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Abstract: In the framework of a Keynesian monetary macro model we study
implications of kinked Phillips curves and alternative monetary policy rules.
As alternative monetary policy rules we consider monetary growth targeting
and interest rate targeting (the Taylor rule). Our monetary macro model ex-
hibits: asset market clearing, disequilibrium in product and labor markets,
sluggish price and quantity adjustments, two Phillips-Curves for wage and
price dynamics, and a combination of medium-run adaptive and short-run
forward looking expectations. Simulations of the model with our estimated
parameters reveal global instability of its steady state. We show that mone-
tary policy can stabilize the dynamics to some extent and that, in addition,
an institutionally given kink in the money wage Phillips-Curve (downwardly
rigid wages) represents a powerful mechanism for getting bounded, more or
less irregular fluctuations in the place of purely explosive ones. The result-
ing fluctuations can be reduced in their size by choosing the parameters of
monetary policy within a certain corridor, the exact position of which may
however be very uncertain.
———————
Keywords: Feedback channels, instability, monetary policy, wage floors, fluc-
tuating growth, complex dynamics.
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1 Introduction

In the framework of a Keynesian monetary macro model we study the implications of
manipulating monetary aggregates or the interest rate as two alternative monetary policy
rules. Whereas the former targets the inflation rate indirectly, through the control of
the money supply, the latter, also called the Taylor rule, implies more direct inflation
targeting. Our monetary macromodel exhibits: asset market clearing, disequilibrium in
the product and labor markets, sluggish price and quantity adjustments, two structural
Phillips Curves for the wage and price dynamics in the place of a single reduced-from
PC and expectations formation which represents a combination of medium-run adaptive
and short-run forward looking behavior. The ideas on which this model is built come
from a long tradition of Keynes, Kaldor, Metzler, Malinvaud, Mundell, Rose, Tobin and
Sargent and others. Here it may suffice to provide a rough description of the structure
of the model. Its characteristic laws of motion are however introduced, motivated and
studied in their interaction in detail in the next section.

We consider a closed three sector economy, households (workers and asset holders), firms
and the government. There exist five distinct markets; labor, goods, money, bonds and
equities (which are perfect substitutes of bonds).

To briefly summarize our model we use the following table. In the table real and nominal
magnitudes are represented. The index d refers to demand and the same symbol with
no index represents supply, while superscript index e is used to denote expectations. We
use x̂ to denote the rate of growth of a variable x. The symbols in the table in particular
denote L, labor, C = Cw + Cc, consumption (of workers and capitalists), I, investment,
Y, income, M , money, G, government expenditure, δK, depreciation, B, Bonds and E,
equity. The table shows the interaction of the sectors and the markets where the rows
represent the sectors and the columns the markets.

Labor Goods Money Bond Equity
market market market market market

Households L C = Cw + Cc Md Bd Ed

Firms Ld Y, Y d, I + δK – – E
Government – G M B –

Prices w p 1 1 pe

Expectations – Y e, πe = p̂e – – –

This table represents the basic structure of the closed economy considered in this paper.
The connections between the markets and sectors shown, the behavioral relationships
and the dynamic adjustment processes that fill this structure have been established
in Flaschel, Franke and Semmler (1997) and in Chiarella and Flaschel (2000). They
represent significant extensions of Sargent (1987, Ch. 1-5) in various ways. We here
extend this framework furthermore by a discussion of the role of monetary policy rules
and continue investigations of the stability implications of kinked money-wage Phillips
Curves, already asserted to exist in fact by Keynes (1936).

The structure of the model is complete in the sense that it includes all major markets
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and sectors of a closed economy and all financing conditions and budget restrictions
of households, firms and the government, as in Sargent (1987). In contrast to Sargent
(1987) we distinguish however between workers and asset holders in the household sec-
tor in a Kaldorian fashion. The major difference is however the extent of disequilibrium
allowed for and the dynamical processes that follow from these disequilibria. Concern-
ing the extent of these disequilibrium adjustment processes, we want to note already
here, that firms have desired capacity utilization rates and desired ratios of inventory to
expected sales. Temporary deviations from those benchmarks are caused by unexpected
changes in aggregate goods demand. We stress that a distinguishing feature of Keyne-
sian models, in contrast in particular to equilibrium macromodels of the Sargent (1987)
type, is that under- or over-utilized capital as well as an under- or over-utilized labor
force are important driving factors of the economic dynamics.

Section 2 provides and explains the theoretical core model, that is introduced and moti-
vated from the perspective of its typical adjustment mechanisms solely. This core model
is extended, estimated and numerically investigated in section 3. By employing first a
linear Phillips Curve we show that the 6D dynamics implied by the model exhibit a
unique interior steady state which is locally stable when a strong Keynes-effect is cou-
pled with sluggishly moving prices and quantities – with the exception of the dynamic
multiplier which, by contrast, must be sufficiently fast. This steady state, however, loses
its stability by way of a Hopf-bifurcation when adjustment parameters are sufficiently
increased. Our feedback-guided stability analysis is extended in the second part of the
paper to a 7D dynamical system, with theoretically similar properties as the 6D dynam-
ics, by considering alternative dynamic monetary policy rules: a money supply and an
interest rate policy rule. These extended systems as well as the original 6D dynamics
are studied from the empirical and the numerical point of view and found to give rise to
interesting fluctuations in economic activity and inflation.

In section 3 of the paper, we add, on the one hand, a money supply rule and, on the
other hand, an interest rate policy rule to the model (whereas money had earlier been
assumed to be growing at a constant rate). We extend our stability assertions to these
two cases. Estimated parameters of the two model variants are reported, estimated
partly through single equation and partly through subsystem estimations for U.S. time
series data 1960.1-1995.1. With the estimated parameters system simulations for the two
monetary policy rules of the paper are presented and the stability as well as impulse-
response properties of the two rules explored.

One important finding of the paper is that, given our parameter estimates, the four
feedback channels of the model, the Keynes-, Mundell-, Metzler- and the Rose-feedback
chains, are such that the Rose adverse-type real wage adjustments dominate the stabi-
lizing Keynes-effect and the stabilizing dynamic multiplier – here coupled with a weak
inventory accelerator. The destabilizing Mundell-effect is also found to be weak. The
steady state of the dynamics is therefore found to be explosive. This instability can be
overcome in the considered case by making monetary policy react more strongly to the
deviation of actual inflation from its target value ( establishing cyclical convergence).
The instability may also be overcome quite generally, by introducing a nonlinear money
wage Phillips Curve, based on an institutionally determined kink in this PC (thereby es-
tablishing persistent fluctuations). This kink has recently been discussed and estimated
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in a number of studies, see Hoogenveen and Kuipers (2000) for an excellent example.
This latter modification indeed bounds the dynamics for a larger range of parameter
values (compared to the stability implications of monetary policy rules) such that limit
cycles or more complex types of attractors are generated. Such cyclical and complex
behaviour occurs in particular when the adjustment speed of the expected inflationary
climate πe is increased, since this parameter is found to greatly affect the local stabil-
ity/instability of the equilibrium. The role of monetary policy in such an environment
is also briefly discussed, but must be left by and large for future research into the model
of this paper.

2 Keynesian Macrodynamics

This section provides the building blocks of our Keynesian AS-AD macrodynamics.
We do this from the perspective of its fundamental adjustment mechanisms and the
feedback structures that are implied. We therefore motivate the structure of the model
without presenting the many details which underlie its extensive form representation in
Chiarella and Flaschel (2000, Ch.6). The stability properties of the interaction of those
feedback structures are then studied analytically and numerically, by means of estimated
parameters in particular.

2.1 3D Rose wage-price dynamics

The full dynamics, basically presented in ratio or intensive form directly, is best intro-
duced and motivated by starting from a very basic, yet unfamiliar, wage-price module.
In our first specification we follow Rose (1967, 1990) and assume two Phillips Curves or
PC’s in the place of only one, providing wage and price dynamics separately, both based
on a measure of demand pressure V − V̄ , Uc − Ūc, in the market for labor and for goods,
respectively. We here denote by V the rate of employment on the labor market and by
V̄ the NAIRU-level of this rate, and similarly by Uc the rate of capacity utilization of
the capital stock and Ūc the normal rate of capacity utilization of firms. These demand
pressure influences on wage and price dynamics, or on the formation of wage and price
inflation, ŵ, p̂, are here both augmented by a weighted average of cost-pressure terms
based on forward looking myopic perfect foresight and a backward looking measure of the
prevailing inflationary climate, symbolized by πe. Cost pressure perceived by workers is
thus a weighted average of the currently evolving price inflation p̂ and some longer-run
concept of price inflation, πe, based on past observations. Similarly, cost pressure per-
ceived by firms is given a weighted average of the currently evolving (perfectly foreseen)
wage inflation ŵ rate and again this measure of the inflationary climate in which the
economy is operating. Taken together we thus arrive at the following two Phillips Curves
for wage and price inflation, which in this core version of the model are formulated in a
fairly symmetric way.

Structural form of the wage-price dynamics:

ŵ = βw(V − V̄ ) + κwp̂ + (1 − κw)πe,
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p̂ = βp(Uc − Ūc) + κpŵ + (1 − κp)π
e.

In the empirical application of the model we have to take account labor productivity
growth nx = x̂ in addition,1 which from the theoretical perspective augments the cost
pressure terms in the wage PC by the addition of nx, while it reduces the wage cost
pressure term ŵ in the price PC by the same amount, see our calculations below. In
the empirical estimate of the model we find that this full indexation of wage and price
inflation with respect to productivity growth does not apply to the investigated historical
situation where only roughly 50 percent of productivity growth seemed to have entered
the wage-price dynamics.2

Inflationary expectations over the medium run, πe, i.e., the inflationary climate in which
current inflation is operating, may be adaptively following the actual rate of inflation
(exponential weighting scheme), may be based on a rolling sample (hump-shaped weight-
ing schemes), or on other possibilities for updating such an expression. We shall in fact
make use of the conventional adaptive expectations mechanism in the presentation of
the full model below. Besides demand pressure we thus use (as cost pressure expres-
sions) in the two PC’s weighted averages of this climate and the (foreseen) relevant cost
pressure term for wage setting and price setting. In this way we get two PC’s with very
analogous building blocks, which despite their traditional outlook will have interesting
and novel implications. In the later part of the paper we will introduce a non-linearity
in the money wage Phillips Curve in addition.

Note that for our current version, the inflationary climate variable does not matter for
the evolution of the real wage ω = w/p – or, due to our addition of productivity growth
– the wage share u = ω/x, the law of motion of which is given by:3

û = ω̂ − nx = κ[(1 − κp)βw(V − V̄ ) − (1 − κw)βp(Uc − Ūc)].

This follows easily from the obviously equivalent representation of the above two PC’s:

ŵ − πe − nx = βw(V − V̄ ) + κw(p̂ − πe),

p̂ − πe = βp(Uc − Ūc) + κp(ŵ − πe),

by solving for the variables ŵ−πe−nx and p̂−πe. It also implies the two across-markets
or reduced form PC’s given by:

p̂ = κ[βp(Uc − Ūc) + κpβw(V − V̄ )] + πe,

ŵ = κ[βw(V − V̄ ) + κwβp(Uc − Ūc)] + πe + nx,

which represent a considerable improvement over the conventional view of a single-
market price PC with only one measure of demand pressure, the one in the labor market!

1We denote by x = Y/Ld labor productivity and by yp = Y p/K the potential output – capital ratio
(capital productivity) and assume that x is growing at a constant rate while yp is constant, i.e., we
assume as production function a fixed proportions technology with Harrod-neutral technical change.

2This is in line with estimates of the wage equation in the macroeconometric model of, for example,
the German Bundesbank, see the α2 estimates in Deutsche Bundesbank (2000, p.52).

3Note that κ = 1/(1 − κwκp).
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This traditional expectations-augmented PC formally resembles the above reduced form
p̂-equation if Okun’s Law holds in the sense of a strict positive correlation between
Uc − Ūc and V − V̄ , our measures of demand pressures on the market for goods and for
labor. Yet, the coefficient in front of the traditional PC would even in this situation be
a mixture of all of the β ′s and κ′s of the two originally given PC’s and thus represent
a composition of goods and labor market characteristics. The currently prominent New
Keynesian Phillips Curve, see for example Gali (2000), is based on the reduced-form
representation for p̂ shown above, but generally with βp = 0.κp = 1, κw = 0 and πe

a one-period ahead forecast of the rate of price inflation. Under perfect foresight this
basically implies in a continuous time set-up the following type of price Phillips Curve:

dp̂/dt = βw(V − V̄ ),

which provides an interesting alternative to our reduced form price PC, yet one where
the medium-run climate expression for price inflation plays no role. Reducing in this
way inflation dynamics to short-term expressions solely, in our view, provides one of the
reasons why the New Keynesian PC behaves strangely from an empirical perspective.

Taken together our above structural approach to wage and price PC’s gives rise to
three independent laws of motion:

û = κ[(1 − κp)βw(V − V̄ ) − (1 − κw)βp(Uc − Ūc)],

m̂ = µ̄ − K̂ − p̂, (m = M/(pK), µ̄ = const. still),

π̇e = βπe(p̂ − πe) = βπeκ[βp(Uc − Ūc) + κpβw(V − V̄ )]

These are the first three differential equations of the full 6D Keynesian dynamics sum-
marized in subsection 4. The essential elements in these three laws of motion are the
three adjustment speeds βw, βp and βπe for wages, prices and the inflationary climate
which strongly influence the stability properties of our Keynesian macrodynamics. Note
that the law of motion for the capital stock K has not yet been provided, but will be
introduced when the full 6D dynamics are presented.

2.2 2D Metzlerian quantity dynamics and growth

Next, we consider the quantity dynamics of the Keynesian macromodel, where we con-
sider goods market adjustment dynamics and capital stock growth. The resulting 3D
dynamics provides the quantity side of our Keynesian macrodynamical model:4

Y d = C + I + δK + G,

Ẏ e = βye(Y d − Y e) + (n + nx)Y
e,

Nd = βndY e,

I = βn(N
d − N) + (n + nx)N

d,

Y = Y e + I,

Ṅ = Y − Y d,

K̂ = I/K.

4These quantity dynamics have recently been studied in isolation, with a nonlinearity in the inventory
adjustment process, in Franke and Lux (1993) and with capital stock growth in Franke (1996).
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These equations, though many, represent a still simple, yet consistently formulated out-
put and inventory adjustment process. They define aggregate demand Y d as the sum of
consumption, investment and government demand and state that expected sales Y e fol-
low aggregate demand in an adaptive fashion. Desired inventories Nd are then assumed
to be determined as a constant fraction of expected sales, while intended inventory
adjustment I is based on the inventory adjustment process βn(N

d − N), with N the
actual inventory holdings and βn the speed with which the gap between desired and
actual inventory holdings is closed, augmented by a term that accounts for trend growth
(n the natural rate of growth of the labor force). Actual production Y must then of
course be defined by the sum of expected sales and intended inventory changes, while
actual inventory changes Ṅ are finally given by definition by the discrepancy between
actual production and actual sales. Again, the crucial parameters in these adjustment
equations are the adjustment speeds, βye , βn, of sales expectations and of intended in-
ventory changes. It is obvious from the above presentation of the Metzlerian inventory
adjustment process that this process will add two further laws of motion to those of the
wage-price dynamics, see the first two equations in the presentation of the full dynamics
(7) – (12) below.

We here already add the growth dynamics of the model which in the case of a Keynesian
regime is based on the net investment demand of firms as indicated in the last equation
of the above quantity dynamics. We briefly state in addition that aggregate demand
is based, on the one hand, on differentiated saving habits as far as the two groups of
households of the model, workers and asset holders and their consumption functions
are concerned. On the other hand, the other part of aggregate demand, investment, is
determined by the excess of the expected profit rate over the real rate of interest, on
excess capacity and natural growth (including productivity growth). Moreover, there are
given fiscal policy parameters for government behavior in the intensive form of the model.
We thereby in particular get that aggregate demand depends on income distribution and
the wage share u, positively if consumption dominates investment and negatively if the
opposite holds true. We add finally that the nominal interest rate is determined by a
conventional LM curve or the Taylor interest rate policy rule, to be introduced below.

We already observe here that the short-run quantity dynamics are difficult to estimate,
see the next section for some first results in this matter. This is partly due to the need
to distinguish between output, demand and sales expectations on the one hand and
between desired and actual inventory changes on the other hand. Furthermore, as was
remarked by Åke Anderssön after the presentation of this paper on the conference in
honor of Professor Puu in Odense, national product also includes services besides goods
as a very significant item, which of course in general are not subject to an inventory
adjustment mechanism as described above. But also with respect to goods more modern
cost-minimizing inventory adjustments must sooner or later be taken into account. Yet,
at present a procedure that is a consistent extension of the familiar dynamic multiplier
process is all that we need to make the model an internally coherent one.
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2.3 The Keynesian or DAS-DAD version of AS-AD growth dy-

namics

Let us finally make explicit the sixth law of motion, i.e., the one for economic growth,
before we collect all laws of motion in the box presented below. As already stated, in a
Keynesian context, capital stock growth is given by net investment per unit of capital
and thus based on the assumption of an investment function of firms. This function is
now postulated to read:

i = I/K = i1(ρ
e − (r − πe)) + i2(Uc − Ūc) + n + nx, Uc = y/yp, (1)

with the expected rate of profit defined by

ρe = ye − δ − uy, ye = Y e/K, y = Y/K, u = ω/x the wage share, (2)

and the nominal rate of interest given by the reduced form LM-equation

r = ro +
h1y − m

h2
, m = M/(pK) real balances per unit of capital. (3)

We use y = Y/K to denote the actual output-capital ratio which – due to the assumed
Metzlerian quantity adjustment process – is determined by:

y = (1 + (n + nx)βnd)ye + βn(βndye − ν), ye = Y e/K, ν = N/K. (4)

Taken together the investment equation thus entails that net investment depends on
excess profitability with respect to the expected real rate of interest, on capacity utiliza-
tion in its deviation from desired capital utilization and on a trend term which here has
been set equal to the natural rate (including the rate of labor productivity growth) for
reasons of simplicity.5

The sixth state variable of our model is l, the full employment labor intensity, which
in the context of Harrod-neutral technical change, x = Y/Ld, x̂ = nx, yp = Y p/K =
const., is best represented by l = xL/K, where L denotes labor supply (which grows at
the given natural rate of growth n = L̂). Due to the assumed trend growth term in the
investment equation shown above we get for the evolution of this state variable

l̂ = −i1(ρ
e − (r − πe)) − i2(Uc − Ūc)

We add as final (algebraic) equation of the model the equation for aggregate demand
per unit of capital:

yd = (1 − sw)uy + (1 − sc)ρ
e + γ + i + δ = (1 − sc)y

e + (sc − sw)uy + γ + i + scδ (5)

and the defining equations for the rate of employment, the rate of capacity utilization
and κ :

V = y/l (= Ld/L = xLd/xL), Uc = y/yp, κ = 1/(1 − κwκp). (6)

5We note in passing that our Dynamic-AS Dynamic-AD model is at least in one respect still un-
balanced, since we make use of a mixture of short- and medium-run expressions in the risk premium
term in the investment function. Correcting this basically would introduce a further law of motion – for
the investment climate – into the dynamics considered below without too much change in the model’s
implications, see for example Asada and Flaschel (2002) in this regard.
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Due to our assumption of Kaldorian saving habits sw < sc (with sw = 0, i.e., classical
saving habits as special case) we have that aggregate demand depends positively on the
wage share u through consumption and negatively on the wage share through the in-
vestment component in aggregate demand. There is wage taxation and property income
taxation which are assumed to be constant per unit of capital, the latter net of interest
as in Sargent (1987). These fiscal policy parameters as well as government expenditures
per unit of capital, assumed to be constant as well, are collected in the parameter γ of
the aggregate demand function shown above.

We are now in the position to present the full macrodynamical model, here for brevity
immediately in intensive or state variable form. The dynamic model is based on five
markets: labor, goods, money, bonds and equities and three sectors: households (workers
and asset holders, with Kaldorian differentiated saving habits), firms and the fiscal and
monetary authority. We stress again that all budget equations are fully specified on the
extensive form level, so that all stock-flow interactions are present, though not yet fully
interacting here.6

The resulting integrated six laws of motion of the dynamics to be investigated include
the state variables: sales expectations ye = Y e/K and inventories ν = N/K per unit of
capital, real balances per unit of capital m = M/(pK) and the inflationary climate πe,
the wage share u = ω/x and labor intensity l = L/K. They read:

ẏe = βye(yd − ye) + l̂ye, (7)

the law of motion for sales expectations

ν̇ = y − yd + (l̂ − (n + nx))ν, (8)

the law of motion for inventories

m̂ = µ̄ − πe − (n + nx) + l̂ − κ[βp(Uc − Ūc) + κpβw(V − V̄ )], (9)

the growth law of real balances

π̇e = βπeκ[βp(Uc − Ūc) + κpβw(V − V̄ )], (10)

the evolution of the inflationary climate

û = κ[(1 − κp)βw(V − V̄ ) − (1 − κw)βp(Uc − Ūc), (11)

the growth law of the wage share

l̂ = −i1(ρ
e − (r − πe)) − i2(Uc − Ūc), (12)

the growth law for labor intensity

These equations can be easily understood from what has been stated about wage-price,
quantity and investment dynamics if note is taken of the fact that everything is now
expressed – with the exception of the wage share – in per unit of capital form. Inserting

6See Chiarella and Flaschel (2000) for the details of this Keynesian working model, including the
specification of all budget and behavioral equations on the extensive form level, and Chiarella, Flaschel,
Groh and Semmler (2000) for various extensions of this model type.
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the algebraic equations (1) – (6) into these laws of motion one obtains a nonlinear
autonomous 6D system of differential equations that we will investigate with respect to
the stability properties of its unique interior steady state in the remainder of the paper.

2.4 Feedback-guided local stability analysis

As the model is formulated we can distinguish four important feedback chains which we
now describe in isolation from each other. Of course these interact with each other in
the full 6D dynamics and various feedback mechanisms can become dominant contingent
on the model parameters chosen.

1. The Keynes effect: We assume IS − LM equilibrium in order to explain this well-
known effect in simple terms. According to IS − LM equilibrium, the nominal rate of
interest r depends positively on the price level p. Aggregate demand and thus output and
the rate of capacity utilization therefore depend negatively on the price level implying
a negative dependence of the inflation rate on the level of prices through this channel.
A high sensitivity of the nominal rate of interest with respect to the price level (a low
parameter h2, the opposite of the liquidity trap) thus should exercise a strong stabilizing
influence on the dynamics of the price level and on the economy as a whole, which is
further strengthened if price and wage flexibility increase.7

2. The Mundell effect: We assume again IS − LM equilibrium in order to explain this
less well-known (indeed often neglected) effect. Since net investment depends (as is
usually assumed) positively on the expected rate of inflation πe, via the expected real
rate of interest, aggregate demand and thus output and the rate of capacity utilization
depend positively on this expected inflation rate. This implies a positive dependence
of p̂ − πe on πe and thus a positive feedback from the expected rate of inflation on its
time rate of change. Faster adjustment speeds of inflationary expectations will therefore
destabilize the economy through this channel.

The two discussed effects are working with further delays if Metzlerian quantity adjust-
ment processes are allowed for.

3. The Metzler effect: In the Metzlerian quantity adjustment process, output y depends
positively on expected sales ye and this the stronger, the higher the speed of adjustment
βn of planned inventories. The time rate of change of expected sales therefore depends
positively on the level of expected sales when the parameter βn is chosen sufficiently
large. Flexible adjustment of inventories coupled with a high speed of adjustment of
sales expectations thus lead to a loss of economic stability. There will, of course, exist
other situations where an increase in the latter speed of adjustment may increase the
stability of the dynamics.

4. The Rose effect: In order to explain this effect we assume for the time being again
IS − LM equilibrium. We know from our formulation of aggregate goods demand that
output and in the same way the rate of employment and the rate of capacity utilization
may depend positively or negatively on real wages, due to their opposite effects on

7The same argument applies to wealth effects which, however, are not yet included here.
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consumption and investment shown in eq. (5). According to the law of motion for
real wages (7) we thus get a positive or negative feedback channel of real wages on
their rate of change, depending on the relative adjustment speed of nominal wages and
prices. Either price or wage flexibility will therefore always be destabilizing, depending
on investment and saving propensities, i1, sc, sw, with respect to the expected rate of
profit and the wage share. The destabilizing Rose effect (of whatever type) will be weak
if both wage and price adjustment speeds βw, βp are low.
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Figure 1: The feedback channels of the model.

The effects just discussed are summarized in figure 1. Note with respect to the Keynes-
effect that the corresponding figure only indicates that wage and price decline is even-
tually stopped. However, since wages and prices will have fallen below their equilibrium
values in the course of this process they must in fact rise again in certain periods in
order to converge back to their equilibrium values. There is therefore some overshooting
involved in the working of this partial feedback chain. Note that figure 1 represents the
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four feedback chains for the case of wage and price deflation. The case of wage and price
inflation is of course obtained by simple reversal of the arrows shown in figure 1.

These more or less traditional feedback channels, the nominal-interest rate Keynes-
effect, the inflationary expectations Mundell-effect, the Metzler inventory accelerator
and the real-wage Rose effect, are here combined and determine in their interaction the
stability of the interior steady state position of the model. If inventories are adjusted too
fast instability may arise despite the presence of a stable dynamic multiplier process,
due to the fact that production is then too responsive to expected demand changes
via the planned inventories channel. The Mundell effect is potentially destabilizing,
since inflation feeds expected inflation which in turn lowers the real rate of interest and
further increases economic activity and thus the rate of inflation. The Rose effect can
be destabilizing in two ways, if aggregate demand depends positively on the real wage
and the wage share in the case where wage flexibility exceeds, broadly speaking, price
flexibility or in the opposite case of depressing effects of real wage increases if price
flexibility exceeds wage flexibility.8 The only unambiguously stabilizing effect is the
Keynes-effect whereby increasing prices and wages decrease real liquidity and thus raise
nominal rates of interest which not only stops further wage-price increases, but in fact
brings wages and prices back to their ‘full’ employment levels.

Based on the insights gained from these partial feedback chains we are now in a posi-
tion to formulate proposition 1 on local stability, instability and limit cycle behavior.
We stress that such feedback-guided β-stability analysis can be applied in many other
situations as well and nicely confirms, for our integrated Keynesian dynamics, what has
since long been known (in principle) for its constituent parts.

Proposition 1:
Assume that 0 ≤ sw < sc ≤ 1 holds. The following statements hold with respect to
the 6D dynamical system (7)-(12) (if fiscal policy parameters are chosen in a plausible
way):9

1. There exists a unique interior steady state of the model basically of supply side
type.

2. The determinant of the 6D Jacobian of the dynamics at this steady state is always
positive.

3. Assume that the parameters βw, βp, βπe , βn are chosen sufficiently small and the
parameter βye sufficiently large and assume that the Keynes-effect works with suf-
ficient strength (h2 small). Then: The steady state of the 6D dynamical system is
locally asymptotically stable.

4. On the other hand, if for example βπe is sufficiently large, the equilibrium is locally
repelling and the system undergoes a Hopf-bifurcation at an intermediate value of
this parameter, whereby in general stable or unstable limit cycles are generated
close to the bifurcation value.

8A more detailed explanation of such adverse Rose effects has to pay attention to the κ-weights in
the cost-pressure terms as well.

9See Köper (2000) for a detailed proof of this proposition.
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Though intrinsically nonlinear, the above 6D Keynesian growth dynamics are generally,
however, too weakly nonlinear in order to guarantee the boundedness of trajectories
when the adjustment speeds in the above proposition are made sufficiently large. Ex-
trinsic or behavioral nonlinearities thus have to be added later on in order to ensure
boundedness for the trajectories of the dynamics.

Sketch of proof (β-stability methodology): Based on our partial knowledge of
the working of the 4 feedback channels of the considered 6D dynamics, we choose an
independent 3D subsystem of the 6D Keynesian dynamics in the following way, by setting
the parameters βn, βπe , βw all equal to zero:10

ẏe = βye(yd − ye) + (n + nx − i)ye

the stable dynamic multiplier

m̂ = µ̄ − κβp(Uc − Ūc) − πe
o − i

the stabilizing Keynes effect

û = −κ(κw − 1)βp(Uc − Ūc)

sluggish price adjustment

In this 3D system, the Keynes-effect (h2 small) and the dynamic multiplier (βye large)
dominate the outcome and imply the Routh-Hurwitz conditions for local asymptotic
stability if they operate with sufficient strength and if βp is sufficiently small (which
avoids stability problems arising from any type of Rose effect).

We then add step-by-step the further laws of motion by assuming that those adjustment
speeds initially assumed to be zero are made slightly positive:

4D : βw > 0 : l̂ = −i1(ρ
e − (r − πe)) − i2(Uc − Ūc),

labor intensity feeds back into the 3D dynamics via V=y/l,

5D : βn > 0 : ν̇ = y − yd + ...,

inventory accumulation feeds back into the 4D dynamics via y ,

6D : βπe > 0 : π̇e = βπe [c1βp(Uc − Ūc) + c2βw(V − V̄ )],

inflationary climate starts moving and influencing the 5D dynamics .

Since the determinants of the Jacobian at the steady state of the sequentially enlarged
dynamics always have the correct sign, as demanded by the Routh-Hurwitz conditions,
we know that the eigenvalue that is departing from zero by making a certain adjustment
speed slightly positive must always become negative. In this way, a system with at
most one pair of complex eigenvalues (with negative real parts) and at least four real
and negative ones is established, which proves the local asymptotic stability asserted
in the above proposition, here still even with monotonic convergence generally. Since
the determinant of the full Jacobian is always nonzero, loss of stability can only occur

10See again Köper (2000) for the full presentation of such a stability investigation by means of varying
adjustment speeds βj where j = n, πe, w.
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by way of (in general non-degenerate) Hopf-bifurcations, at which eigenvalues cross the
imaginary axis with positive speed.

This by and large closes the theoretical section of the paper which however is extended
in the next section through the introduction of two types of monetary policy rules, for
which similar propositions can be formulated, and a nonlinear money wage PC (which
helps to bound the dynamics in the case of locally explosive steady states). Apart from
such propositions, which can also be proven for a variety of extensions of the considered
dynamics, we have, however, to rely on numerical methods in order to gain further
insight into the kind of dynamics that is generated by our Keynesian AS-AD dynamics.

3 Extending the Keynesian growth dynamics

In this section we introduce two types of monetary policy rules that augment the di-
mension of the considered dynamics by one to 7D. The extended dynamics preserves the
results obtained in the first part of the paper in a natural way, if policy parameters are
chosen sufficiently low. These monetary policy rules need however not be stabilizing for
choices of the parameters obtained from empirical estimates.

We then present estimates of the parameters of these extended dynamics, taken from
Flaschel, Gong and Semmler (2001), together with some simulation runs for which they
still work as intended, at least to some extent. The steady state of the dynamics is – with
the estimated parameters – in both cases slightly unstable, since an adverse Rose effect
dominates the outcome in the observed situation. This can be and has been remedied in
Flaschel, Gong and Semmler (2001) by increasing the parameter for the inflation target
of the two monetary policy rules which provides one possibility for overcoming the local
instability of the private sector. However, we shall see that this possibility for stabilizing
an unstable economy is of limited power, since it may exist for a very restricted region
of the employed policy parameters solely. It is therefore not a priori clear whether an
increase, for example, of the parameter that is meant to control the evolution of inflation,
will improve the situation or make it worse.

There is, however, an important institutional feature of modern market economies, a
nonlinearity in the money-wage Phillips Curve that may imply that local instability
cannot give rise to global instability if this feature is added to the considered dynamics.
The importance of this feature, in stylized form a kink in the money wage PC, expressing
downward rigidity of nominal wages, had already been discussed in Keynes (1936) and
has recently been estimated for various countries by Hoogenveen and Kuipers (2000),
who even obtain the result that not only are wages downwardly rigid, but also the rate
of wage inflation, which they found to rarely fall below 2 percent. We will use these
findings here only in the stylized form that assumes that the money wage level can rise
according to our linear wage PC, but will never fall. Wage deflation will thus now be
excluded from consideration. This will imply that even for high wage adjustment speeds
in the inflationary area we will get trajectories in the modified dynamics that remain
bounded in economically meaningful domains, giving rise to limit cycle behavior of more
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complex types of attractors and thus to persistent fluctuation of more or less regular
type in these domains.

These fluctuations as well as the instabilities of the case of a linear money wage PC
can be tamed to some extent by anti-inflationary money supply or interest rate policy
rules. Yet, in order to achieve this one has to choose parameters in certain corridors
which in principle are unknown to the policy makers. Thus, an active, in contrast to a
passive monetary policy will not necessarily increase stability.11 It may therefore happen
that a policy maker suggests that the money supply or interest rate dynamics should
react more strongly to deviations of the inflation rate from the inflation target of the
central bank, but that the result of this suggested tighter policy increases instability,
i.e., creates larger fluctuations than were observed before. This will be demonstrated
below by means of numerical simulations for explosive dynamics as well as for the locally
explosive, but globally bounded dynamics generated by the kinked wage PC.

3.1 Introducing monetary policy rules

Let us first extend the employed model by means of one of the following two monetary
policy rules:

1. Money Supply Rule:
µ̇ = βm1(µ̄ − µ) + βm2(π̄ − p̂) + βm3(Ūc − Uc), µ̄ = π̄ + (n + nx).

2. Taylor Interest Rate Policy Rule:
ṙ = −βr1(r − ro) + βr2(p̂ − π̄) + βr3(Uc − Ūc), ro the steady state value of r.

The first rule, a money supply growth rule, states that the growth rate of the money sup-
ply is changed on the basis of two targets and one restriction. The first aim of monetary
policy is to steer the currently evolving rate of inflation to the target rate π̄ by lowering
the rate of growth of money supply if inflation is too high in view of this target (and
vice versa). In correspondence to this anti-inflationary type of behavior we assume that
the monetary authority wants to steer the economy to the growth rate of money supply
given by µ̄ = n + nx + π̄, the steady state rate of nominal growth. Fighting too high or
too low inflation (or even deflation) and moving the economy towards its steady state
are thus the aims of this type of monetary policy which are pursued in a stronger way if
the business cycle is in an expansion (Uc − Ūc > 0), and in a weaker way in the opposite
case. Money supply is therefore no longer growing at a constant rate, but responding
to its deviation from normal growth, the (perfectly anticipated) inflation gap and the
capacity utilization gap of firms. The 6D dynamics of the preceding section with the
above used two linear PC’s thereby becomes 7D, with the law of motion for µ added to
the other laws of motion (and µ in the place of µ̄ in the law of motion for real balances m).

11For stability results concerning active and passive monetary policy see Benhabib et al. (2001).
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Proposition 2:
The following statements hold with respect to this 7D dynamical system with a money
supply policy rule if π̄ = µ̄− (n + nx) holds and if fiscal policy parameters are chosen in
an economically meaningful range:

1. The unique interior steady state of the 7D model is the same as for the 6D dynamics
(µo = µ̄).

2. The determinant of the 7D Jacobian of the dynamics is always negative.

3. Assume in addition to the stability assumptions of the 6D case that the parameters
βm2, βm3 are chosen sufficiently small. Then: The steady state of the 7D dynamical
system is locally asymptotically stable.

4. On the other hand, if for example βm2 is sufficiently large, the equilibrium can be
locally repelling and the system undergoes a Hopf-bifurcation at an intermediate
value of this parameter.

This proposition basically says that the assumed monetary policy rule does not endan-
ger local asymptotic stability if operated sufficiently weakly with respect to the inflation
target and the state of the business cycle. The range of policy parameter values that
allow for this conclusion may however be a very specific or limited one, in particular in
the situation where the private sector is not locally asymptotically stable.

Sketch of Proof: By means of the law of motion for l we can reduce the law of motion
for m to µ − p̂ without change in the sign of the determinant of the 7D Jacobian of the
dynamics at the steady state. Similarly, we can remove the demand pressure term V − V̄
from the law of motion for πe which leaves the term Uc − Ūc in this law, again without
change in the sign of the considered determinant of the thereby reduced dynamics. These
two simplified laws of motion can then in turn be used to remove the p̂ and Uc − Ūc

expressions from

µ̇ = βm1(µ̄ − µ) + βm2(π̄ − p̂) + βm3(Ūc − Uc),

which in fact increases the negative influence of µ on its rate of change by the addition
of further terms of this type. Again the sign of the considered determinant does not
change under the considered manipulation of the laws of motion of the dynamics. Its
7th row, corresponding to the added monetary policy rule, does however now exhibit a
negative entry only in its seventh element (and is zero otherwise). There follows that
the 7D determinant has the opposite sign from the 6D determinant considered in the
first part of the paper. This basically suffices for the proof of the above proposition if
note is taken of the fact that its last assertion can only be proved by way of numerical
examples (to be considered below).

We stress that the eigenvalues of the 6D subdynamics are moved only slightly in the
considered situation and remain negative with respect to their real parts. These real
parts need not, however, become more negative in the considered situation, i.e., the
considered policy rule need not improve the stability of the 6D subdynamics. In order
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to show this one has to investigate the full set of Routh-Hurwitz conditions which is an
impossible task at this level of dimensionality.

Turning to the second policy rule, the Taylor type interest rate policy rule, we have
instead that nominal interest is raised (lowered) if inflation exceeds (is lower than) the
inflationary target and that this policy is exercised in a stronger way in the case of booms
(excess demand in the goods market) than in the case of recessions or depressions (ex-
cess supply in the goods market). In addition, there is now interest rate smoothing
with respect to the steady state nominal rate of interest in the place of money growth
smoothing. Note that both these smoothing processes are built on targets that are con-
sistent with the steady state behavior of the dynamics. In the case of a Taylor rule we
have again augmented the original 6D dynamics by one dimension to a 7D dynamical
system. Yet, in this case, real balances per unit of capital, m, no longer feed back into
the rest of the system which means that this law of motion is now an appended one and
can be suppressed in the following stability analysis of the interacting state variables.12

Proposition 3:
The following statements hold with respect to the 6D dynamical system obtained by adding
the Taylor rule to the original 6D dynamics and ignoring the law of motion of real
balances:13

1. The unique interior steady state of this modified 6D model is the same as the one
for the original 6D dynamics (ignoring real balances m).

2. The determinant of the 6D Jacobian of the interacting dynamics is always positive.

3. Assume in addition to the stability assumptions of the original 6D case that the
parameters βr2, βr3 are chosen sufficiently small. Then: The steady state of this
reformulated 6D dynamical system is locally asymptotically stable.

4. On the other hand, if for example βr2 is sufficiently large, the equilibrium can be
locally repelling and the system undergoes a Hopf-bifurcation at an intermediate
value of this parameter.

This proposition basically again says that the assumed monetary policy rule does not
endanger local asymptotic stability if operated sufficiently weakly with respect to the
inflation target and the state of the business cycle. The range of policy parameter values
that allow for this conclusion may however be a very specific or limited one, in particular
in the situation where the private sector is not locally asymptotically stable.

Sketch of Proof: The proof is of the same type as the one for the original 6D dynamics
investigated in subsection 2.3, if the m̂ dynamics in the 3D subsystem considered there

12The evolution of real balances m should however be confined to a compact set in the positive domain
which is not difficult to show if the other state variables are confined to such a set.

13The evolution of real balances is now dependent on historical conditions (subject to zero root
hysteresis) since the determinant of the 7D dynamics at the steady state is zero.
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is replaced by the ṙ dynamics of the now employed Taylor rule.

In the case of the 6D dynamics considered in the preceding section we have high interest
rate sensitivity if the stipulated LM-curve is nearly vertical (the classical case) and found
that this is stabilizing (a strong Keynes-effect). Interest sensitivity by way of increasing
the second or third parameter in the Taylor rule is not necessarily doing the same job,
since we can get instability from stability by increasing these parameters (as is shown
numerically below).

3.2 The dynamics with estimated parameters

The two model variants considered in the preceding subsection have been estimated in
Flaschel, Gong and Semmler (2001) by means of single equation or appropriate subsys-
tem estimates. For this purpose, the dynamics had to be translated into discrete time.
This is simply done by replacing all differential quotients by difference quotients on the
left hand side of the equations. This means that growth rates x̂ are then represented by
∆ lnx and time derivatives by ∆x on the left hand side of the laws of motion (7) – (12)
and also in the two employed policy rules 1 and 2. In all other respects the dynamics
are the same as the ones studied in section 2 and in this section.14

However, the hybrid measure ρe − (r − πe) of excess profitability used so far was sub-
stituted in the empirical application of the model by a more balanced one, namely a
moving average of the excess profitability ρe − (r − p̂ + ξ), here in addition augmented
by a fixed positive risk premium ξ. On this basis, the two employed policy rules are
quantified in the following estimates of the parameters of the model (and found to be
too weak).

Estimated parameters of the two model variants are reported in table 1, estimated partly
through single equation and partly through subsystem estimations for U.S. time series
data 1960.1-1995.1. The details on these estimates and the t-statistics are provided and
discussed in detail in Flaschel, Gong and Semmler (2001).15

14The discrete time version of the considered dynamics is presented in full detail in Flaschel, Gong
and Semmler (2001) on the extensive as well as on the intensive form level.

15Making use of the term i1ε
m in the investment function in the place of the original term, where εm,

the investment climate, is determined by:

ε̇m = βεm(ε − εm), ε = ρe + p̂ − (r + ξ),

provides an extended dynamics with delayed adjustment of investment to currently expected excess
profitability. This extension of the dynamics allows for similar stability propositions as the ones of this
paper and is used in the form of a moving average in the estimation procedure.
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Table 1: Estimated Parameters (US-Data)16

1 w-p-dynamics βp = 0, κp = 0.34, βπe = 0.65
βw = 0.1, κw = 0.9 V̄ = 0.9, Ūc = 0.82

2 expected sales βn = 0.04, βnd = 0.47, βye = 1.26
3 savings sc = 0.62, sw = 0.05
4 investment i1 = 0.13, i2 = 0.034
5 money demand h1 = 0.17, h2 = 2.14

(money rule) βm1 = 0.55, βm2 = 0.05, βm3 = 0.05
6 money demand h1 = 0.17, h2 = 2.14

(Taylor rule) βr1 = 0.05, βr2 = 0.07, βr3 = 0.015
7 other parameters yp = 0.25, γ = 0.083, δ = 0.048

n + nx = 0.008
βx = 0.47, µ̄ = 0.0154, r0 = 0.02

Figure 2: Observed and predicted variables

16Flaschel, Gong and Semmler (2002) show similar results to the ones presented here for the case
of the German economy, while Flaschel and Krolzig (2002) obtain with respect to the wage and price
PC’s βw = 0.193, βp = 0.039, κw = 0.266, κp = 0.286 using different data for the US-economy. In all
these cases we have – from the partial perspective – a destabilizing Rose effect. We note again that
the estimates for investment and money demand are not yet really convincing and that the inventory
dynamics is subject to the problems raised when it was first formulated here.
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Figure 3: Impulse-responses for the money supply rule

Using the estimated parameters we, for example, obtain the in-sample fit of single vari-
ables shown in figure 2. The four examples shown in figure 2 indicate how well the model
fits the data, but we should point out that the fit is significantly less convincing in the
case of investment and money demand (not shown here), which is not too surprising. As
impulse-response simulations resulting from a (positive) money supply shock we obtain
in figure 3 reasonable results from a Keynesian perspective , and in the case of the Taylor
interest rate policy rule the results look even more convincing. This also holds for the
type of simulations shown in figure 2.17

The estimated parameter values – taken together – suggest in view of figure 1 that
the Keynes-effect, the Mundell-effect and the Metzler accelerator effect are weak, while
the Rose effect implies an adverse real wage adjustment, basically based on the result
that aggregate demand is found to depend positively on the real wage and that wage
flexibility is larger than price flexibility. We thus should expect – and find this in figure
4 – that the steady state of the dynamics is surrounded by (slightly) explosive forces.18

The economy therefore operates slightly above the Hopf-bifurcation point where local
asymptotic stability is lost.19

Since interest rate sensitivity, as characterized by the parameter h2, is high, we should
expect that the Taylor rule works better than the money supply rule. This is indeed the

17For details see Flaschel, Gong and Semmler (2001).
18The above estimates imply yd

u = scy ≈ 0.27u, ûy = 1−κp

1−κpκw

βw

yp ≈ 0.18 which indeed provides a
strong positive feedback of the wage share on its rate of growth.

19Such a finding also holds for the Bergstrom model of the UK economy, see Barnett and He (1999)
for a numerical study of this macroeconometric model.
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case, but nevertheless does not suppress the local instability of the dynamics as figure 4
exemplifies, possibly due to the fact that both policy rules only operate weakly. Increas-
ing to some extent the parameters of the two policy rules that concern the influences of
the inflation gap and the output gap will in the situation currently under consideration
bring about convergence to the steady state of the dynamics, which is what one would
expect from the application of such policy rules.

The destabilizing force in the presented estimates thus seems to be an adverse Rose-
type real wage effect. Figure 5 again summarizes the various possibilities of real wage
adjustments when income distribution and wage-price flexibility matter. We see that
the situation that seems to characterize our empirical findings is given by the case 2.b in
figure 5 (corresponding to the first row in the preceding feedback chain representations).

3.3 The kinked money wage Phillips Curve

Empirical observations, already made by Phillips (1958), and recently reinforced espe-
cially in the empirical study of Hoogenveen and Kuipers (2000), suggest that the Phillips
Curve cannot be linear from the global point of view. The local and global instability
obtained from the above estimates suggest a reconsideration of our model for the case
where the trajectories depart too much from the steady state. In order to investigate
the role of such nonlinearity briefly, we follow Hoogenveen and Kuipers (2000) to some
degree and consider now a simple border case of their observations, namely a stylized
money wage PC that is defined as follows:

V

V

cU

p̂

1 V�

e
y

e
�

Figure 4: Simulation of the model with Taylor rule (unstable case)
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 The Four Partial Rose Real Wage Adjustment Mechanisms
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Normal Rose Effects:

1a. Real wage increases  (decreases) will be reversed in the
case where they reduce (increase) economic activity when
nominal wages respond stronger than the price level to the
decrease (increase) in economic activity 

1b. Real wage increases (decreases) will be reversed in the
case where they increase  (reduce) economic activity when
the wage level responds weaker  than the price level to the
increase (decrease) in economic activity

Adverse Rose Effects:

2a. Real wage increases (decreases) will be further  increased 
in the case where they reduce (increase) economic activity
when the wage level responds weaker than the price level to
the decrease  (increase) in economic activity 

2b. Real wage increases (decreases) will be further increased
in the case where they increase  (reduce) economic activity
when the wage level  responds stronger  than the price level
to the increase (decrease) in economic activity 

Figure 5: The dominant Rose effect is of form 2b. in the estimated Keynesian
dynamics.

ŵ = max{βw(V − V̄ )+κw(p̂+nx)+(1−κw)(πe +nx), 0}.

Hoogenveen and Kuipers (2000) find in fact that there exist lower limits even to wage
inflation, which in their findings is bounded away from zero to a significant degree. Our
above formula assumes a weaker type of nonlinearity, since it only states that the wage
level may rise as before under corresponding circumstances, but will never fall. This
Phillips Curve thus assumes that money wages behave as in the preceding section if
their growth rate is positive, but stay constant if they would be falling in the situations
considered so far. There is thus no wage deflation possible now. The kink could be
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smoothed and restricted wage deflation could even be allowed for, without altering the
conclusions of this section significantly. We consider such kinked money wage PC’s a
much better description of reality than the former strictly linear one.

eπ
β

wβ

Maximum of real parts of eigenvalues

Fluctuations of labor intensity along the attractor

l l

t t

max Re iλ max Re iλ

Figure 6a: The dynamics with kinked wage PC.

Increasing the adjustment speed of the inflationary climate to a sufficient degree makes
the originally considered dynamics generally unstable and in fact much more explosive
and non-viable than is indicated by figure 4. However with the above kink in the
money wage PC in operation, the instability of the steady state remains bounded in an
economically meaningful domain even for large values of this adjustment speed. This
kink provides therefore a powerful institutional means of obtaining economically viable
dynamics in the place of purely explosive and collapsing ones. This is exemplified in
figures 6a and 6b.20

In the top row of figure 6a we have plotted the maximum real part of the eigenvalues
of the dynamics at the steady state against the parameters that characterizes wage
flexibility and the speed of adjustment of the inflationary climate. As one can see,
the steady state loses its stability when one of these parameters becomes sufficiently
large (greater than 0.2 and 0.6, due to the working of the Rose and the Mundell effect,
respectively). The orbits generated by the dynamics however remain bounded as the
bottom time series for labor intensity l exemplifies. They show the movement of labor
intensity l along the attractor and indicate irregular economic fluctuations that represent

20The numerical investigations of this section were performed with the software package SND, see
Chiarella, Flaschel, Khomin and Zhu (2001) for its description. The software package and a range of
projects or applications can be downloaded from the homepage of Carl Chiarella at UTS.
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complex dynamics from the mathematical point of view. These persistent fluctuations
are transformed into damped ones if the parameter h2 that characterizes the interest
rate sensitivity of the money demand function is decreased (from 0.1 to 0.06) whereby
the Keynes-effect is made stronger and indeed then stabilize the economy.21

Figures 6b shows in more detail that some sort of complex dynamics is generated as the
speed of adjustment of the inflationary climate towards the actually observed inflation
rates is increased, already indicated by the times series presented in figure 6a. We show in
figure 6b the projection of the attractor (and the transient towards it) in the ω, l−plane
(for βπe = 1), the bifurcation diagrams for the state variables ω and l for different lengths
of transients and, the calculation of the maximum Liapunov exponent. In the bifurcation
diagrams we have plotted vertically all local maxima and minima of labor intensity l
and the real wage ω (nx = 0 here) for a certain range of the parameter βπe . We can
see that nearly all amplitudes for the fluctuation of the real wage become possible (in a
certain range that increases with the considered speed of adjustment) if this parameter
is sufficiently high, with both transient phase and explicitly shown simulation phase
chosen sufficiently large. We conclude that integrated Keynesian dynamics can give rise
to interesting irregular economic fluctuations (that are complex from the mathematical
point of view) in parameter ranges that are not implausible from the economic point of
view.

3.4 The role of monetary policy rules reconsidered

We now add again the money supply and interest rate policy rules 1 and 2 of subsection
3.1 and consider first two eigenvalue diagrams for the parameters that refer to the
inflationary gap and the state of the business cycle. We start – as in the empirical
example – from a situation of unstable dynamics of the private sector and see that
all these policy parameters can enforce stability, when increased from zero to certain
positive values. Yet, after a certain corridor they lose their stabilizing power again in a
pronounced way. This also holds for the parameters βm1 and βr1, characterizing money
supply and interest rate smoothing, which implies that the negative entries in the trace
of the Jacobian of the dynamics caused by these items also do not always work in favor

21Other crucial parameter values in this simulation of the 6D dynamics are sc = 0.8, sw = 0, i1 =
0.25, βw = 2.5, βp = 1.5, κw = κp = 0.5. In this situation, the adverse Rose effect dominates, since ag-
gregate demand depends positively on the wage share and since wage flexibility exceeds price flexibility.
The very explosive local situation is nevertheless tamed by the kink in the money wage PC, and gives
rise to complex dynamics.

24



of stability.
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Figure 6b: The dynamics with kinked wage PC.
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Figure 7: Local stability regions for money supply and interest rate policy rules.

Figure 7 thus demonstrates that there may be only small domains for the parameters of
the monetary policy rules where these rules indeed successfully stabilize the economy.

25



Policy parameters that are too low or too high allow for or even increase local instability
in the considered situation. This means that it is not clear in a given situation whether
these policy parameters should be increased (a more active monetary policy) or decreased
(a more passive policy) in order to dampen business fluctuations. There are therefore
examples – even for relatively small values of these parameter values – where it may be
wiser to make anti-inflationary policy weaker instead of making it stronger in view of
the observed fluctuations. This is the corridor problem of monetary policy, which thus
has to determine on which side of the corridor it is operating.22
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Figure 8: Impacts of interest rate policy rules on persistent fluctuations.

Next we increase the parameter βw to 0.5 and get thereby a repelling steady state. We
assume in addition a kinked money wage PC and consequently get globally bounded
dynamics, as exemplified by the three attracting limit cycles shown in figure 8. We
here consider the Taylor interest rate policy rule and find in the present situation that
no choice of the parameter βr2 will produce convergence, as shown in the eigenvalue
diagram bottom left. Yet, the degree of local instability is varying with this parameter
and this has global implications. Indeed, a given limit cycle situation, shown top left, will
be improved (towards smaller limit cycles) if this parameter is moved towards smaller
values of the maximum real parts of eigenvalues (the figure top right), while limit cycles
will increase again if the maximum real part of eigenvalues is increasing again (the figure

22The base parameter values in the simulations shown are: βw = 0.1, βp = 2, κw = κp = 0.5, sc =
0.6, sw = 0.05, i1 = 0.1, βπe = 0.1. The Rose effect is therefore again destabilizing with respect to wage
flexibility and stabilizing with respect to price flexibility.
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bottom right). The corridor problem of monetary policy thus also applies when more
complex attractors than just point attractors are considered. We note in passing that a
floor to wage deflation of -1 percent in the place of no wage deflation will make the limit
cycle much larger, while a floor of -10 percent will completely remove the stable limit
cycle and will make the dynamics purely explosive and economically non-viable.

With a final numerical example we show23 – for the case of the money supply growth rule
– again a limit cycle situation (for βm2 = 0.5) which however is turned into convergence
if the reaction to the inflation gap is made more moderate (βm2 = 0.4). This therefore
provides an example that a more active monetary policy can in fact be destabilizing.24

This finding is again related to the eigenvalue calculations shown bottom left, which
again – though locally in nature – predict correctly what happens in the situation of the
more complex limit cycle dynamics, generated by a kinked money wage PC. The plots
on the right hand side of figure 9 finally show that the Rose effect – which here again
predicts destabilizing wage and stabilizing price flexibility, due to the chosen parameter
values in the aggregate demand function – need not completely dominate the outcome
on price flexibility, since instability due to the destabilizing Mundell effect may from
some point onwards dominate the Rose effect in this regard.

max Re iλ

max Re iλ max Re iλ

wβ

pβ
2mβ

l

ω

Figure 9: Impacts of money supply policy rules on persistent fluctuations and the role
of wage / price flexibilities.

23The important base parameter values here are: βw = 0.2, βp = 0.5, κw = κp = 0.5, sc = 0.6, sw =
0.08, i1 = 0.2, βπe = 0.2. The Rose effect is therefore again destabilizing with respect to wage flexibility
and stabilizing with respect to price flexibility.

24The fact that a more active monetary policy can be destabilizing is also shown in Benhabib et al.
(2001), there however in an optimizing macro-model.
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3.5 Conclusions

We have shown in this paper that a proper Keynesian version of AS-AD growth dy-
namics demands at least six laws of motion that integrate prominent feedback chains of
Keynesian macrodynamics. We have also shown that the steady state of these dynamics
with our standard PC’s is asymptotically stable, broadly speaking, for sluggish adjust-
ment speeds and conjecture on the basis of numerical experience that it often becomes
purely explosive soon after the necessary occurrence of Hopf-bifurcations when adjust-
ment speeds become larger. Monetary policy can help to avoid this explosiveness to
some extent, but only for a limited range of adjustment speeds and policy parameters.

Estimation of the parameters of the dynamics indeed showed that mildly explosive forces
around the steady state may be given in reality. To this situation we then superimposed
an important behavioral nonlinearity, a kink in the money wage Phillips Curve in the
place of the linear wage PC and argued that this kink may radically increase the viability
of the dynamics for large ranges of its adjustment speeds, leading to some sort of complex
dynamics eventually when adjustment speeds become sufficiently large. Again, policy
can help, by reducing economic fluctuations to some extent, but this only for a limited
range of its parameters (that may not easily be determined).

Our basic conjecture for future research therefore is that steady states of Keynesian
macrodynamics are typically surrounded by centrifugal forces which come to a halt and
give way to more or less complex real and nominal fluctuations if in particular an im-
portant nonlinearity, the kink in the money wage Phillips Curve, comes into operation.
Monetary policy rules – only if their parameters are correctly chosen in a certain corridor
– can improve the resulting situation of persistent, often irregular fluctuations, by reduc-
ing amplitudes or even bring about a return to the steady state under certain conditions.
Monetary policy by itself, however, being more active, does not automatically deliver
better stability results. We conclude that the prevailing studies of only damped fluctua-
tions and of only monetary shocks applied to such convergent processes represent a much
too limited scenario to really grasp the implications of properly formulated Keynesian
labor and goods market (price and quantity) adjustment processes when all markets
dynamically interact and the aforementioned four macroeconomic feedback mechanisms
are at work. Monetary policy has to learn to live with the kink in the money wage
Phillips Curve and the irregular endogenous fluctuations generated by it in interaction
with the unstable feedback chains of non-market clearing macrodynamics.
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