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Abstract: - Power electronic systems are becoming increasingly important in marine engineering applications 
and their capability is stimulating new concepts and developments in electrical machines and distribution 
systems. A consequence is the increasing use of DC fed inverters. One problem with dc-based systems is that 
they are susceptible to instability, particularly when a constant-power regime is operating. This paper 
demonstrates that an approach to this problem, based on the root-locus and frequency domain techniques, is 
well worth consideration. 

Key Words: DC Distribution, Stability, Root Locus, Nyquist Plot, Bode Diagram, Time & Frequency Domain 
 

1 Introduction 2 The negative impedance 
Developments in power-electronic devices in the 
past couple of decades have created a renaissance 
of interest in researching, designing and testing 
novel electrical machines and power systems. 
Much of the new thinking, generated by these 
activities, is of considerable current and potential 
interest to the marine engineering community. The 
form of power distribution for propulsion and 
ships services is a key element of the overall 
architecture for any marine electrical power 
system and it is being explored at present whether 
this should be ac-ac, ac-dc, dc-ac or dc-dc. Much 
of the evolving thinking, so far as the marine 
industry is concerned, is chronicled in a series of 
papers, spreading over a decade now, on the 
Electric Warship [4,5,6,7,8,9]. Many conventional 
methods of analysis and design are not readily 
applicable to these proposed systems. One of the 
problems with dc systems is that of stability. They 
have a propensity to exhibit negative-impedance 
instability, particularly when seeking to supply 
constant power loads [10]. There has been some 
significant work over the last 15 years, or so, in 
this area by, for example, Middlebrook [10],and 
Sudhoff et al [11] which is based, essentially, on 
frequency-domain techniques. This paper presents 
a method for examining stability using root locus 
and frequency domain methods. 

It is easily appreciated why negative-impedance 
instability, in a dc system, might be of concern by 
considering a system delivering constant-power to a 
load. In this case we have, using the usual notation, 
P = IV = constant, (1) 
Geometrically this can be represented by the branch, 
in the first quadrant, of a rectangular hyperbola in 
the V-I plane as in Figure 1. Taking differentials of 
equation 1, we have. 
∆P = V∆I + I∆V = 0, 
or, 

say,R,
I
V

∆I
∆V

−=−=
 (2) 

That is, the incremental resistance is negative and 
further varies in magnitude with the point of 
operation of the system. 

3 Basic circuit arrangement  
The basic circuit arrangement considered is that 
shown in Fig. 2, where, in effect, the voltages and 
currents shown are the incremental values. It is 
firstly necessary to establish an expression showing 
how the value of V, the voltage existing across the 
terminals where the source and load meet, behaves, 
using perturbational quantities about some given 
operating point. This is easily done, for example, 
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using Millman's circuit theorem [14] whereby 
there results, 
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where, 
Ys = Ds/Ns  and  Zs = Ns/Ds 

Yl = Dl/Nl  and  Zl = Nl/Dl 

The Ni's and Di's are polynomials in s, the Laplace 
variable. Substitution of these in equation 3, after 
some minor algebraic manipulation, leads to some minor algebraic manipulation, leads to 
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Since neither Nl nor Ds have any roots in the right-
half phase, stability is determined by the roots of, 
1 + Zs Y = 0 (4) l

For a stable system all these roots must be in the 
left-half of the complex plane. Determining the 
roots of such an equation, as one of the parameters 
is varied, is known as determining the root-locus 
[12].It is convenient to do this graphically 
(nowadays utilising computer graphics). This 
technique has been exploited in the main-stream 
of control engineering work for decades. It is, of 
course, known as the root-locus technique (13). 
However, applications are not restricted to control 
activities. 

4 The Circuit 
The circuit discussed by Sudhoff et al is shown in 
Fig. 3 where the voltage across the load is easily 
established to be governed by the equation 

r)(RL)s(CRrCRLs
RVV 2

s

−+−+
=

 (5) 
Note that, R,C,L, r are all positive quantities. Thus 
the stability can be examined by finding the 
position of the roots of the denominator of 
equation 5 in the complex plane. However, before 
this is done it is worthwhile doing a Routh-

Hurwitz analysis [12] to determine the limits of 
stability as specified by relationships between the 

parameter values. Consider the Routh-Hurwitz table 
for this denominator. 

Zs, Ys Zl, Yl

Vs VlV

Zs, Ys Zl, Yl

Vs VlV

 
Figure 2: The basic circuit arrangement 

Figure 1: Constant Power 
Operating Characteristic 

s2 CRL (R-r) 
s CRr-L 0 
s0 (R-r) 
According to the Routh-Hurwitz criterion the 
condition, for stability is that there should be no 
changes in sign of the items in the first column of 
the table. Since CRL must be positive then (CRr-L) 
and (R-r) must also be positive for stability  
That is: 

Rr
LC >  and R > r. 

Critical conditions occur when these inequalities 
change to equalities. This result could be obtained 
from quadratic equation theory ; however, for 
higher-order systems the Routh-Hurwitz criterion 
can be a very effective and useful technique, hence 
the demonstration here. The above two inequalities 
are, of course, exactly as those specified by Sudhoff, 
[11]. Unfortunately the Routh-Hurwitz criterion 

indicates only if a system is stable or not, it does not 
give any other notion of the system's behaviour. And 
this is exactly where the root-locus demonstrates not 
only under what conditions the system is stable, but 
gives information on the margin of stability and of 
the characteristic response to be expected from the 
system. Both of these, of course, depend on the root 
locations in the complex plane. 

L ,  r

-RV s V C

L ,  r

-RV s V C

 
Figure 3: The Circuit 
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From the circuit arrangement in Fig. 3, the 
component values chosen were r = 300mOhms, L 
= 10mH and R = 24.3 , where the system is 
delivering, under constant power conditions, 3.7 
kW at 300V, fig. 1. The problem is to determine 
suitable values of the capacitor, C, to produce 
acceptable behaviour. We can see that, from the 
above inequalities, the R>r condition is satisfied, 
and that the critical value of C is given by, 

Ω
0,

r)CRs(Ls
r)RLs(1 =

+
−+−

+
 (7) 

which has the form used in control engineering, 
shown previously, as, 

0
D(s)
N(s)k1 =+

, 
with the 1/C term playing the role of the k term. This 
is also the form required in exploiting MATLAB. At 

this stage the root-locus commands for the computer 
programme MATLAB (version 5.3) were utilised in 
displaying this root-loci on a VDU. The plot 
resulting can be interrogated for specific value of k 
(i.e.1/C) and the corresponding roots. This whole 
process can be done with less than ten lines of 
computer code. 

1.37mF
rR
LC ==

 

 
Figure 4a: Root Locus for varying C 

 
Figure 4b: Detail of Figure 4a 

For this example, in Sudhoff’s paper [11], using a 
development of the Nyquist criterion, it is 
concluded that C = 40mF is a stable situation, and, 
C = 0.5mF, represents an unstable situation. This 
is exactly what would be expected from the above 
result. So entering the specific values of the coefficients of 

the numerator and denominator polynomials of 
equation (7), for the problem in hand, in to the 
rlocus (n,p) command of MATLAB, leads to Fig. 
4a. Because of the values of the coefficients, this 
plot is interesting but not particularly useful for the 
purpose required. The values of the two poles of the 
equation 7 are actually situated on the real axis at -
30 and 0 but they look to be coincident in Fig. 4a. It 
can be seen, however, that only a small portion of 
the root-locus, that to the left of the imaginary axis, 
indicates a stable region. By using the zoom facility 
provided by MATLAB the area of interest, as shown 
in Fig. 4b, can be examined in detail. Since roots of 
the equations, if complex, occur in complex pairs the 
part of the root-locus below the real axis is shown 
notionally. 

Obviously, for stability of some acceptable 
degree, C, must be greater than 1.37mF. The 
question remains as to what values of, C, give 
desired or, at least, acceptable behaviour. 
It would be convenient if there was a graphical 
way of displaying how the roots of the governing 
equation vary as C is varied. This is precisely 
what the root-locus plot achieves. These roots 
being, of course, the roots of the characteristic 
equation for the system. 
Now the denominator of equation 5, when equated 
to zero, is the Laplace transformation of the 
characteristic equation, viz, 
RCLs2 + (CRr - L)s + (R - r) = 0 (6) 
This equation is not presented in a form suitable 
for the application of the root-locus technique, but 
simple manipulation renders it into such a form; 
.i.e 

The rlocfind command provided by MATLAB 
prints out the value of any roots specified by the 
cursor on the computer screen, as well as the value 
of k (or 1/C in our case). Fig. 4b shows seven 
specific points on the graph - the figure legend 
specifies the values of C found for these particular 
points and the corresponding damping factor [12]. 

C[RLs2 + Rrs]- sL - r + R = 0 
or, 
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What is seen immediately from this plot is that 
increasing the capacitor value increases the 
damping effect and decreases the frequency of the 
oscillation. As will become apparent, roots along 
the real axes are achievable only with very large, 
and unrealistic, values of capacitance. 
Although one can glean from the position of the 
roots the sort of response expected from different 
values of C, MATLAB has a facility for 
displaying the response to a unit-step and unit-
impulse disturbing a system. In the present 
application we wish to disturb the system in some 
way to observe what happens. As an illustration 

this contribution shows what happens when a 
step-disturbance is introduced in the supply 
voltage. Because of the MATLAB facilities this 
can be simulated with very little effort on the 
designer's part. 
Fig. 5a predicts this response when C = 0.44F. 
The response for this value is critically-damped, 
ie. it has two equal real roots. However, this 
capacitor value is very large. Although the root-
locus has branches along the real axis, the roots 
here can only be obtained with even larger 
capacitor values, and so are of very limited 
interest in practice. Fig 5b predicts the response 
when employing a capacitor of 8.1mFvalue. The 
response is now oscillatory, over-shooting by 
about 60%but the transient has virtually died out 

in 0.45 s.. Fig 5.c is drawn for a value of C equal to 
2mF and the frequency of the oscillation has 
increased markedly from that of 8.1mF case, Fig 5.b 
and it is seen to have a much more oscillatory 
character. The overshoot is some 95%. Fig. 5d 
shows the result obtained using a capacitor of value 
C=4.1 mF. The overshoot is about 82%, but again 
the transient is effectively over in 0.5s. The value of 
the capacitor at which sustained oscillation is 
predicted is C = 1.37 mF. Fig. 5d indicates the 
response for a value of capacitor of1.4mF, slightly 
above this critical value, but continuous oscillation 
is seen to be very close indeed. 

 
Figure 5a: Time response. C = 0.44 F Figure 5b: Time response. C = 8.1 mF 

 

T
c
c
t
i
s
c
e
T
t
r
p
t
t
2

4 
Figure 5d: Time response. C = 1.4 mF 
Figure 5c: Time response. C = 2 mF 

his series of graphs showing the behavioural 
hanges with decreasing capacitance is what one 
ould roughly predict from a preliminary viewing of 
he root-locus curve. The root-locus not only 
ndicates critical values of components to ensure 
tability, but indicates at a glance, the main 
haracteristic features of the responses to be 
xpected. Two features are particularly interesting. 
he first is that a change of capacitance from 0.44F 

o 20mF changes the real-part of the characteristic 
oots from 15s-1 to 14s-1.   However, the imaginary 
arts change markedly. The second feature is that in 
he stable region where the locus is moving rapidly 
owards unstable behaviour, for example, from 
0mF to1.4mF, the decay decreases very markedly, 



but the oscillatory nature of the responses do not 
change much in frequency. 

5 Frequency Domain Techniques 
The root locus is essentially a time domain 
analysis technique and indeed one of its main 
advantages is in being able to develop some 
understanding of the likely time domain 
behaviour. The root locus assumes that an 
approximate knowledge of the system’s governing 
equations are known, which may not be the case, 
and, even if these are known, then for higher order 
systems the technique becomes unwieldy and 
therefore less attractive. However, these 
disadvantages can be overcome by using other 
control engineering techniques such as Bode 
diagrams or Nyquist Plots. These frequency 
domain techniques can again be used in the non-
control context of electrical power systems. As an 
illustration, this section will use the same circuit 
given in Fig 3. The celebrated Nyquist stability 
criterion deals with determining whether, or not, a 
polynomial equation written in the form, 

( )1 0G s+ = , 

has roots situated in the right-half plane of the 
complex plane [12].  The criterion was originally 
developed in the 1930’s as a means of predicting 
the stability of amplifiers employing feedback. It 
subsequently became established as a major topic 
in feedback control studies, where G(s) generally 
represents the open-loop transfer function of the 
system.  Nyquist theory development involves the 
application of complex-variable theory – in 
particular contour integration.  Mathematically it 
is a topic in polynomial theory, and feedback 
systems analysis may be viewed as an application 
of this theory.  The practical significance of the 
Nyquist theory is that by plotting on the complex 
plane, the frequency-response function locus 
(G j )ω , as ω  goes from 0 to , and noting this 

locus’s disposition, relative to the  point, 
enables the stability to be assessed.  Simple rules 
have been established in the control literature for 
actually doing this [13].  These rules differ 
depending on whether, G(s), represent a minimum 
phase or non-minimum phase system. In addition, 
if the system is stable, then the closeness of 
approach of the G j

∞

( 1, 0j− )

)( ω  contour to the 

point gives a notional indication of the 
system’s response, to a disturbance, that is to be 
expected, e.g. oscillatory, sluggish, etc. Whilst the 
Nyquist diagram is excellent for qualitative 
discussion of system behaviour, it is not 

particularly convenient for quantitative studies.  For 
these, Bode diagrams are superior normally (12). 

( 1, 0j−

Note that ( )G jω can be written in polar form as,  

( ) ( ). ,G j exp jω θ= Η  

where, Η and θ are both functions of ω , the 
frequency.  Also note that  

( )ln lnG j jω θ= Η + . 

Bode diagrams are no more than a plot of Η (in 
dBs) against the log ω , and a second plot of θ 
(usually in degrees) against log ω .  Normally these 
two plots are plotted one above the other, Fig. 6 
shows the Bode Plot for a case of C =  1.4mF which 
matches the root locus plot shown in Fig 5.d. The 
advantages of going to this seemingly complex 
plotting procedure are discussed, in detail, in almost 
every elementary control text book [12].  Suffice it 
to say that it is just an equivalent way of drawing a 
Nyquist plot. If consideration is given only to the 
condition where the denominator of, G(s), has no 
positive real-part roots, a common condition, then 
there are two points on the Bode diagrams of 
particular significance.  The first is the value of the 
gain at the frequency where the phase has reached –

1800.  For stability, this gain must be less than 0dBs, 
at this frequency.  This value is known as the gain-
margin, i.e. it is the increase in gain required to 
make the system go unstable. In a similar fashion the 
phase-margin is measured at the frequency where 
the gain crosses the 0dB point, and it is the increase 
in negative phase that would be required to make the 
phase –1800, at this cross-over frequency.  Thus for 
stable systems both the gain- and phase-margins 
must be positive. As can be seen from Fig 6, the 
value of C = 1.4mF is close to instability, both phase 
and gain margins are close to zero. While, generally, 
it is difficult to provide a quantitative correlation 

Figure 6: Bode Plots for C = 1.4 mF 

)
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A further advantage of the frequency response 
approach is that, if measured frequency response 
data is available, the design may be done using these 
directly i.e. the mathematical form governing the 
behaviour may be unnecessary. 

between these two margins and the time behaviour 
of the system, various rules-of-thumb have been 
devised.  For example, some given values of gain- 
and phase-margins combinations are known  to 
produce, usually, acceptable time responses.  
Indeed, specifications for control system 
performance are often drawn up in terms of these 
two parameters. Further if the system response is 
dominated by 2 complex conjugate roots it is 
possible to estimate the damping factor and nω  
from ζ  and mφ  [15]. 
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