substantial. In the real-time
environment the server usually processes queries in an
iterative manner. For each frame the server receives
updates from the client, then processes the said request
from the client. The server can often assume what the
client wants every frame, and so are rarely any real
queries in this type of system. Also queries processed in
a non-real time system can be processed in a non-
synchronous manner, the order in which they are
processed is not that important in this type of application.
While as the real time application the order in which
things are processed can have great effect on
environment.

2. Issues

Beyond distributing our spatial database we most
worry about several specific issues dealing with the fact
that we are operating in a real time environment. These
primarily deal with the fact that we must maintain a
somewhat consistent state among all the clients/servers,
and we must also be concerned with the fact that we have
limited bandwidth available to each server.

2.1 Consistency

A major issue with real time distributed systems is
consistency. The main problem is that we are not really
dealing with data in real time but is delayed over the
network connections at varying time, anywhere from 2ms
to 500ms. It is important that we keep time over the
system consistent, that every system must have the same
time. With the clients sending data that is delayed as
much as 500ms, or is lost in transmission all together.

 3

What we must do when we have an inconsistent state is
to roll back the system to a consistent state. Also we
must have the system state consistent as well. When a
user character dies, every one must know he is dead, and
all the servers must agree that, the character is dead. If
this is not the case, then the user may be spawned at a
new location, and then still be alive at its old location.

The initial proposed network is fully connected. Each

server will have a portion of the BSP tree that it is
responsible for. This will complicate client as it will have
to determine what servers will contain data that it is
interested in, and conversely determine what servers
would be interested in its events.

The BSP tree will be subdivided splitting branches of
the tree amongst the servers, with each server being
responsible for all children beneath the root node. The
root node of the server will be the node that is considered
its root, and it will be responsible for all children nodes
of its root. Also servers may have servers under its root
node; it will not be responsible for the children nodes of
this server, and its root. The server may have some
responsibility of its children servers. Also no server will
branch across two limbs of the BSP tree, and will not be
responsible for any nodes that are not children of its root
node. One question that remains now is; how do the
servers communicate among themselves? Should the
hierarchal model used to assign the areas of
responsibility from the BSP tree to be preserved, or
should the network be completely connected? At this
point a completely interconnected network seems to be
the better alternative as it would be faster to eliminate the
hops. As a message would have to make to just only one
hop, however for administration purposes using a
hierarchal model may be ideal.

2.2 Latency

The primary goal of the systems is to provide a system
with low latency; it has been found that ideally the
latency of the client connection to server should not
exceed 100 ms, although latency of up to 350 ms can be
considered tolerable. High latency can be caused by two
main factors that we can at least control. First, is that
demand on bandwidth needed to communicate to all
clients is greater then the amount of bandwidth we have
available. Second cause is that the server cannot handle
the computational load required to make a timely
response to the client’s request.

2.3 Interest

Interest is the data that is pertinent to a client, and only
that data. If another player is hidden behind a wall, and
out of what would be visual to the end client user, the
client does not care, and does not need to have the data
about the player that is obscured from the view of the
client. The well known Software product Quaketm was
able to reduce the amount of data that would needed to
be communicated to the client by about 70% by
determining what data the client would be interested in.
In a distributed system where each server has an area that
it is responsible for, the client now has to determine
which servers are interested in its generated data. With
out interest determination the distributed system would
simply be just multiplying the amount of data that is
being communicated.

One problem that persists is that, events may bridge
over multiple servers. For example a client fire a bullet
that traverses multiple areas of responsibility. The client
would be responsible for sending the bullet entity to each
server to inform them, that the bullet crosses its area of
responsibility. However this now presents us with a
problem of collision detection. If a bullet fired across
multiple areas of responsibility and an event is sent to
each server, and there is a collision in servers. Then how
and where is it determined which collision occurred first?
One possible solution is to use a mirror server. The
mirror server will contain the entire game/simulation
state. The mirror server will determine which collision
occurred first, and then report back to the servers and
client or clients involved which hit occurred first. This
will of course take a bit longer to determine if a hit
occurred but in general damage determination is
considered a lower time priority, i.e. lag is more tolerated
here. The mirror server will also be responsible for
maintaining some degree of fault tolerance. If a server
shuts down it will be responsible for re-assigning its area
of responsibility, and sending the state to the effected
servers for their new regions.

2.4 Bandwidth

It is hoped that by distributing the regions responsibility
to specific servers; we can distribute the bandwidth usage
of a number of servers, therefore reducing the bandwidth
needs and computational requirements for each server.
The bandwidth requirement for a multi player game
grows at the square number of joining players to the
game. This is because we have to send all data about
every client to every other client. With interest
management this can be reduced considerably, but still
the bandwidth requirements for a game server can be
quite high, and grow at vary high rates.

3.1 Boundaries

Some entitles create splash effects, for example an
explosion. Although the explosion may occur in one

3. Proposed network topology
 4

region it may affect other entities on other servers.
Another issue is when an entity may be bisected by
boundaries of two regions of control.

Possible Solutions: Have a mirror server make final
decision on what happens to said entity. If on both
servers at the same time an advent occurred involving the
entity, the mirror server would “brake the tie”, and
determine which advent has priority if they are in
conflict. Another way would be to arbitrarily assign
control to one of the servers, or classify different events
with a priority level higher priority wins, same level of
priority randomly pick winner.

Another possible solution is to have a shared virtual
leaf, which the server maintains for boundary leafs. The
leaf would be shared between the two servers, and they
would only pass the control of the entities in the
boundary node. Each server would then maintain a copy
of this virtual node

3.2 Determining Tree Distribution

Another issue is how to distribute the BSP tree among
the distributed game servers. Issues include deterring
how much area is given out per branch assigned to each
server, how much of an area is used, i.e. how many users
will be querying it. Also servers should be distributed so
that their neighbors have the smallest latency to them. A
few algorithms will have to be developed that take into
account latency between servers, popularity of regions,
i.e. how often it is accessed.
Clustering - Clustering should be able to determine areas
with a high density of clients. By determining these
clusters and making sure that these clusters are not split
between two servers we can reduce the amount of hand-
over that has to be done between servers.
The two popular techniques with strong promise for
applications to the need for clustering in real-time spatial
databases are fuzzy c-means clustering [2], and BIRCH
[3]. Fuzzy c-means clustering is a modification of c-
means clustering with the addition of fuzzy clusters in
which members can have partial membership to multiple
clusters. BIRCH is a hierarchical approach to clustering.
It provides a method for culling data points that will not
likely have a major effect on clustering, and data points
that far enough away from clusters centroids that they are
extremely unlikely to effect clustering.
Another work on clustering that specifically deals with
spatial data was developed at the Universities of Vechta,
and Bonn for use in their GeoToolKit. This clustering
technique used the Euclidean distance between objects
and centroids of clusters in an iterative manner, for
determining clusters.
Two specific things that have not been dealt with the
previous works, which have large implications on the
proposed database system, are time and collisions. We
are dealing with temporal data which change rapidly with

time. It is in our interest not only to determine where
clusters of entities occur but also to try to determine
where they may move to, and determine clusters that are
not relevant to our intended purpose. Another issue to
deal with, is the distance. Euclidean distance is usually
used in clustering. The problem with using Euclidean
distance without respect to collision detection is that two
entities that may be close together using Euclidean
distance can be rather far apart from each other when the
shortest path between the two entities is found. Also
calculating the shortest distance between entities and
centroids may be too costly to perform in a relatively
short time frame. A more cost effective approximation
may be needed.

3.3 Network Map

One issue is, how to let every one know what the
current topology of the network is, what servers are
mapped to what leaves of the BSP tree, and if the server
topology is dynamic what is the most effective way of
directing change in topology and communicating with all
parties.
 Solutions: One solution is maintaining a
“blackboard” solution on the master server that is
available to every one. Another way is to have servers
send change of address messages to clients. A third
method is to have the master game server send messages
directly to all parties, requiring them to maintain an open
connection to the server. Also a protocol will have to be
developed to describe the topology.

3.4 Convergence

What happens if all of the clients converge at one area
in our world space? This looks to be an inherit drawback
of the proposed. It may be necessary construct a world
space and/or game rules that would lessen the likelihood
of this happening.
 Solutions: One solution is to have cache
available on other server with low load; the cache server
would be given a copy of the game state, and a list of
clients to send packets to. The draw back of this is that it
adds an extra step to the end client, this can double the
time needed to communicate with the client. Another
solution would be to further partition the region with
highest load.

3.5 Regions of Interest

One problem is how we can communicate with the
servers that a client is interested in their data. The client’s
location might not be in the given servers regions of
control. The server would need to know the location of
the client in order to properly do a traversal of it BSP tree

 5

to determine what type of data it has that a client could
be interested in.
 Solutions: The client could multi-cast its position
to all the servers which would be interested in, or simply
all servers. Another suggestion is to have the server that
contains the location of the client to multi-cast the
client’s position to all other servers, or to just the server
it would be interested in. Another suggestion is to have
the clients make requests to all the servers.

3.6 State Consistency

 One major problem is trying to keep the state
among the servers consistent they should all be on the
same frame. It should be remembered that there are two
different times; the wall time and the simulation time,
although both the real time and simulation time must be
similar. Another problem is that everything is delayed by
a certain amount of latency due to latency involved with
network communication.
 Solutions: One solution is to have the master
server maintain a heartbeat informing all the servers and
clients the current frame. Multiple network protocols
exist to address these problems; these should be looked
in great detail.

3.7 Multi-Server Collision Detection

 One problem is determining collision detection
for events that span over multiple servers. For instance if
we have a bullet that is fired, that crosses multiple
regions of control. The problem is the first collision for
the bullet (assuming the bullet does not penetrate what
ever it hits), is the only collision that counts, and other
collision would be voided.
 Solutions: One solution is to have a centralized
mirror server make the decision, although this would be
add some time delay due to the additional
communication required. A second solution is to have the
server relay messages stating that there was no collision
that took place, and propagating the no collision
messages until a collision occurred. A second method is
instead of having the bullet event multicast across all the
servers; simply pass the bullet from server to another
server.

3.8 Fault Tolerance

One problem with maintaining multi-server
environments is that when more servers are added, this
increases the probability of one of the servers failing. In
addition game servers are often taken down for multiple
reasons. The problem is we must keep a back up of the
server state, and reassign various responsibilities.
 Solutions: There are multiple ways of address
this issue. One way is to maintain a single backup server

that keeps a back up of the entire game state. Another
issue is what happens when the game master server goes
down. The various game servers must all agree that the
master game server is down, then pick one of the game
servers to run a new master game server on it, it also may
be necessary to reduce the load on that game server.

3.9 Delta Updates

Delta Updates are used to a great deal in multiplayer
games in order to reduce the amount of communications
required. The problem is that the current frame number
and timing information most now be maintained over
multiple servers to properly form the delta update. This
will most likely not pose a major problem as this has
already been solved for the client to server
communications, and server to server should just be an
extension of this.

4. Functional Specification

The functional specification for the program calls for
the development of three processes, client, game server,
and master server. The client is responsible for
interacting with the user and displaying the game state to
the user. The game server is responsible for updating the
client with the current game state, and receiving from the
client its updates. The master server is responsible for
setting up the distributed environment. It is responsible
for determining what game server is responsible for what
region of the world space, and many other tasked that
need to be centralized in nature.

 4.1 Client

The client is the end user program. The client
program is responsible for displaying graphics, taking in
input, playing sound and so on. The client receives
updated to the game state. The client also must figure out
what servers to send its updates to. The client contains
the following processes:
Listener: listens for incoming packets from servers, 1 for
each server
Broadcaster: Sends constructed packets out to respective
server
Packet preprocessor: This is an important process. It
figures out what data various servers would be interested
in, constructs the data packets from this data, and then
sends the pre-constructed packets to the Broadcaster.
Packet post-processor: This process processes all the
received packets, and takes necessary actions based on
that, this could be from updating the topology map,
updating the game state, and so on.
Game Engine: This runs the game; it is in a loop of
processing data than updating the games state, handles

 6

user input, and displays the game. For the most part this
process is the game.

4.2 Server

The purpose of this program is to enable multi-player
game play. Its job is to take in user input, processes a
game state, then update the users on this game state.
These servers are intended to be distributed where they
are only responsible for a portion of the game state, more
specifically they are responsible for a portion of a BSP
tree, that which is used to store the entirety of the whole
game state. This program will responsible for all A.I.,
and computer controlled entities. Also the server will
have to pass entities on to other servers when a computer
controlled entity passes on to another region of control.
The following are the main components:
Listeners: listens for incoming packets from various
sources, other server clients, and master game server.
Broadcaster: Sends the packets out to various sources
mostly to clients in its area of influence, but also to other
servers, and master server.
Post-processor: This processes the incoming packets,
including making decisions based on multi-server events.
Game Loop: This runs the games, it’s in a loop updating
the game state, determining the user interest, and
constructing packets to be sent.

4.3 Master Game Server

The Master Game server is responsible for managing
the entirety of the game environment, and may reside on
one of the servers but there will be only one per game.
The responsibility of this program is two insure
consistency across game, and excepting new servers and
clients. The main components are:
Server manager: This program accepts new servers. This
process also tracks server load, and possibly directs
caching systems. This would involve instructing servers
where they can cache some data. This function may be
distributed among the servers. This program also decides
when repartitioning the world space is required. Then it
sends a request to the topology manager to have this
done.

Topology manager: This process is responsible for
partitioning the BSP tree, and assigning the areas of
responsibility.

Client manager: This process is responsible for
handling the new clients, client disconnect events, and
assigning client spawns, i.e. when a client begins a new
life, i.e. deciding where the new client will begin his new
life.

4.4 Network Communications

The Quake II engine already contains much of the
communication facilities that will be needed for the

actual IP communication. Work will have to be done on
actually creating the application layer of the system, in
knowing where to send data, and which data to send.
Also where the facilities do not already exist; systems for
packaging certain data to be sent, than reassembled must
be created. The actual communications will occur using
both reliable and unreliable communication systems over
an IP network. Certain data must be sent through reliable
means, other data can be sent using data grams. The
advantage of using data grams is that it uses less
bandwidth as no acknowledge has to be sent to the
sender. The downside is that it is unreliable, data will get
lost. For most data in the game environment this is not a
real big problem. An entity may appear out of place to a
client for a few frames but this is acceptable if the
occurrence is rare.

There will be three types of communications. The first
will be client to game server, this will not differ a whole
lot than what is seen in a single server environment and
will change a little. The second will be game server to
game server. The server will have to communicate to
other servers the locations of clients on the server, that
the client would be interested in the data on its server.
For instance, if a client is on server A, but can see part of
the region located on server B, server A would forward
the location of the given client to Server B. This can be
with unreliable communication, using the delta update
system already employed by the quake engine.

Entities will have to be passed between servers these
entities will have to be sent with reliable communication,
as when they are passed to the new server, that server is
responsible for that entity. If that entity is lost in the
communication process the entity will either dropped
from the game, or become a zombie.

Another level of communication will be from server
to master server. This will include instructions as to new
spawn points (where a new client is initially placed, or
after a new life) for clients, new clients in the game, and
new information on the server zone of responsibility for
the BSP tree. This information will be kept in a two
dimensional array with each node number, and its
corresponding server that is interested in the data. A node
labeling system must be implemented for diversion of the
BSP tree. There are many systems preexisting systems
available for this the labeling of tree structures. All
communication on this level will have to be done in a
reliable manner. The master server will also
communicate and relay certain administration commands
to all servers. This will not change from what is already
implemented in Quake II engine; the master server will
just relay such commands to all game servers.
 The final type of communication that will have
to happen is from client to master server. This type of
communication will be reliable for the most part. Chat
messages will be communicated, and notices that the
map is changing, and the score will be communicated

 7

between client, and master server. The only thing that is
different from the current single server configuration is
that the server will now have to communicate a lookup
table for the node-server pairs. This will be updated, and
will have to happen in reliable communication.

4.5 Tracking of Objects

One issue when dealing with objects that move in
space is, how do we track individual objects. This brakes
down into two separate issues, one where we have some
control of the objects in the environment, and another
where we can not control the objects.

The solution to tracking objects that we have some
control over, or they transmit heartbeats is simple
enough. With this we must come up with an ID
numbering scheme. We can either have a master server
that assigns and manages these addresses, or assign
address ranges to servers. In a simulation or a game as
master server can assign the ID, and assign the initial
location of the object.

For scenarios where we do not control the objects, but
they can send a unique ID, we either assign the ID to the
object by either assigning a ID from a range of ID
numbers that a given server is assigned, or by requesting
a new ID number from a master server, and retransmit
the ID to the object to transmit.
 The second scenario for tracking the objects is
when we can only observe the location of objects and not
have any actual communications between the objects,
and servers. This leads to a difficult problem, how do we
track these objects in time as they move. The first thing
we must do is to assign the objects ID numbers when we
first encounter them, this varies little from when we
assign ID numbers to objects that can send heartbeats to
our servers.

The hard part is how to differentiate the objects after a
time interval in which the objects have moved. In order
to differentiate between the objects we need a time
resolution which is high enough than the distance an
object can move in the given time interval. For this we
must be able to assume that the object closest to another
object in a previous time frame is the same object. We
can further refine this by taking into account from the
maximum acceleration of an object, its maximum rate of
deceleration, and any other given physical attributes that
would describe the motion of the object. We would have
to solve a series of equations to try to match objects
between frames. To find out which object could be in a
given location from its previous location in a given time
interval. This of course leads to some problems, what
happens if the set of equations we solve to describe
where an object is in the previous frame to the current

frame produces multiple possible answers. In such cases
we may not be able to track the individual objects and we
would have to choose from the list of possible solutions.
We may be able to increase the possibility of a correct
identification if we can also use some attributes of
objects not related to the movement of the objects such as
size color or any other attributes. Another way of
possible increase to the probability of a correct
identification is to apply knowledge base on usual
movement patterns of the objects. An example of this is,
if we have two objects that could possible fit for two
objects in the next frame. If one object is in the same spot
as one in the previous frame, and the other is elsewhere
close by, we could possibly assume that the two objects
in the same spot in the two different frames are the same
object.

A continued problem is how do we pass the tracking
of objects between servers. This comes as an issue in that
we need to know the previous state of an object in order
to try to determine its assigned ID number. A solution for
this is for servers to share a boarder area and use this data
to match up ID numbers and objects. An additional
problem when we have the possibility of multiple
matches to objects and ID numbers. The problem is when
the two servers make different ID/object matches. With
this we must come up with a method for the two servers
to agree on the possible matches.

5 Conclusions

The focus of this paper was development of a
distributed spatial database system for a three
dimensional game server. A video game such as Quake II
was chosen for this application due to the relative
simplicity of the database system that it uses, and
availability of open source. There are a number of
applications of spatial databases; such applications
include GPS systems, satellite imaging systems,
CAD/CAM, VLSI, visual perception, robotics, and
autonomous navigation. The bulk of the effort of this
system is to track moving entities in a world space, and
passing these real-time objects. Although most spatial
database applications do not have real-time objects, they
do have the passing of objects from different areas of
control. The system developed to partition dataset among
different servers in one that can be applied to different
spatial database systems, and many of the same concerns
exist across most of the different spatial database
systems.

 8

 9

References:
[1] H. Fuchs, Z.M. Kedem, B. Naylor, On visible surface

generation by a priori tree structures, Comput. Graph.
14(3) 124-133, 1980.

[2] D.E. Gustafson and W.C. Kessel., Fuzzy clustering

with a fuzzy covariance matrix. Proc. IEEE CDC, pp
761-766, 1979.

[3] T. Zhang, R. Ramarkrishan, M. Livny BIRCH: An

Efficient Data Clustering Method for Vary Large
Databases, 1996.

[4] M. Bruenig, A.B. Cremers, W.Muller, J.Siebeck New

Methods forTopological Clustering and Spatial
Access in Object-Oriented 3D Databases, 1996.

[5] Ralf hartmut Guting, An Introduction to spatial

Database systems, VLDB Journal, 3, 357-399, 1994.

[6] D. Pullar, M. Egenhofer, Towards formal definitions

of topological relations among spatial objects,
proceddings of the third international Symposium on
Spatial Data Handling, Sydney, pp 230-236, 1988.

[7] J. Goldstein, R. Ramakrishnan, U.Shaft, and J. B. Yu.,

Processing Queries by Linear Constraints, in
proceedings of the PODS conference, pp 257-267,
1997.

[8] O. Gunter and E. Wong, A Dual approach to detect

polyhedral Intersections in Arbitrary Dimensions.
BIT, 31(1), pp 3-14, 1991.

