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Abstract: - A neuro fuzzy control algorithm for planar robotic manipulators is developed in this paper. This 
control algorithm is able to handle uncertainties, disturbances or unmodeled dynamics. Asymptotic stability of 
the equilibrium state of the control system is shown by use of direct Lyapunov method and Barbalat’s Lemma. 
A series of simulations confirms the algorithm goodness. 
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1   Introduction 
A main concern of robotics applications is to find an 
effective controller to achieve accurate tracking of 
desired motions. Several existing control methods 
can be used in the case that the manipulator 
parameters are known in advance. However, in the 
presence of parameter uncertainties, the many of 
these control techniques fail to track the desired 
motion satisfactorily. 
Hybrid control techniques that combine fuzzy logic 
and conventional control to design fuzzy logic 
controller can offer better control performance of 
complex systems. The rationate behind this control 
approach is to mix, in a balanced form, model-based 
control techniques with fuzzy logic schemes. 
Applications of this philosophy to control the motion 
in joint space of robot manipulators has grown in 
recent years. The classical fuzzy controllers in 
literature [1] [2] are based on fuzzy tuning 
algorithms to select the Proportional and Derivative 
(PD) gains of model-based controllers according to 
the actual position error. In contrast with the use of 
fuzzy logic to help conventional control schemes by 
means of fuzzy tuning or fuzzy feedforward signals, 
one important application of fuzzy logic is as direct 
fuzzy controllers where the control actions are 
directly computed by the fuzzy controller. 
In this paper a motion tracking controller for robot 
manipulators based on a combination of a model 
based technique and a fuzzy scheme is proposed. 
This paper is organized as follows.  
In  Section 2 there is a description of the robot 
dynamics and fuzzy motion tracking control. The 
complete control structure is composed by a fuzzy 
controller plus a full non linear robot dynamic 
compensation – linearizing feedback [3] – in such a 
way that this structure leads to a very simple closed-
loop system, which is represented by a non 

autonomous nonlinear differential equation. In this 
paper the rigorous proof – via Lyapunov theory and 
Barbalat’s Lemma – that the closed-loop system is 
asymptotically stable is proposed. A neural approach 
to the problem is also proposed by application of 
Adaptive-Network based Fuzzy Inference System 
(ANFIS) algorithm [4]. This method allows to obtain 
adaptive neural networks which are functionally 
equivalent to Fuzzy Inference Systems (FIS). 
In Section 3 the practical feasibility of the proposed 
controller is shown by means of experiments on a 
two degrees of freedom planar robotic manipulator. 
All the simulations have been developed using 
MATLAB 6.1 and MATLAB FUZZY TOOLBOX. 
 
 
2   Robot Dynamics and Fuzzy Motion 
Tracking Control 
The dynamics of a planar n-link robot can be written 
as [3] 

 ( ) ( ) ( ) (qgqfqqq,CqqDτ ++ )+= &&&&&  (1) 
where q is the nx1 generalized vector of joint 
positions,  is the nx1 vector of joint velocities, τ is 
the nx1 vector of applied torque inputs, D(q) is the 
nxn symmetric positive defined inertia matrix, 

q&

( )qqq,C &&  is the nx1 vector of centripetal and Coriolis 
torques,  is the nx1 vector of the viscous friction 
term, and g(q) is the nx1 vector of gravitational 
torques. 

)q&f(

The motion control problem of manipulators in joint 
space can be stated in the following terms. Assume 
that joint position q and joint velocity q  are 
available for measurement. Let the nx1 desired joint 
position vector q

&

d be a twice differentiable vector 
function. A motion controller is defined as a 
controller to determine the actuator torques τ in such 
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a way that the following control aim be achieved: 
  ( ) ( )ttlim

t dqq =
∞→

One conventional solution to this problem is 
provided by the linearizing feedback given by [3] 

( )[ ] ( ) ( ) ( )qgqfqqq,CeKeKqqDτ pdd +++++= &&&&&&   (2) 
                                                                                (2) 
where the joint position and velocity error vectors 
are denoted respectively by the nx1 vectors 

 and , where q  being the nx1 
vector of desired velocity, and K

qqe d −=

)(qf &

qqe d &&& −= d&

d and Kp are 
symmetric positive definited matrices. Supposing 

 is unknown, the proposed Fuzzy Logic 
Controller (FLC) is given by the control law: 

( ) ( )[ ] ( ) (qgqqqCeeΦqqDτ +++= &&&&& ,,d )
)

   (3) 
where  is a nx1 vector whose entries ( eeΦ &, ( )iii e,e &φ  
(i=1,2,…,n) are the real input-output mapping of the 
FLC, that is: 
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The control law (3) keeps the non linear 
compensation terms of (2), but the undesiderable 
constant terms Kd and Kp are obviated. The elements 
of (4) fulfill some key properties [5]: 

a)  is globally continous and bounded ( eeΦ &, )
b) ( ) 00,0 =iφ  
c) ( ) ( iiiiii eeee && −−−= ,, )φφ  
d) for every ( )  ii ee &, :
 ( ) ( )[ iiiiii eeee && ,0,0 ]φφ −≤      (5) 
 ( ) ([ ]0,,0 iiiiii eeee )φφ −≤ &&  
e) ( ) 000, =⇒= iii eeφ  

for i=1,2,…,n. 
 
2.1 Stability Analysis 
In this subsection the proof of the closed loop fuzzy 
system (see fig. 1) stability is developed.  
Theorem: Let the non autonomous, nonlinear, 
closed-loop fuzzy system (see Fig.1)  obtained by 
combining (1) and (3): 
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The properties (5) of ( iii e,e & )φ  are verified. Then, by 
choice of the following Lyapunov function: 

 ( ) ( )∑∫
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the equilibrium state of the closed loop model (6) is 
globally asimptotically stable. 

Proof. The first term of V  is a positive definite 
function with respect to e . 
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Fig.1 – Closed-loop system. 

 
For the second term of (7), notice that, from 
properties (5b), (5d) and (5e) it results that 
 ( )0,0 iii ee φ<      ∀  0≠ie
This means that the following conditions are verified  

( ) 00, >ii eφ   if      [0>ie ( ) 00, <ii eφ  if  0<ie ] 
from property (5c): 

          ∀  (8) ( )∫ >ie

iii d
0

00, ξξφ 0≠ie

     for ( )∫ ∞→ie

iii d
0

0, ξξφ ∞→ie  

From (8) we can say that V  is globally positive 
defined and radially unbounded function; therefore 
(7) qualifies as a Lyapunov function. 

( ee &, )

The time derivative of the Lyapunov function is: 
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             ( )0eΦeee ,TT &&&& +=   (9) 
By using (6), the time derivative of the Lyapunov 
function yields 
 ( ) ( ) ( )[ ]0eΦeeΦeee ,,, −−= &&&& TV  (10) 
Since ( )eeΦ &,  is a decoupled nonlinearity of the 
form (4), we can use property (5d) to conclude that 

( )ee && ,V  is a globally negative semidefinite function. 
Thus, by invoking the Lyapunov’s direct method [6] 
it is possible to conclude stability of the closed-loop 
system. In order to prove the closed-loop system 
global asymptotic stability, because the system is 
non autonomous, we use Barbalat’s Lemma [6]. In 
order to use the Barbalat’s Lemma we have to verify 
that ( )ee &,&&V  is a bounded function.  
The time derivative of (10) is: 

( ) ( ) ( )[ ] ( ) ( )[ ]e,0Φee,Φee,0Φee,Φeee, &&&&&&&&&& −−−−= TTV
  (11) 
By using (6), function (11) yields: 

( ) ( ) ( ) ( )[ ] ( ) ( )[ ]e,0Φee,Φee,0Φee,Φee,Φee, &&&&&&&&& −−−= TTV
  (12) 
The first term of (12) is bounded because of ( )ee &,Φ  
is bounded. For the second term of (12) notice that it 

  



consists of two terms: velocity error vector  and e&
( ) ( )[ ]e,0Φee,Φ &&& − .  

( ee,Φ &&

( )eeΦ &,

0=&

e,0Φ

e&&

e0e ⇒= &&&

( ) (e,0Φee, −&

0

Because of (7) is a positive definite function and it is 
not increasing function of time, the arguments ( )ee, &

e&
 

are bounded. Thus the velocity error vector  is 
bounded.  and Φ  are time derivatives 
of  that is continous and bounded, so they 
are continous and bounded. We can conclude that 
(12) consists of two bounded terms, so it is bounded. 

(e,0&) )

From Barbalat’s Lemma results: 
  (13) 0)(lim =

∞→
tV

t
&

By using (9) we can see that (13) is verified in two 
cases: 
1) e  
This condition implies that:  
   ∀  ( ) ( ) 0e,0Φ =− e
By using (6) results 

 ( )ee,Φe && −==
dt
d

 

because . Due to verify this condition 
it is necessary that: 

0=

 ( ) 0e,0Φ =  
By using property (5e) the expression is verified 
only if e=0. 
2) Φ  ) 0=
that is equal to: 
  ( ) (e,0Φee,Φ =& )
This condition is verified for . Also in this 
case, likewise case 1, we obtain e=0. 

0e =&

Therefore, invoking the Barbalat’s Lemma, we 
conclude that the origin of state space ee == &  is a 
globally asymptotitically stable equilibrium of the 
closed-loop system (6) (Q.E.D.). 
 
2.2 Design of the Fuzzy Logic Controller 
The synthetized FLC uses a set of four fuzzy IF-
THEN rules (see Tab 1): 
 
 
IF Error is small AND DotError is small THEN Out is negBig 

IF Error is small AND DotError is big THEN Out is negSmall 

IF Error is big AND DotError is small THEN Out is posSmall 

IF Error is big AND DotError is big THEN Out is posBig 
Tab. 1 – IF-THEN rules. 

 
 
In this case we have two inputs and one output. The 
input and output membership functions are 
symmetrical with respect to zero (see Fig. 2). Fig. 2c 
shows that the system chosen is Sugeno-type system.  

This kind of system generates the input-output 
mapping shown in Fig.3. Visual examination of this 
surface is useful to verify the properties (5). 
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Fig.2 – Sugeno membership functions:  

a) ei, b) dei /dt  c) output. 
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Fig.3 – Input-output mapping for Sugeno FIS. 

 
2.3 Application of ANFIS Method 
The ANFIS method generates a FIS using a neural 

  



network [4]. The ANFIS architecture is like a neural 
network that is functionally equivalent to a FIS. In 
this way, it is possibile to obtain fuzzy membership 
functions and inference rules starting from a neural 
network. The link between the ANFIS architecture 
and the physical system is given by data sets 
obtained by measurements on physical system. The 
data sets are used for the network learning 
algorithm. The hybrid learning algorithm used in 
this paper mixed least squares and backpropagation 
methods.  
In order to obtain the membership functions the 
MATLAB ANFIS Editor GUI [7] have been used 
(see Fig.4). This kind of system generates the input-
output mapping shown in Fig.5. Visual examination 
of this surface is useful to verify the properties (5). 
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Fig.4 – ANFIS membership functions:  

a)  ei  b) dei /dt  c) output 
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Fig.5 – Input-output mapping for ANFIS. 

 
 
3   Experimental Results 
For the experimental simulations a two link and two 
degree of freedom planar  manipulator is used (see 
Fig.6). 
 

  
Fig.6 – Robotic Manipulator 

 
The Inertia and Coriolis matrices of this manipulator 
are: 
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[ ]2
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[ ]2
3 /1630.0 smKgfp ⋅=
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qg  (planar manipulator) 

( )qf &  unmodeled dynamics 
The two links of manipulator move in the horizontal 
plane. During the simulation experiments we 
suppose the friction term  is unknown. ( )qf &

The motors are operated in torque mode, so they act 
as torque source and accept an analog voltage as 
reference torque signal. 
According to the actuators manufacturer, the motors 
of manipulator are able to supply torques within the 

  



following bounds: 
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Link 1 and link 2 are the bigger and the smaller arm 
respectively.  
For the linearizing feedback controller we use the 
parameter matrices  
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The referred signals for all the simulations are 
shown in Fig.7 
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Two performance indexes were considered to verify 
the goodness of the controllers: ISE (Integral Square 
Error) and IAE (Integral Absolute Error) 
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The membership functions of ANFIS model were 
obtained by using the ANFIS Editor GUI of 
MATLAB FUZZY TOOLBOX [7].  
We used two 50-points data sets: training and 
checking set. The first one is used to training the 
neural network, while the second is used for model 
validation. 
The simulations show that the linearizing feedback 
controller is not able to minimize the tracking error 
particularly for link 2. Fig. 8 shows that position 
error on link 2 oscillates between –50 degrees and 
+50 degrees, while the position error on link 1 has 
acceptable values (between –0.2 degrees and +0.2 
degrees). 
Fig. 9 shows the position error for Sugeno FIS. The 
position error on link 1 oscillates between -0,025 
and +0,025 degrees, while the position error on link 
2 oscillates between –0,59 and +0,59 degrees. 
Fig. 10 shows the position error for ANFIS. The 
position error on link 1 oscillates between –0,08 and 
+0,08 degrees, while the position error on link 2 
oscillates between –1,87 and +1,87 degrees.  
The applied torques to link 1 and link 2 are shown in 
Figs. 11-12. Fig. 11 shows that the applied torque to 
link 1 maximum value is 165 Nm (for Sugeno FIS), 
while the minimum value is –47 Nm (for Sugeno 
FIS). Fig. 12 shows that the applied torque to link 2 
maximum value is 17 Nm (for Sugeno FIS), while 
the minimum value is –2 Nm (for Sugeno FIS). The 
obtained values remain inside the prescribed 
allowable maximum torque for each actuator (15). 
Tab. 2 summarizes the performance indexes. From 
Tab. 2 we can conclude that the FLC with Sugeno 

FIS presents the smallest tracking error. 
In this paper, ANFIS controller is not the best. Data 
sets used for network learning algorithm include the 
friction and aleatories noises. Moreover, we have to 
consider the sampling error on manipulator data (see 
Fig.13). 
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Fig.7 – Reference signals. 
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Fig.8 – Position error for linearizing feedback. 
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Fig.9 – Position error for Sugeno FIS. 
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Fig.10 – Position error for ANFIS. 
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Fig.11 – Applied torques to link 1. 
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Fig. 13 – IMI manipulator tracking motion. 

 
 ISE IAE 

linearizing feedback  11.74 17 

Sugeno FIS 0.0015497 0.19679 

ANFIS 0.015941 0.65150 

Tab. 2 – Performance indexes. 
 
 
4   Conclusion 
The simulations show the goodness of the 
synthetized FLC. In order to minimize tracking error 
it is necessary to construct  in such a way 
that properties (5) are verifyed.  

( eeΦ &, )

Furthermore, a FIS using the ANFIS method have 
been used. In this way data sets obtained by 

measurement on the physical system under 
consideration have been used.  
In this paper, ANFIS controller is not the best. Data 
sets used for network learning algorithm include the 
friction and aleatories noises. Moreover, we have to 
consider the sampling error on manipulator data. 
Notwithstanding the ANFIS controller has position 
error smaller than linearizing feedback controller. 
Better results could be obtained by crossing a lot of 
data sets from the system under consideration. 
Otherwise we could use another network learning 
algorithm. The hybrid learning algorithm used in 
this paper mixed least squares and backpropagation 
methods. Once we obtain the neural network using 
ANFIS method, we can use any learning algorithm. 
In conclusion the synthetized FLC is able to solve 
the tracking control problem for planar robotic 
manipulator. It is also able to minimize the effects of 
unmodeled uncertainties like friction, external 
disturbances or unknown loads.  
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