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Abstract

In this paper we investigate the closed-economy Keynes-Wicksell-Goodwin model
of Chiarella and Flaschel (2000) for the case of two interacting open economies. We
introduce these coupled two-country KWG dynamics on the extensive form level by
means of a subdivision into nine modules describing the behavioral equations, the
laws of motion and the identities or budget equations of the model. We then derive
their intensive form representation and the 10 laws of motions of the model on the
basis of certain simplifying assumptions. Thereafter we present the uniquely deter-
mined steady state solution of the dynamics and discuss in a mathematically informal
way its stability properties, concerning asymptotic stability and loss of stability by
way of super- or subcritical Hopf-bifurcations. In a final section we explore numeri-
cally a variety of situations of interacting real and financial cycles, where the steady
state is locally repelling, but where the overall dynamics are bounded in an economi-
cally meaningful domain by means of a kinked money wage Phillips curve, exhibiting
downward rigidity of the money-wage, combined with upward flexibility of the usual
type. The paper will be extended in a next step towards the proper inclusion of
Keynesian goods market disequilibrium and the quantity dynamics this implies.

Keywords: Interacting KWG economies, stability, instability, persis-
tent cycles, coupled oscillators.
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1 Introduction

In this paper we reformulate and extend the analysis of small open economies of Asada,
Chiarella, Flaschel and Franke (2003, ch.s 8,9) towards some initial theoretical considera-
tions and some numerical explorations of the case of two interacting large open economies
like Euroland and the USA. However we shall here reconsider primarily simplified, com-
pared to the 14D two-country KMG dynamics of Asada, Chiarella, Flaschel and Franke
(2003, ch.10), only 10D open KWG growth and inflation dynamics.1 The results achieved
in this paper still represent work in progress and thus surely need extension in order to
truly judge the potential of the proposed model type for a discussion of the international
transmission of the business cycle through positive or negative phase synchronization and
other important topics of the literature on coupled oscillators of economic as well as of
other origin.2

Analytical propositions are indeed obtained much more easily in the KWG case than in the
case of two interacting KMG economies, since in the two-country case we can indeed then
economize on four laws of motion (describing the quantity adjustments in the two open
KMG economies) which reduces the dimension of the considered dynamics from 14D to 10D.
The economically more convincing KMG approach with its less than full capacity growth
considerations is considerably more difficult to analyze analytically and will therefore here
remain excluded from consideration. From the economic perspective we thus concentrate
on the generation and transmission of international inflation by means of the KWG case
and do not yet really consider Keynesian quantity driven business cycle dynamics and their
transmission throughout the world economy.

This paper first investigates the interaction of two monetary growth models of the KWG
inflation dynamics type, which when assumed as closed would each generate an intrinsically
nonlinear dynamics of dimension 4 of the kind that has been investigated in detail in
Chiarella and Flaschel (2000, ch.3) for the closed economy case.3 When there is trade in
goods and financial assets between them, as in the Dornbusch (1976) model of overshooting
exchange rate dynamics, KWG type models are coupled by way of the 2D dynamics of
expected and actual exchange rate depreciation that lead in sum to nonlinear dynamics
of dimension 10. We derive local stability conditions for these dynamics and show that
there exist a variety of situations where Hopf-bifurcations will occur, giving rise to the
local birth or death of stable or unstable limit cycles. Furthermore extrinsic nonlinearities
are then introduced to limit the trajectories of the dynamics from a global point of view
in the numerical analysis of this paper. In this way limit cycles and more complex types
of attractors are generated that can exhibit the co-movements typical of national business

1The two labels chosen distinguish the so-called Keynes-Metzler-Goodwin (KMG) approach from the
simpler Keynes-Wicksell-Goodwin (KWG) approach where there is no quantity adjustment in the market
for goods and where therefore primarily an IS-driven inflation dynamics is the focus of interest. These two
model types where established in Chiarella and Flaschel (1996a,b) and reconsidered in a larger context in
Chiarella and Flaschel (2000) as well as Chiarella, Flaschel, Groh and Semmler (2000).

2The theory of coupled oscillators represents a topic with many interesting features. Due to space
constraints the proper application of this theory to the questions treated here remains a subject for future
research; see however Haxholdt (1995) and Brenner, Weidlich and Witt (2002) on these matters.

3See also Chiarella and Flaschel (1996a) with respect the first presentation of the KWG model type,
based on the literature on the Keynes-Wicksell monetary growth dynamics of the 1960s and 1970s.
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cycles (so-called ‘phase locking’), but also the counter-movements typical of such cycles, in
both cases primarily with respect to inflation dynamics.

It has been shown in Chiarella and Flaschel (2000) that the supply side oriented KWG
approach may be considered as a reasonable simplification of the demand side oriented
KMG approach (where prices and quantities both adjust according to demand conditions
on the market for goods) if attention is restricted to topics such as income distribution and
inflation, since in such situations it provides a pragmatic short-cut for the feedbacks that
go from IS-disequilibrium to its impact on wage- and price-inflation. The advantage of the
KWG approach is that it reduces the number of the laws of motion needed to describe a
monetary growth model of the Keynesian variety, by restricting the adjustment processes
considered to the dynamics of the real wage, to savings- or investment driven capital stock
growth, the law of motion for real balances (representing the inflationary forces) and the
one for inflationary expectations. The consideration of only these state variables simplifies
the stability analysis of the closed economy case considerably. In a similar fashion it
allows us to establish situations of local asymptotic stability for the case of two interacting
KWG economies by first starting from a weak coupling of the two considered economies.
Thereafter, a host of situations can be provided where the economies lose their asymptotic
stability (by way of Hopf-bifurcations, since it can in particular be shown that the system’s
determinant has a positive sign throughout). Of course, global stability properties have to
be studied then from the numerical point of view since the dynamical system is of too high
a dimension to allow for global analytical results.

In section 2 the coupled two-country KWG dynamics is introduced and discussed on the
extensive form level, by means of a subdivision into nine modules describing the behavioral
equations, the laws of motion and the identities or budget equations of the model. Sec-
tion 3 then derives their intensive form representation on the basis of certain simplifying
assumptions. In section 4 we present the uniquely determined steady state solution of the
dynamics and discuss on this basis in a mathematically informal way its stability properties,
concerning asymptotic stability and the loss of this stability by way of super- or subcritical
Hopf-bifurcations. Rigorous stability proofs that follow the here applied methodology (of
starting from an appropriate 3D dynamical subsystem and enlarging it in a feedback guided
and systematic way to its full dimension by making certain adjustment speeds – formerly
set equal to zero – slightly positive) are provided in Asada, Chiarella, Flaschel and Franke
(2003, ch.10). Section 5 explores numerically a variety of situations of interacting real and
financial cycles of the KWG type, where the steady state is locally repelling, but where
the overall dynamics are bounded in an economically meaningful domain by means of a
kinked money wage Phillips curve, with downward rigidity of the money-wage, but with
its upward flexibility of the usual type. Section 6 concludes.
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2 Two interacting KWG economies

In this section we introduce for KWG approach to open economies the case of two large
open economies that are interacting which each other through trade in goods as well as
financial assets and the resulting net interest flows. The KWG approach of this paper to the
formulation of two-country monetary macrodynamics is not yet a complete description of
such a two-country world. This holds in particular, since the allocation and accumulation
of domestic and foreign bonds is not completely specified. We make some convenient
technical assumptions that will ensure that the accumulation of internationally traded
bonds does not feedback into the core 10D-dynamics of the model and may thus be neglected
for the time being. Note furthermore that the following presentations of the equations
of the model involve many accounting identities that are here simply presented to ease
and supplement the understanding of the model. They are however of no importance
for the dynamical equations that result from this model (four for each country and two
for their interconnection) that will be analyzed in this paper from a theoretical as well
as from a numerical point of view. Note finally that we use linear equations to model
behavioral relationships as often as this is possible in order to have a model with only
intrinsic nonlinearities as a starting point of our investigations. Extrinsic nonlinearities
based for example on intertemporal constraints, changing adjustment behavior and the
like will be introduced in future extensions of the model type considered here. One such
extrinsic nonlinearity is discussed in section 5.

In the model presented below we have chosen the units of measurement such that domestic
expressions are in terms of the domestic good or the domestic currency, and foreign country
expressions in terms of the commodity produced by the foreign country (or – if nominal
– in the foreign currency) as far as this has been possible. For the sake of concreteness,
we shall refer to the domestic and foreign economy, as ‘Euroland’ and the ‘USA’ with
their currencies ‘¿’ and ‘$’ respectively. An asterisk indicates a foreign country variable
whilst a subscript ‘2’ on a variable indicates that the variable is sourced from the other
country. For notational simplicity we use π in the place of πe in this paper to denote the
rate of inflation expected to apply over the medium-run. Since both countries are modelled
analogously we will focus on the domestic economy in the following presentation of the
components of the model. The description and justification of the equations presented in
the various modules of the model will be brief, since many of the structural equations of
this two-country KWG dynamics are already well-documented and explained in Chiarella
and Flaschel (2000, ch.4).

1. Definitions (remunerations, wealth, real exchange rate):

ω = w/p, ρ = (Y − δK − ωLd)/K, (1)

W = (M +B1 + eB2 + peE)/p, pb = pb∗ = 1, (2)

ω∗ = w∗/p∗, ρ∗ = (Y ∗ − δ∗K∗ − ω∗Ld∗)/K∗, (3)

W ∗ = (M∗ +B∗
1/e +B∗

2 + p∗eE
∗)/p∗, pb = pb∗ = 1, (4)

η = p/(ep∗), [Goods∗/Goods]. (5)
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The equations in the first module of the model provide definitions of important macroeco-
nomic magnitudes, namely the real wage ω, the actual rate of profit ρ and real wealth W .
The latter consists of real money balances, equities, bonds issued by the domestic govern-
ment (B1) and bonds issued by the foreign government (B2). These bonds have a constant
price, normalized to one, and a variable interest rate (r and r∗, respectively). Since adding
the possibility of holding foreign equities as well does not affect the main features of this
model in its present formulation, we restrict ourselves to bonds as the only foreign asset
domestic residents can hold. The real exchange rate is defined by p/(ep∗) and thus in the
present paper describes the exchange ratio between foreign and domestic goods.

2. Households (workers (sw, τw = 0) and asset-holders:

W = (Md +Bd
1 + eBd

2 + peE
d)/p, (6)

Md = h1pY + h2pW (1− τc)(ro − r), (7)

Y D
c = (1− τc)(ρK + rB1/p) + e(1− τ ∗

c )r
∗B2/p, (8)

C1 = γw ωLd + γc(η)(1− sc)Y
D

c , γw, γc(η) ∈ [0, 1], (9)

C2 = η((1− γw)ωLd + (1− γc(η))(1− sc)Y
D
c ), (10)

Sp = ωLd + Y D
c − C = scY

D
c = (Ṁd + Ḃd

1 + eḂd
2 + peĖ

d)/p, (11)

C = C1 + C2/η, (12)

L̂ = n = const., (13)

W ∗ = (Md∗ +Bd∗
1 /e+Bd∗

2 + p∗eE
d∗)/p∗, (14)

Md∗ = h∗
1p

∗Y ∗ + h∗
2p

∗W ∗(1− τ ∗
c )(r

∗
o − r∗), (15)

Y D∗
c = (1− τ ∗

c )(ρ
∗K∗ + r∗B∗

2)/p
∗) + (1− τc)rB

∗
1/(ep

∗), (16)

C∗
2 = γ∗

w ω∗Ld∗ + γ∗
c (η)(1− s∗c)Y

D∗
c , γ∗

w, γ∗
c (η) ∈ [0, 1], (17)

C∗
1 = ((1− γ∗

w)ω
∗Ld∗ + (1− γ∗

c (η))(1− s∗c)Y
D∗
c )/η, (18)

S∗
p = ω∗Ld∗ + Y D∗

c − C∗ = s∗cY
D∗
c

= (Ṁd∗ + Ḃd∗
2 + Ḃd∗

1 /e+ p∗eĖ
d∗)/p∗, (19)

C∗ = C∗
1/η + C∗

2 , (20)

L̂∗ = n∗ = const. (21)

We assume two groups of households in our model that differ with respect to their savings
behavior – workers who do not save (for reasons of simplicity) and asset holders who have a
constant average propensity to save, sc, out of their disposable income. Furthermore, both
groups spend a fraction (1−γw and 1−γc, respectively) of their consumption expenditures
on imports (C2). We assume that the fraction γc is a negative function of the real exchange
rate η. This indicates that asset holders shift their consumption expenditures in favor of the
commodity that becomes relatively cheaper. The disposable income Y D

c of asset holders
consists of profits, interest payments from domestic bonds and interest payments from
foreign bonds – all net of taxes (which are paid in the country from where this interest
income originates). Note that we have assumed – again for reasons of simplicity – that
the tax rate on wage income is zero. Furthermore, the asset holders decide how to split
up their wealth between the different assets (a superscript d indicates demand). Here we
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assume that domestic bonds and domestic equities are perfect substitutes, which provides
an equation for the price of equities. The stock demand for real money balances depends
on output Y (reflecting the transaction motive), on wealth and the nominal interest rate.
Equation (11) indicates that the asset holders have to hold their intended savings in the
four assets that are available to them domestically. Finally, we assume that the labor force
L grows at a constant exogenous rate n.

3. Firms (production-units and investors):

Y = yK, Ld = Y/x, y, x = const., V = Ld/L, (22)

I = i(ρ − (r − π))K + nK, (23)

∆Y = Y − δK −C1 − C∗
1 − I − G, (24)

peĖ/p = I +∆Y = Ia (Sf = 0), (25)

K̂ = I/K + (1− βk)∆Y/K, βk ∈ [0, 1], (26)

Ṅ = δ2K + βk∆Y, (27)

Y ∗ = y∗K∗, Ld∗ = Y ∗/x∗, y∗, x∗ = const., V ∗ = Ld∗/L∗, (28)

I∗ = i∗(ρ∗ − (r∗ − π∗))K∗ + n∗K∗, (29)

∆Y ∗ = Y ∗ − δ∗K∗ − C2 − C∗
2 − G∗, (30)

p∗eĖ
∗/p∗ = I∗ +∆Y ∗ = Ia∗, (S∗

f = 0), (31)

K̂∗ = I∗/K∗ + (1− β∗
k)∆Y ∗/K∗, β∗

k ∈ [0, 1], (32)

Ṅ∗ = δ∗2K
∗ + β∗

k∆Y ∗. (33)

Module 3 describes the behavior of firms. Output is produced with the help of the two
factors, labor and capital, using a technology with fixed input coefficients. Capital is always
fully utilized whereas demand for labor, Ld, may differ from the total work force L. The
investment per unit of capital depends on the difference between the profit rate and the
real interest rate and n as a trend component. Equation (24) defines the excess supply,
∆Y , on the domestic goods market. Since we have assumed that firms’ factor payments,
(in the form of wages and profits), always amount to Y , they have to finance ∆Y as well
as their intended investment by issuing equities. This is indicated in (25) where actual
investment, Ia, is defined as the sum of intended and involuntary investment. By equation
(26) this involuntary investment, ∆Y , can either result in unintended capital accumulation
or in unintended changes in inventories. For βk = 0, all excess supply of goods leads to
involuntarily capital accumulation. This implies that if output falls short of aggregate
demand (∆Y < 0) investment plans are cancelled by the respective amount. We see from
equation (27) that for this value of βk, there is no need to explicitly consider inventories.
Hence in this case, δ2 – the ratio of intended inventory holdings to the capital stock –
can be set equal to zero. For βk = 1, in contrast, intended investment will be the only
force affecting the capital stock since all unsold production results in a change in the stock
of inventories. This stock increases [decreases] if actual output exceeds [falls short of]
aggregate demand. Moreover, a positive δ2 now indicates the assumption that firms try to
hold the stock of inventories proportional to output. Because of our assumption concerning
the production technology this implies a constant ratio of inventories and capital stock in
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the steady state.4 Besides these polar cases, on which we will concentrate in the ensuing
analysis, intermediate ones (βk ∈ (0, 1)), where part of the unsold production leads to
involuntary capital accumulation and part to changes in inventories, are also possible and
indeed more plausible. Due to our assumptions on firm behavior it follows finally that the
savings of firms are always identically zero.

Module 4 describes the government. In equation (34) it levies a tax with a constant tax rate
τc on profits and on interest payments from domestic bonds, i.e. only the asset holders pay
taxes. Note that the interest payments going to foreigners who hold domestic bonds are also
taxed. Equation (35) characterizes government expenditures in the simplest way possible as
far as steady state analysis is concerned, namely as being a constant fraction of the capital
stock K. Equation (36) is simply the definition of government savings; fiscal receipts net
of interest payments minus government spending. Equation (37) expresses the assumption
that the central bank of the home country keeps the domestic money supply on a growth
path with an exogenous rate µ. Consistent with this assumption, the government budget
constraint then states in (38) that the time rate of change of the supply of government bonds
(that in fact reaches the public) is determined by two items; the negative of government
savings (the government deficit that must be financed) minus that part of the new money
supply that is injected into the economy via open market operations (which reduces the
supply of new government) and not via the foreign exchange market.5

4. Government (fiscal and monetary authority):

T = τc(ρK + rB/p), B = B1 +B∗
1 , (34)

G = gK, g = const., (35)

Sg = T − rB/p −G, (36)

M̂ = Ṁ/M = µ, (37)

Ḃ = pG + rB − pT − Ṁ , (38)

T ∗ = τ ∗
c (ρ

∗K∗ + r∗B∗/p∗), B∗ = B∗
2 +B2, (39)

G∗ = g∗K∗, g∗ = const., (40)

S∗
g = T ∗ − r∗B∗/p∗ −G∗, (41)

M̂∗ = Ṁ∗/M∗ = µ∗, (42)

Ḃ∗ = p∗G∗ + r∗B∗ − p∗T ∗ − Ṁ∗. (43)

With regard to the asset markets we assume continuous market clearing at the end of
each ‘trading day’ (ex post). Equation (44) indicates the respective stock equilibria for the
three domestic assets. Note that the demand for domestic bonds stems from domestic as
well as from foreign asset owners. The equation (45) directly follows from the assumption

4However equation (27) excludes the possibility that inventories N grow even in a non-growing economy
(K = const.) Let δ̂2 denote the desired ratio of inventories and output, δ̂2Y = δ̂2yK = N . Differentiating
with respect to time and noting that the steady state is characterized by K̇ = nK, the following definition
of δ2 seems appropriate: δ2 = δ̂2ynK. In a stationary economy, n = 0, the equilibrium is then characterized
by a constant stock of inventories.

5We do not yet consider foreign market operations by the central banks.
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that domestic bonds and equities are perfect substitutes. Hence, the rate of interest net
of taxes, (1− τc)r, has to be equal to the actual rate of return on equities. This rate can
be calculated as follows. In each period, all expected profits, ρpK, are paid out to equity
holders. Taking the tax and perfectly foreseen untaxed capital gains into account, the rate
of return on equities, therefore, amounts to (1 − τc)ρpK/peE + p̂e. Equation (46) then
characterizes the respective flow equilibria. We assume that the government and the firms
face no demand problems when issuing new bonds or equities, respectively. Note that the
division of new bonds between domestic and foreign asset holders is ambiguous.6 Once
their flow demands fulfill the condition Ḃ = Ḃd

1+ Ḃd∗
1 , however, these demands are realized

(Ḃ1 = Ḃd
1 and Ḃ∗

1 = Ḃd∗
1 ).

5. Equilibrium conditions and consistency requirements (asset-markets):

M = Md = h1pY + h2pW (1− τc)(ro − r),

B = Bd
1 +Bd∗

1 , E = Ed, (44)

(1− τc)r =
(1− τc)ρpK

peE
+ p̂e, (45)

Ṁ = Ṁd, Ḃ = Ḃd
1 + Ḃd∗

1 , Ė = Ėd, (46)

M∗ = Md∗ = h∗
1p

∗Y ∗ + h∗
2p

∗W ∗(1− τ ∗
c )(r

∗
o − r∗),

B∗ = Bd
2 +Bd∗

2 , E∗ = Ed∗, (47)

p∗eE
∗ = (1− τ ∗

c )ρ
∗p∗K∗/((1− τ ∗

c )r
∗ − π∗), (48)

Ṁ∗ = Ṁd∗, Ḃ∗ = Ḃd
2 + Ḃd∗

2 , Ė∗ = Ėd∗. (49)

In module 6, the first two equations describe the disequilibrium situations on the market
for the domestic and the foreign good, respectively. Then, as the first line in (52) shows,
aggregate savings which consists of private and public savings is equal to the sum of actual
investment and net private capital exports ((eḂ2 − Ḃ∗

1)/p). The whole expression is equal
– due to our assumptions on income, consumption and the allocation of savings – to actual
investment plus, net exports of goods and, plus the excess of foreign interest payments
to domestic residents holding foreign bonds over domestic interest payments to foreigners
holding home-country bonds (both net of taxes).7 This is a direct implication of the fact
that the surpluses in all accounts of the balance of payments have to sum up to zero. See

6For Ṁ = Ṁd, Ė = Ėd, Ṁ∗ = Ṁd∗, Ė∗ = Ėd∗, equations (11), (19), (46) and (49) lead to the following
set of four equations in the four unknowns Ḃd

1 , Ḃ
d
2 , Ḃ

d∗
1 and Ḃd∗

2 :




1 e 0 0
0 0 1/e 1
1 0 1 0
0 1 0 1






Ḃd

1

Ḃd
2

Ḃd∗
1

Ḃd∗
2


 =




pSg − Ṁ − peĖ

p∗S∗
g − Ṁ∗ − p∗eĖ∗

Ḃ

Ḃ∗


 .

As can easily be verified, the rank of the 4 × 4 matrix on the left hand side is three, yielding one degree
of freedom. Hence, once the division of new domestic bonds between domestic residents and foreigners is
chosen the division of foreign bonds is determined as well.

7Whereas the first line in (52) follows directly from inserting the use of private and government savings
from (11) and (36), the derivation of the second line is slightly more complicated. Using the definitions of
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also below where we explain the balance of payments in greater detail. Naturally, as shown
in (54), for the world as a whole, aggregate savings equal aggregate actual investment.

6. Disequilibrium situation (goods-markets):

Y �= C1 + C∗
1 + I + δK +G [∆Y �= 0], (50)

Y ∗ �= C∗
2 + C2 + I∗ + δ∗K∗ +G∗ [∆Y ∗ �= 0], (51)

S = Sp + Sg = Ia + (eḂ2 − Ḃ∗
1)/p (52)

= Ia + {C∗
1 − (ep∗/p)C2}+ {e(1− τ ∗

c )r
∗B2/p − (1− τc)rB

∗
1/p}, (53)

S∗ = S∗
p + S∗

g = Ia∗ + (Ḃ∗
1/e − Ḃ2)/p

∗

= Ia∗ + {C2 − (p/ep∗)C∗
1}+ {(1− τc)rB

∗
1/(ep

∗)− (1− τ ∗
c )r

∗B2/p
∗},

Sw = S + (ep∗/p)S∗ = Ia + (ep∗/p)Ia∗ = Iaw. (54)

Module 7 contains the adjustment of wages, prices, and inflationary expectations. Wage and
price inflation are modelled analogously. In both cases, there is a combination of demand
pressure and cost pressure factors. Wage inflation depends on the deviation of the actual
rate of employment from the NAIRU rate of employment. Furthermore, it is influenced by
the actual rate of change in the workers’ price index, p̂w, and the expected future rate of
change, πw. Underlying this formulation is the assumption that not only current but also
medium run workers’ price inflation is important in the wage bargaining process. From (58),
the current rate of workers’ price inflation amounts to the weighted sum of domestic price
inflation and foreign price inflation (converted in domestic currency), where the weights
are the proportions of the respective goods in workers consumption expenditures. The
construction of πw is completely analogous, using only expected magnitudes. Note that
the use of p̂ and π in lieu of p̂w and πw in equation (55) would imply an exchange rate
illusion on the part of workers. Price inflation, on the other hand, depends on the actual
excess supply on the goods market as a demand pressure factor and on wage inflation
as a cost push force. Furthermore, the expected price trend π influences today’s price
inflation in a similar way as today’s wage inflation. Equation (67) describes the formation
of inflationary expectations concerning the medium-run. It consists of a backward looking
first term (adaptive expectations with weight απ) and a forward looking second term (with
weight 1− απ) that refers to a theoretical of price forecasting method (the p-star concept
of the FED for example).

private and government savings,

S = Sp + Sg = ωLd + Y D
c − C + T − rB/p−G.

Inserting expressions for Y D
c , C and T according to (8), (12) and (34) yields

S = ωLd + ρK −C1 − (ep∗/p)C2 −G− rB1/p+ e(1 − τ∗c )r∗B2/p.

Making use of the definition of ρ in (1) and noting that from (24) and (25) that Y − δK − G − C1 =
∆Y + I + C∗

1 = Ia +C∗
1 , one finally obtains the desired expression:

S = Ia + {C∗
1 − (ep∗/p)C2} + {e(1 − τ∗c )r∗B2/p− (1 − τc)rB∗

1/p}.



10

7. Wage-Price-Sector (adjustment equations):

ŵ = βw(V − V̄ ) + κw p̂w + (1− κw)πw, (55)

p̂ = −βp(∆Y/K) + κpŵ + (1− κp)π, (56)

π̇ = βπ(απ(p̂ − π) + (1− απ)(p̂
+ − π)), (57)

p̂w = γw p̂+ (1− γw)(ê+ p̂∗), pw = pγw(ep∗)1−γw , (58)

πw = γwπ + (1− γw)(ε+ π∗), (59)

ŵ∗ = β∗
w(V

∗ − V̄ ∗) + κ∗
wp̂∗w + (1− κ∗

w)π
∗
w, (60)

p̂∗ = −β∗
p(∆Y ∗/K∗) + κ∗

pŵ
∗ + (1− κ∗

p)π
∗, (61)

π̇∗ = β∗
π(α

∗
π(p̂

∗ − π∗) + (1− α∗
π)((p̂

+)∗ − π∗), (62)

p̂∗w = γ∗
w p̂∗ + (1− γ∗

w)(p̂ − ê), p∗w = (p
∗)γ

∗
w(p/e)1−γ∗

w , (63)

π∗
w = γ∗

wπ∗ + (1− γ∗
w)(π − ε). (64)

Note again with respect to the above that expected inflation variables are now no longer
carrying a superscript e in order to simplify to some extent the notation of the many
expressions for inflation rates now involved.

Module 8 describes the dynamics of (the rate of change of) the exchange rate and the
formation of expectations about this rate of change. Here we assume as a first approach
to this dynamic interaction that the interest rate differential (augmented by depreciation
expectations) in the international market for bonds determines via corresponding interna-
tional capital flows the way and the extent by which the growth rate of the exchange rate
deviates from its steady state value8 in conjunction with the imbalance that exists in the
trade account (per unit of capital) at each moment in time. Dornbusch type models of the
open economy here often assume perfect capital mobility ( i.e. β =∞) and perfect substi-
tutability of the assets traded internationally. These assumptions are the root cause of the
prevalence of the UIP-condition (Uncovered Interest Parity) as the theory that determines
the exchange rate dynamics. Our formulation extends this approach and allows for (some)
imperfection with respect to capital mobility and exchange rate flexibility. Furthermore,
the mechanism by which exchange rate expectations are formed is – as the mechanism
that determined inflationary expectations – again a weighted average of ‘backward’ and
‘forward’ looking expectations. On the one hand, we use adaptive expectations, as the
simplest expression for a chartist type of behavior and, theory based expectations,9 using
for example the relative form of the PPP, on the other hand, as a simple description of a
fundamentalist sort of behavior. We assume here that domestic and foreign asset holders
form the same expectations regarding the exchange rate.

8We thus allow here for imperfect capital mobility – in contrast to the approach assumed for domestically
traded bonds and equities.

9For simplicity, only asymptotically rational expectations are assumed here.
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8. Exchange rate dynamics:

ê = βe(β((1− τ ∗
c )r

∗ + ε − (1− τc)r)− NX/K) + êo, (65)

êo = p̂o − p̂∗o, (66)

ε̇ = βε(αε(ê− ε) + (1− αε)(ê
+ − ε)). (67)

Module 9 deals with the balance of payments and its components. The first three equations
concern the trade balance and denote exports and imports of goods and also net exports
(see also module 2). Note that domestic imports are foreign exports and vice versa. Then,
equation (71) indicates net interest payments or exports (NIX) from abroad; foreign in-
terest payments to domestic asset holders minus domestic interest payments to foreigners
(assumed to be transferred through the foreign exchange market). In the balance of pay-
ments statistics NIP is part of exports of services (and thus also concerns the current
account) and in national income accounting it is subsumed under net factor income from
abroad. Another international transaction is the change in the stock of foreign bonds do-
mestic residents hold. NCX denotes net capital exports, i.e. the deficit in the private
capital account; the excess of additional foreign bonds held by domestic asset owners over
additional domestic bonds held by foreigners. Note that, taking the exchange rate into
account, NIX∗ and NCX∗ are simply mirror images of the respective domestic magni-
tudes. In (73), Z denotes the overall surplus in the balance of payments. It consists of
the surplus in the current account (first and second bracket), the surplus in the private
capital account (third bracket). As stated in (73), Z is identically equal to zero on the
basis of what has been assumed so far. This is the well-known accounting identity, i.e., the
magnitudes considered are ex post or equilibrium magnitudes. The same is true for the
various terms in (52) – (54) described above, from which it immediately follows that Z = 0
is indeed fulfilled in this model type.

9. Balance of Payments:

Ex = ((1− γ∗
w)ω

∗Ld∗ + (1− γ∗
c (η))(1− s∗c)Y

D∗
c )/η = C∗

1 = Im∗/η, (68)

Im = (1− γw)ωLd + (1− γc(η))(1− sc)Y
D
c = C2/η = Ex∗/η, (69)

NX/p = Ex − Im = −NX∗/η, (70)

NIX = e(1− τ ∗
c )r

∗B2 − (1− τc)rB
∗
1 = −eNIX∗, (71)

NCX = eḂd
2 − Ḃ∗d

1 = −eNCX∗, (72)

Z = pNX +NIX − NCX

= {pC∗
1 − ep∗C2}+ {e(1− τ ∗

c )r
∗B2 − (1− τc)rB

∗
1}

− {eḂd
2 − Ḃ∗d

1 }
= 0, (73)

Z∗ = p∗NX∗ +NIX∗ − NCX∗

= {p∗C2 − pC∗
1/e}+ {(1− τc)rB

∗
1/e − (1− τ ∗

c )r
∗B2}

−{Ḃ∗d
1 /e − Ḃd

2}
= −Z/e = 0. (74)
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3 The core 10D KWG growth dynamics

We now derive the intensive form representation of the two-country KWG growth dynamics
on the basis of certain assumptions that simplify its structure without sacrificing too much
in generality. In this way we obtain a structure that can be easily decomposed and later
on re-integrated in order to allow for various stability investigations and also numerical
comparisons between the closed economy case and the case of two interacting economies.
The assumptions for the somewhat restricted variant of the two-country KWG model that
will be investigated in the remainder of this paper (where the accumulation of assets other
than money and real capital is still left in the background) are the following:10

� W, in the money demand function, is replaced byK as a narrow definition of domestic
wealth (this removes feedbacks from bond and equity accumulation from part of the
model).

� tc = (Tc − rB1/p − er∗oB2/p)/K = const., where Tc = τc(ρK + rB1/p) + τ ∗
c er∗B2/p

represents the sum of all taxes paid by domestic asset holders worldwide. This rule of
tax collection is used in the place of the earlier profit tax collection rule and removes
another feedback route of the accumulation of domestic and foreign bonds from the
model. The question, of course, is how important such feedbacks routes are for the
dynamics of the model in general.

For reasons of simplicity we also employ the following assumptions:

� γw ≡ 1: Wage earners consume domestic goods solely (but γc(η), γ
′
c < 0). This sim-

plifies the consideration of the wage/price dynamics in a way that makes it identical
to that of a closed economy.

� ρe∗
o = ρe

o: The domestic steady state rate of profit is identical to that of the foreign
economy. This allows the interest rate parity condition to coincide with the relative
form of the PPP in the steady state or (equivalently) allows the removal of any trend
from the real exchange rate in the steady state.

� n = n∗ in order to have a uniform real rate of growth in the world economy in the
steady state for reasons of analytical simplicity.

� p̂+ = p̂o = µ−n: The simplest rule for the formation of forward looking expectations
of the rate of inflation by means of the quantity theory of money.

� ê+ = êo = p̂o − p̂∗o = µ − µ∗: The simplest rule for the formation of forward looking
expectations of the rate of change of the exchange rate by means of the relative form
of purchasing power parity theory

We furthermore assume that the export and import of commodities is modelled in its
mathematical details in the following simple way:

10The assumptions we make for the foreign economy are the same as the ones here for the domestic
economy and are therefore not made explicit in this section.
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According to module 9 of the above presentation of our general model and due to the
assumptions just made we have for c∗1 = Ex/K = C∗

1/K and c2/η = Im/K = C2/(ηK)
the expressions

c∗1 = (1− γ∗
c (η))(1− s∗c)(ρ

∗ − t∗c)(l/l
∗)/η, (75)

c2/η = (1− γc(η))(1− sc)(ρ − tc). (76)

These show that imports as well as exports (the first in terms of the domestic commodity
and the second in terms of the foreign good) are both a linear function of the real exchange
rate if, for the functions that determine the division of consumption between domestic and
foreign goods in both countries, it is furthermore assumed that

γc(η) = γc + γ(ηo − η), γ > 0, (77)

γ∗
c (η) = γ∗

c − γ∗(ηo − η), γ∗ > 0, (78)

are linear as well. This is justified in the present paper because we want to express the
model in as linear a form as possible in order to allow only for intrinsic (unavoidable) non-
linearities at the start of our considerations. Nonlinearities that rest on certain restrictions
concerning the postulated behavior of agents when the economy is far off its steady state
or on nonlinearities in the assumed speed of adjustment to disequilibrium far off the steady
state should then be introduced step-by-step at a later stage of the analysis. With respect
to the above γc(η)-function the linear relationships in (77) and (78) would then have to be
replaced by, say, tanh functions in order to guarantee γc(η), γ∗

c (η) remain between 0 and
1 at large values of |η0 − η|. The assumptions just made imply that the trade account in
determined according to the way depicted in figure 1.

η

0c

0η

n
c c( 1 ( ))( 1 s )( t )− γ η − ρ −

* * * n* *
c c( 1 ( ))( 1 s )( t )( l / l ) /− γ η − ρ − η

Figure 1: Determination of the balanced trade account (NX = Ex − Im = 0).

To simplify even further our treatment of the trade that occurs between the two countries
we finally assume that the parameter ηo is given by

ηo =
lo(1− γ∗

c )(1− s∗c)(ρ
∗
o − t∗c)

l∗o(1− γc)(1− sc)(ρo − tc)
. (79)
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The choice of this particular parameter value for ηo guarantees (as we shall see in the
following) that the steady value of η will be ηo and that the trade account (per unit of
capital) nx = NX/K = (Ex − Im)/K = c∗1 − c2/η will be balanced in the steady state.

A special case that is often employed in the literature on overshooting exchange rates is
recovered by making the following sequence of additional assumptions:

� βe = ∞, β = ∞ : so that (1 − τc)r = (1 − τ ∗
c )r

∗
o + ε : Uncovered interest parity

(UIP), based on perfect capital mobility, is assumed to hold.

� βε =∞, αε = 1 : so that ε = ê : Myopic perfect foresight (MPF) with respect to the
exchange rate is assumed to hold.

These assumptions are generally assumed in the literature for a treatment of the Dornbusch
model of overshooting exchange rates. There are however also treatments of this model
type that make use of adaptive expectations (αε = 1) in order to investigate from this point
of view the MPF-limit (αε = 1, βε = ∞) and its properties, see Chiarella (1990a,b, 1992).
Furthermore, the case αε = 0 in which ε̇ = βε(êo − ε), can be considered as a variant of
Dornbusch’s original choice of a regressive expectations mechanism: ε = βε(ln(eo/e)), that
by differentiation implies the rule ε̇ = βε(êo − ê).

As far as the mathematical investigation of the general two-country KWG model of the
preceding section is concerned we will confine ourselves here to the case tc =const where
lump sum taxes are varied in such a way that the ratio of real total taxes paid by domestic
asset holders (net of deflated interest payments they have received) to the capital stock
remains constant over time. This assumption will allow us to disregard the GBR and
the evolution of worldwide government debt in the following analysis of the model.11 In
making use of this simplifying device we employ similar assumptions to those of Sargent
(1987, ch.V) and Rødseth (2000, ch.6).

Let us now show how this model (which ignores the GBR, the government budget restraint)
can be rewritten as an nonlinear autonomous dynamical system in the ten state variables
ω = w/p, l = L/K, m = M/(pK), π, ω∗ = w∗/p∗, l∗ = L∗/K∗, m∗ = M∗/(p∗K∗), π∗,
η = p/(ep∗) and ε:

The domestic economy:

ω̂ = κ[(1− κp)βwXw + (κw − 1)βpX
p], (80)

l̂ = −i(·) + (1− βk)X
p, (81)

m̂ = µ − π − n − κ[βpX
p + κpβwXw] + l̂, (82)

π̇ = βπ[απκ(βpX
p + κpβwXw) + (1− απ)(µ − n − π)]. (83)

11Where the parameter τc has thus to be removed from the model’s equations, since taxes are now
lump-sum.
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Financial and trade links between the two economies:

η̂ = (p̂ − π) + π − [(p̂∗ − π∗) + π∗]

− βe(β(r
∗ + ε− r)− a·))− êo, (84)

ε̇ = βε[αε((p̂ − π) + π − [(p̂∗ − π∗)− π∗]− η̂ − ε)

+ (1− αε)(µ − µ∗ − ε)]. (85)

The foreign economy:

ω̂∗ = κ∗[(1− κ∗
p)β

∗
wXw∗ + (κ∗

w − 1)β∗
pX

p∗], (86)

l̂∗ = −i∗(·) + (1− β∗
k)X

p∗, (87)

m̂∗ = µ∗ − π∗ − n∗ − κ∗[β∗
pX

p∗ + κ∗
pβ

∗
wXw∗] + l̂∗, (88)

π̇∗ = β∗
π[α

∗
πκ

∗(β∗
pX

p∗ + κ∗
pβ

∗
wXw∗) + (1− α∗

π)(µ
∗ − n∗ − π∗)]. (89)

Here we employ the abbreviations:

ρ = y − δ − ωld = ρ(ω), y = Y/K, ld = Ld/K = y/x = const.,

Xw = ld/l − V̄ = y/(xl)− V̄ , l = L/K,

Xp = −∆Y/K = c1 + c∗1 + i(·) + n + δ + g − y

= ωld + (1− sc)(ρ − tc) + i(·) + n + δ + g + nx(·)− y,

i(·) = i(ρ − r + π),

r = ro + (h1y − m)/h2 = r(m),

c1 = C1/K = ωld + γc(η)(1− sc)(ρ − tc),

c∗1 = C∗
1/K = (l/l∗)(1− γ∗

c (η))(1− s∗c)(ρ
∗ − t∗c)/η,

nx(·) = (1− γ∗
c (η))(1− s∗c)(ρ

∗ − t∗c)(l/l
∗)/η − (1− γc(η))(1− sc)(ρ − tc),

p̂ − π = κ[βpX
p + κpβwXw],

p̂∗ − π∗ = κ∗[β∗
pX

p∗ + κ∗
pβ

∗
wXw∗],

and similarly for the other country.12 Note again that we are using for the determination of
the division of households’ consumption into domestic and foreign commodities the simple

12Where we in particular have:

c∗2 = C∗
2/K

∗ = ω∗ld∗ + γ∗c (η)(1 − s∗c )(ρ∗ − t∗c),
c2 = C2/K

∗ = (l∗/l)(1 − γc(η))(1 − sc)(ρ− tc)η.

Note that the steady state values of the domestic and the foreign economy are dependent on the above
choice of the steady state real exchange rate.13 Note also that the domestic and the foreign rate of profit
must be equal to each other in this formulation of a two-country model of international trade.
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linear functions

γc(η) = γc + γ(ηo − η), γ > 0, (90)

γ∗
c (η) = γ∗

c − γ∗(ηo − η), γ∗ > 0, (91)

in order to keep the model as close as possible to a linear form. Note finally that we always
have nxη < 0 due to our assumptions on consumption behavior, i.e., there is no need here
for the consideration of so-called Marshall-Lerner conditions to ensure a normal reaction
of net exports with respect to exchange rate changes.

We disregard the boundary solutions ω, l, m = 0, etc. – caused by the growth rate formula-
tion of their laws of motion – in the following determination of the steady state solutions of
the above dynamics. These values of the variables ω, l, m, etc. are economically meaning-
less and never appear as attractors in the numerical investigations to be performed later.
Furthermore, the achieved theoretical results will all be constrained to a neighborhood of
the unique interior steady state considered below. Of course, a general and global analysis
of the system must take into account the stability properties of such boundary points of
rest of the dynamics.

4 Steady state and β−stability analysis

In this section we present in a mathematically informal way a variety of subsystem stability
investigations that eventually allow us to derive the stability of the fully integrated 10D
dynamics in a systematic fashion by way of our β−stability approach to macroeconomic
dynamics. We thereby again show the merits of a feedback guided stability analysis, here
however from the purely local perspective.14 Let us first however consider the uniquely
determined interior steady state solution of the 10D dynamics of the preceding section.

Theorem 1

There is a unique steady–state solution or point of rest of the simplified dynam-
ics (80) – (89) fulfilling ω0, l0, m0 �= 0. This steady–state is given by:15

l0 = ld/V̄ = y/(xV̄ ), (92)

m0 = h1y, (93)

π0 = µ − n, (94)

ρ0 = tc +
n+ g − tc

sc
, (95)

ro = ρo + πo, (96)

ω0 = (y − δ − ρ0)/l
d, (97)

for the domestic economy and correspondingly

ω∗, l∗, m∗, π∗, r∗, ρ∗, for the foreign economy, and

ηo =
lo(1− γ∗

c )(1− s∗c)(ρ
∗
o − t∗c)

l∗(1− γc)(1− sc)(ρo − tc)
, (98)

εo = µ − n − (µ∗ − n) = µ − µ∗ = êo, (99)

14Rigorous stability proofs for the propositions of this section are provided in Asada, Chiarella, Flaschel
and Franke (2003, ch.10).

15Note again that y, ld are given magnitudes in the KWG dynamics.
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We assume that the parameters of the model are chosen such that the steady state values
for ω, l, m, ρ, r, η are all positive. Note in particular that π0 = µ0 − n should not be so
negative that r0 > 0 will not hold true. All following investigations will be confined to
local stability considerations around such steady–state solutions.

Proof: By setting to zero the right hand sides of (81)-(83) and (87)-(89), we have πo = µ−n,
p̂o = πo as well as π∗

o = µ∗ − n, p̂∗o = π∗
o . From (84), (85), also set equal to zero, we then

get εo = µ − µ∗(= p̂o − p̂∗o = êo) and thus r∗o + εo − ro due to our assumption that ρo = ρ∗
o

and because of ro = ρo + πo, r
∗
o = ρ∗

o + π∗
o. From (84) we then get a(·) = 0 which implies

η = ηo, since a is nx negatively sloped function of η solely (all other variables in nx are
fixed at their steady state values by assumption). We thus have c∗1 = c2/ηo in the steady
state and therefore a description of goods-market disequilibrium as if both economies were
closed, i.e., for example: Xp = ωol

d + (1 − sc)(ρo − tc) + i(·) + n + δ + g − y. Equations
(80)-(83) and (86)-(89) can therefore now be considered in isolation from each other, as in
the case of closed economies. We shall concentrate on equations (80)-(83) in the following
analysis.

From the equations (80) and (82) we get the following equation system for the variables
Xp, Xw:

0 = (1− κp)βwXw + (κw − 1)βpX
p,

0 = βpX
p + κpβwXw.

It is easily shown for κwκp < 1 that this linear equation system can be uniquely solved for
Xw, Xp which must both be zero then. This implies the first of our steady state equations
(92) as well as i(·) = 0, i.e., r = ρo − πo. Equation (93) then immediately follows and (94)
has already been shown above. The equation for ρ0 is obtained from Xp = 0 by solving
this equation for ρ0 (= y − δ − ωol

d). The calculation of ω0 is then straightforward.
This concludes the proof of existence and uniqueness for the interior steady state solution.

We now investigate stability properties of a convenient slightly more special case
of the above 10D dynamical system which can be written as an nonlinear au-
tonomous dynamical system in the ten state variables ω = w/p, l = L/K, p, π,
ω∗ = w∗/p∗, l∗ = L∗/K∗, p∗, π∗, e and ε. As this list shows we now intend to neglect
all trends in the nominal magnitudes, by assuming µ − n = µ∗ − n∗ = 0 (no steady
state inflation at home and abroad and also no steady depreciation or appreciation).
Furthermore, since we have nxo = 0 in steady state we (continue to) assume that ρo = ρ∗

o

holds in the steady state. This allows for interest rate parity ro = r∗o in the steady state
(where êo = εo = 0 holds and where interest rates coincide with the profit rates of firms).
Finally, we consider only the case where capital stock growth is driven by investment
demand, i.e., we assume βk = 1 in the following. We then have the following steady state
values of the nominal magnitudes (in addition to what has been listed in theorem 1):

po =
m(0)lo
h1y

, m(0) =
M(0)

L(0)
, p∗o =

m∗(0)l∗o
h∗

1y
∗ , m∗(0) =

M∗(0)
L∗(0)

, eo =
ηop

∗
o

po
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and of course wo = ωopo and w∗
o = ω∗

op
∗
o for the level of money wages. The laws of motion

of the two economies and their interaction in the situation now being considered simply
read, in the case βk = 1:

The domestic economy:

ω̂ = κ[(1− κp)βwXw + (κw − 1)βpX
p], (100)

l̂ = −i(ρ+ π − r), (101)

p̂ = κ[βpX
p + κpβwXw] + π, (102)

π̇ = βπ[απ(p̂ − π) + (1− απ)(−π)]. (103)

Financial and trade links between the two economies:

ê = βe(β(r
∗ + ε − r) − a(·)), (104)

ε̇ = βε[αε(ê − ε) + (1− αε)(−ε)]. (105)

The foreign economy:

ω̂∗ = κ∗[(1− κ∗
p)β

∗
wXw∗ + (κ∗

w − 1)β∗
pX

p∗], (106)

l̂∗ = −i∗(ρ∗ + π∗ − r∗), (107)

p̂∗ = κ∗[β∗
pX

p∗ + κ∗
pβ

∗
wXw∗] + π∗, (108)

π̇∗ = β∗
π[α

∗
π(p̂

∗ − π∗) + (1− α∗
π)(−π∗)]. (109)

Here for the domestic economy we employ the abbreviations:

ρ = y − δ − ωy/x, y = const.

Xw = y/(xl)− V̄ , Xp = c1 + c∗1 + i(·) + n+ δ + g − y,

i(·) = i(ρ+ π − r), r = ro + (h1y − m)/h2, m = m(0)l/p,

c1 = ωy/x+ γc(η)(1− sc)(ρ − tc), c∗1 = (l/l
∗)(1− γ∗

c (η))(1− s∗c)(ρ
∗ − t∗c)/η,

a(·) = (1− γ∗
c (η))(1− s∗c)(ρ

∗ − t∗c)l/l
∗/η − (1− γc(η))(1− sc)(ρ − tc), η = p/(ep∗),

and similarly for the foreign economy.16 Note again that we are using for the determination
of the division of households’ consumption into domestic and foreign commodities, the
simple linear functions:

γc(η) = γc + γ(ηo − η), γ > 0, η = p/(ep∗),

γ∗
c (η) = γ∗

c − γ∗(ηo − η), γ∗ > 0, η = p/(ep∗),

16Where we in particular have:

c∗2 = ω∗y∗/x∗ + γ∗c (η)(1 − s∗c )(ρ∗ − t∗c ), c2 = (l∗/l)(1 − γc(η))(1 − sc)(ρ− tc)η.

Note also that Xp can be rewritten as Xp = ωy/x + (1 − sc)(ρ− tc) + i(·) + n+ δ + g + nx(·) − y.
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in order to keep the model as close as possible to a linear form for the time being.

We now start our local stability investigations by a series of propositions and their proofs
which are both concentrated on the essential issues to be dealt with and thus do not present
every detail that is necessary for their final formulation. A detailed proof of the local
stability of the steady state of the fully integrated 10D dynamics will be presented in the
next section. In the following theorems we neglect all border line cases where parameters
other than adjustment speed parameters, like the κ′s, are set equal to zero or one.

Theorem 2

Assume that the parameters βp, β∗
p , βe, βε, are all set equal to zero.17 Then:

1. The dynamics of the two countries are completely decoupled from each
other and the determinants of the Jacobians at the steady states of the two
separate 4D dynamics at home and abroad are both zero.

2. These dynamics can both be reduced two 3D systems, each with a locally
asymptotically stable steady state, if βπ, β∗

π are chosen sufficiently small.
Concerning the eigenvalue structure of the dynamics at the steady state,
we therefore have in this case six eigenvalues with negative real parts and
four that are zero in the considered situation.

Proof: 1. As the KWG model is formulated it only links the two countries via excess
demands Xp and Xp∗, terms which are suppressed when price adjustment speeds with
respect to demand pressure are set equal to zero. The first and the third block of laws of
motion are therefore then independent from each other and can be investigated separately.
Furthermore, there exist positive numbers a and b such that −aω̂+ p̂+bπ̇ ≡ 0 which implies
the statement on the 4D determinants.
2. Integrating the linear dependency just shown gives (for example for country 1) with
respect to the price level p : p = +const · ωa exp(−bπ). This equation feeds into the
investment equation via

i(·) = i(ρ+ π − r), r = ro + (h1y − m)/h2, m = m(0)l/p, p = +const · ωa exp(−bπ),

which thereby reduces the originally 4D dynamics to dimension 3. The Jacobian of the
reduced 3D dynamics (for ω, l, π) is characterized by

 J11 J12 J13

J21 J22 J23

J31 J32 J33


 =


 0 − 0
+ − −
0 − −


 .

The trace is unambiguously negative in this case. For βπ sufficiently small we have that
J22J33 − J23J32 will be dominated by J12J21 which gives the local asymptotic stability
result, since the Routh-Hurwitz coefficients a1a2 will always be larger than a3 = − detJ in
the considered situation, due to the fact that the determinant will be just one expression
in the product a1a2.

17The first two assumption imply that trade does not influence the price - quantity dynamics in the two
countries considered. The other imply that both e and ε can be frozen at their steady state values.
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As the proof has shown, we have zero root hysteresis present in each country, i.e., the
price levels in both countries are not uniquely determined in their long-run position, but
depend on the history of the economy and the shocks it has experienced. This is due to
the fact that demand pressure in the market for goods does not matter for the dynamics
of the price level. It is also due to this fact that neither Mundell-effects nor Keynes-effects
are present in the currently considered situation in their typical format (since there is no
positive feedback of expected inflation on its time rate of change by way of the third law
of motion and no negative effect of the price level onto its rate of change by the law of
motion for this price level). Furthermore, a positive dependence of aggregate demand on
real wages cannot be destabilizing here via the Rose effect, while a negative dependence
is destabilizing, but only if the price level reacts with sufficient strength with respect to
demand pressure on the market for goods.

Theorem 3

Assume that the parameters β∗
p , βe and βε, remain fixed at zero, but that the

parameter βp is made positive such that the negative real parts considered in
theorem 2 remain so. Then:

1. The dynamics of the home country now depends on what happens in the
foreign economy.

2. There are now seven eigenvalues of the full dynamical system with negative
real parts, while three remain at zero.

The hysteresis argument can now only be applied to the foreign economy and the price
level there, while the price level at home now has a unique long-run position (as it has been
determined above). Note here also that we only consider an 8D dynamical system for the
moment, since e and ε are kept frozen at their steady state values. We thus have an 8D
system with vanishing 8D determinant (a8 = 0), but with all other conditions of the Routh
Hurwitz theorem being fulfilled (i.e. for the Routh Hurwitz coefficients a1, ..., a7).

Proof: We reduce the dynamics in the foreign economy to 3D according to the proof strat-
egy of theorem 2. The 8D dynamics is thereby made 7D. The Jacobian to be investigated
then is of the form (with the domestic economy shown first):



J11 J12 J13 J14 ? ? ?
J21 J22 J23 J24 ? ? ?
J31 J32 J33 J34 ? ? ?
J41 J42 J43 J44 ? ? ?
0 0 0 0 J55 J56 J57

0 0 0 0 J65 J66 J67

0 0 0 0 J75 J76 J77




.

The entries with question mark do not matter for the calculation of the eigenvalues of this
Jacobian. Furthermore, the foreign country exhibits three eigenvalues with negative real
parts according to what has been shown in theorem 2. These eigenvalues are independent
of what happens in the domestic economy. For the latter economy we have assumed that
three of its eigenvalues still have negative real parts when βp is made positive. It suffices
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therefore to show that

det




J11 J12 J13 J14

J21 J22 J23 J24

J31 J32 J33 J34

J41 J42 J43 J44




is always positive in order to get the result that the eigenvalue that moves away from
zero must become negative. The sign of the determinant can – as usual – be obtained by
removing linear dependencies from the involved laws of motion as follows:

ω̂ = Xw,

l̂ = −i(·),
p̂ = Xp,

π̇ = −π.

Continuing in this way we get

ω̂ = −l,

l̂ = +ω + p,

p̂ = +ω − p,

π̇ = −π.

Note here that we have to employ m = m(0)l/p in the rate of interest expression in the
investment function, but that the influence of l does not matter due to what is shown in the
first row of the considered 4D matrix J. We thus finally get (with the usual interpretation
that the equality sign only indicates that there is no change in the sign of the corresponding
determinant):

ω̂ = −l,

l̂ = +ω,

p̂ = −p,

π̇ = −π.

This last form of dynamic interdependence indeed implies that detJ must be positive in
sign.

We have so far considered the domestic economy as – so to speak – a satellite of the
foreign one (with convergence to a steady state however). We therefore next assume that
the adjustment speed β∗

p is also made positive. In this case the two economies become
dependent on each other, like in a monetary union, since the exchange rate is still kept
fixed and can therefore be set equal to 1. In this 8D case we have full interdependence
though only via the excess demand channels and their influence on domestic and foreign
price dynamics and thus now investigate the international price level connection. We
therefore consider the first and the third block of our laws of motion in full interaction,
yet still an inactive Dornbusch type of exchange rate dynamics. In this case the following
theorem holds:
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Theorem 4

Assume that the parameters βe and βε, remain fixed at zero, but that the pa-
rameters βp and β∗

p are now both positive, but chosen sufficiently small (such
that the negative real parts of the eigenvalues considered in theorem 3 remain
negative). Then:

1. The determinant of the Jacobian at the steady state of the considered 8D
dynamics is always positive (independently of speed of adjustment condi-
tions).

2. There are now eight eigenvalues with negative real parts, i.e., the steady
state is locally asymptotically stable in the considered situation.

Proof: We proceed again by removing from the laws of motion of the 8D case (where e, ε
are still kept fixed at their steady state values) all expressions that are irrelevant for the
sign of the determinant of their Jacobian at the steady state. In a first step this leads us
again to:

The domestic economy:

ω̂ = Xw,

l̂ = −i(·),
p̂ = Xp,

π̇ = −π.

The foreign economy:

ω̂∗ = Xw∗,

l̂∗ = −i∗(·),
p̂∗ = Xp∗,

π̇∗ = −π∗.

We then simplify in the same way even further (due to nxo = 0):

The domestic economy:

ω̂ = −l,

l̂ = +ω + p,

p̂ = ωy/x+ (1− sc)ρ+ nx(·),
π̇ = −π.
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The foreign economy:

ω̂∗ = −l∗,

l̂∗ = +ω∗ + p∗,

p̂∗ = ω∗y∗/x∗ + (1− s∗c)ρ
∗ − l∗o

lo
ηonx(·),

π̇∗ = −π∗.

From this result we finally obtain by continuing the employed method of reduction (since
a depends negatively on η and ω∗ and positively on ω):

The domestic economy:

ω̂ = −l,

l̂ = +ω + p,

p̂ = +ω + ω∗,

π̇ = −π.

The foreign economy:

ω̂∗ = −l∗,

l̂∗ = +ω∗ + p∗,

p̂∗ = +ω∗ − ω + p − p∗,

π̇∗ = −π∗.

We are now in a position to calculate the sign of the determinant under consideration. Note
first of all that the laws of motion for π and π∗ can be neglected in this calculation, since
their two rows and columns in the Jacobian do not change the sign of its determinant. For
the remaining entries of J (in the order ω, l, p, ω∗, l∗, p∗) we have according to what has
been shown above:
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det




0 − 0 0 0 0
+ 0 + 0 0 0
+ 0 0 + 0 0
0 0 0 0 − 0
0 0 0 + 0 +
0 0 + 0 0 −



= +det



+ + 0 0 0
+ 0 + 0 0
0 0 0 − 0
0 0 + 0 +
0 + 0 0 −




= +det



+ + 0 0
+ 0 + 0
0 0 + +
0 + 0 −


 = +det


 0 + 0
0 + +
+ 0 −


 − det


 + + 0
0 + +
0 0 −




= − det
(
0 +
+ −

)
− det

(
+ +
0 −

)
> 0

This proves assertion 1 of theorem 4. Assertion 2 than follows immediately from what
has been shown for the 7D case and the fact that the positive 8D determinant enforces a
negative eigenvalue if the real parts of the eigenvalues of the 7D case are all negative.

We thus have shown the result that monetary unions of KWG type exhibit cyclical or
even monotonic convergence of trajectories to their interior steady state position if wages
and in particular prices adjust sufficiently sluggishly in both countries. Though the proofs
concern only the local validity of such a statement, numerical simulations suggest that such
a result also holds from the global perspective, since the nonlinearities intrinsically present
in the employed laws of motion are generally of a type that generate for such a result. The
same however generally also applies to situations of divergence which therefore demand the
introduction of extrinsic nonlinearities in order to get viable dynamics.

Let us now allow for βe > 0, but not yet for adjusting expectations of depreciation or
appreciation. In this situation we leave the case of a monetary union and consider now the
role of capital mobility and of adjusting nominal exchange rates, again at first with respect
to asymptotic stability and with the presence of just intrinsic nonlinearities.

Theorem 5

Assume that the parameter βε remains fixed at zero, but that the parameters βe

and β are now positive, and chosen sufficiently small (such that the negative
real parts of the eigenvalues considered in theorem 4 remain negative). Then:

1. The determinant of the Jacobian at the steady state of the considered 9D
dynamics is always negative (independently of speed of adjustment condi-
tions).18

18Note here that the parameter β does not represent a speed of adjustment condition, but characterizes
the degree of capital mobility. Setting this parameter to a small value has the convenient effect that the
law of motion for the exchange rate is basically dependent on trade and can thus be used to eliminate
the net export term nx(·) from the laws of motion for the domestic and the foreign economy as far as the
calculation of determinants is concerned. We conjecture however that the obtained result on determinants
also holds for large values of β, though row operations are considerably more difficult then.
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2. Assume that β, the degree of capital mobility, is chosen sufficiently small.
The considered 9D dynamics then exhibits nine eigenvalues with negative
real parts, i.e., their interior steady state is locally asymptotically stable in
this situation.

Proof: In the case β = 0 we get, because of

Xp = ωy/x+ (1− sc)(ρ − tc) + i(·) + n+ δ + g + nx(·)− y,

Xp∗ = ω∗y∗/x∗ + (1− s∗c)(ρ
∗ − t∗c) + i∗(·) + n∗ + δ∗ + g∗ − l∗

l
a(·)η − y∗,

that the a expression can be removed both from the domestic and the foreign economy as
far as the calculation of determinants is concerned, since we then simply have ê = −βea.
The system decomposes into two 4D dynamics with positive determinants and ê = −e,
again of course solely as far as the calculation of the determinant of the Jacobian at the
steady state is concerned. This proves the first assertion, but – due to the method chosen
– only for β ′s that are sufficiently small (all other speed of adjustment parameters can
be arbitrary). We conjecture that this results holds for all positive β as well.19 The
second assertion of the theorem finally follows immediately, and in the usual way, from
the continuity of eigenvalues on the parameters of the considered dynamics.

Assume finally that the parameter βε is made positive, in the situation consid-
ered in theorem 5. Then:

1. The determinant of the Jacobian at the steady state of the considered 10D
dynamics is always positive.

2. Assume that βε, the speed of adjustment of expectations on exchange rate
depreciation, is chosen sufficiently small. The considered 10D dynamics
then exhibits ten eigenvalues with negative real parts, i.e., their interior
steady state solution is locally asymptotically stable in the considered situ-
ation.

Proof: Obvious from what has been shown so far, since the ε̇−law of motion can be
reduced to ε̇ = −βεε by means of the ê law of motion, as usual, though only as far as the
calculation of determinants is concerned.

Theorem 7

From the locally asymptotically stable situation of theorem 6, the steady state
must lose its local stability by way of Hopf-bifurcations if one of the parame-
ters βπ (carrying the destabilizing Mundell effect), βε (carrying the destabilizing
Dornbusch effect) or βp (carrying the destabilizing Rose effect) is made suffi-
ciently large, the latter however only in the case where the real wage effect in
investment demand dominates the real wage effect in consumption demand.

19In which case r∗ − r can be reduced to ω−ω∗, but in this form remains as a new item in the fifth row
of the considered Jacobian.
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Proof: Straightforward, since the trace of the Jacobian J of the dynamics at the steady
state can be made positive, by way of π̇′(π) > 0, ε̇′(ε) > 0 and ω̂′(ω) > 0, respectively.

Fast adjustments of expectations and fast adjustments of prices (in the case of a negative
dependence of aggregate demand on the real wage level) are thus dangerous for asymp-
totic stability and will lead to loss of stability which is always accompanied by business
fluctuations, possibly persistent ones if a supercritical Hopf-bifurcation occurs, but gen-
erally explosive ones as long as only intrinsic nonlinearities are present in the considered
dynamical system. Numerical simulations have then to be used to gain insights into the
global dynamics. These indicate that stable limit cycle situations or persistent cycles can
be generated by the additional assumption of extrinsic nonlinearities, such as asymmetries
in the money wage Phillips curve.

5 Numerical investigation of the KWG dynamics

In this section we provide some numerical illustrations of the dynamic features of the two-
country KWG growth model that has so far only been studied from the local perspective
around its unique interior steady state.20 It is not difficult to provide numerical examples
of damped oscillations or even monotonic adjustment back to the steady state based on
what has been shown for the speed of adjustment parameters in the two preceding sections.
Increasing such speed of adjustment parameters will then also provide examples of super-
critical Hopf-bifurcations where – after the loss of local stability – stable limit cycles and
thus persistent economic fluctuations will be born for a certain parameter range. However
there will often simply be purely explosive behavior after such loss of stability, indicating
that the intrinsic nonlinearities are generally too weak to bound the dynamics within eco-
nomically meaningful ranges. The addition of extrinsic or behavioral nonlinearities is thus
generally unavoidable in order to arrive at an economically meaningful dynamic behavior.

In the following we will however make use of another prominent behavioral nonlinearity,
already discussed in Keynes (1936), namely a kinked money wage Phillips curve, expressing
in stylized form the fact that wages are much more flexible upwards than downwards.
This nonlinearity is often already sufficient to limit the dynamics to economically viable
domains, though in reality of course coupled with other behavioral nonlinearities, also
in operation at some distance from the steady state. Downward nominal wage rigidity
however can often already by itself overcome the destabilizing feedback channels of Mundell-
type (working through the real interest rate) or Rose-type (working through the real wage
rate) and thus succeed in stylizing the economy in a certain area outside the steady state.
This in particular holds if wages are assumed to be completely inflexible in the downward
direction and if there is zero steady state inflation, where they can even stylize an economy
towards damped oscillations that would otherwise – without this inflexibility – break down
immediately as for example in the following first simulation exercise of the KWG dynamics.

20The simulations that follow were performed using the SND software package de-
scribed in Chiarella, Flaschel, Khomin and Zhu (2002), which can be downloaded together
with the project files for the simulations of this paper from Carl Chiarella’s homepage:
http//:www.business.uts.edu.au/finance/staff/carl.html.
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Isolated fluctuations in the
inflationary climate variable

Only trade interactions:
Increased stability

Added exchange rate dynamics:
Adverse phase synchronisation

Figure 2: KWG cycles: Isolated, with trade interactions, and finally with financial market
interaction: π and π∗.21

We show in figure 2, at the top, the time series for the inflationary climate π and π∗, when
both countries are still completely decoupled from each other with country 1 exhibiting the
larger fluctuations (and shorter phase length) in this state variable. Due to the strict kink
in the money wage Phillips curve we have a marked convergence to the steady state in both
countries. Note here that, though wage deflation is excluded from the model, nevertheless
goods price deflation occurs. Allowing now for trade in goods between the two countries
(but not yet for financial links) dampens the cycle in country 1 considerably and makes
the one in country two slightly more pronounced, as shown in the middle of figure 2. This
change remains true if financial links are added (as shown in the parameter set). Now,
however, the dynamics converge to a limit cycle and no longer to the steady state (only
crudely shown at the bottom of figure 2 to the right). This limit cycle exhibits nearly

21The parameters of this simulation run are as follows (the modifications (1) in trade and (2) in financial
links are shown in brackets): sc = 0.8; δ = 0.1; tc = 0.35; g = 0.35;n = 0.05;µ = 0.05; h1 = 0.1; h2 =
0.2; yp = 1.0; x = 2.0; βw = 2; βp = 5; κw = 0.5; κp = 0.5; βπ = 3;απ = 0.5; i = 0.5; βk = 1.0; V̄ = 0.8; s∗c =
0.8; δ∗ = 0.1; t∗c = 0.35; g∗ = 0.35;n∗ = 0.05;µ∗ = 0.05; h∗1 = 0.1; h∗2 = 0.2; yp∗ = 1.0; x∗ = 2.0; β∗w =
2.0; β∗p = 1.0; κ∗w = 0.5; κ∗p = 0.5; β∗π = 3;α∗

π = 0.5; i∗ = 0.5; β∗k = 1.0; V̄ ∗ = 0.8; βe = 0(βe = 1); β =
0(β = 2.5); βε = 0(βε = 1);αε = 0.5; γc = 0.99(γc = 0.5); γ = 0(γ = 1); γ∗c = 0.99(γ∗c = 0.5); γ∗ = 0(γ2 =
1);mshock = 1.1
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completely adverse phase synchronization at least in the inflationary climate of the two
considered countries, since the exchange rate dynamics now dominate the outcome and
produce the negative correlation in inflation dynamics shown. There is thus no positive
international transmission of inflation dynamics, contrary to what is generally expected, if
trade is dominated by exchange rate movements and their (always adverse) effect on one
of the two countries.

Country 1:
varying adjustment speeds
of the exchange rate

0eβ = 2eβ =2.2eβ =

Country 1 and 2 for the
adjustment speed 2.2

Figure 3: The occurrence of limit cycles and of negative transmissions of inflation.22

In figure 3 we show (again for π, π∗) with the time series in the top figure that increasing
speed of adjustment of the exchange rate produces increasing volatility, here shown for the
inflationary climate variable π. The final outcome shown is convergence to a persistent
business cycle (stable limit cycle) in both countries, yet – as the lower time series show
– with nearly perfect negative correlation. This figure again demonstrates that business
fluctuations need not at all be synchronized with respect to upswings and downswings,
though they are clearly synchronized here with respect to phase length. Note that setting

22The parameters of this simulation run are as follows (with βe = 0, 2, 2.2 in the top time series):
sc = 0.8; δ = 0.1; tc = 0.35; g = 0.35;n = 0.05;µ = 0.05; h1 = 0.1; h2 = 0.2; yp = 1.0; x = 2.0; βw = 2; βp =
1; κw = 0.5; κp = 0.5; βπ = 3;απ = 0.5; i = 0.5; βk = 1.0; V̄ = 0.8; s∗c = 0.8; δ∗ = 0.1; t∗c = 0.35; g∗ =
0.35;n∗ = 0.05;µ∗ = 0.05; h∗1 = 0.1; h∗2 = 0.2; yp∗ = 1.0; x∗ = 2.0; β∗w = 2.0; β∗p = 1.0; κ∗w = 0.5; κ∗p =
0.5; β∗π = 3;α∗

π = 0.5; i∗ = 0.5; β∗k = 1.0; V̄ ∗ = 0.8; βe = 0; β = 1.0; βε = 1.0;αε = 0.5; γc = 0.5; γ =
1.0; γ∗c = 0.5; γ∗ = 1.0;mshock = 1.02
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βe = 0 (no exchange rate dynamics) is already sufficient to decouple the real dynamics
from what happens in the foreign exchange market.

π

*π

η

ω
*ω

l
*l

Figure 4: Positively correlated trade and hysteresis in a monetary union.23

The top figure in figure 4 shows that business fluctuations (represented here again by
the two inflation climate variables) are now fairly synchronized and also fairly damped
again (with the home country the one with initially more volatility in inflation, since the
expansionary monetary shock is occurring in this country solely, there lowering the interest
rate and thus increasing investment and inflation directly). Wage flexibility is very high
(βw = 5) in the simulation under consideration, but is again tamed in a radical way by
the assumption that there is no wage deflation possible (which is more restrictive than just
the assumption βw = 0). In the lower graph of figure 4 we show in addition that there
is now zero root hysteresis involved in the evolution of the nominal as well as the real
variables. This is due to the fact that the relevant 9D dynamics, with its suppression of the
Dornbusch nominal exchange rates, but still with changing real exchange rate dynamics

23The parameters of this simulation run are as follows (with βe = 0 and thus a fixed exchange rate
throughout): sc = 0.8; δ = 0.1; tc = 0.35; g = 0.35;n = 0.05;µ = .05; h1 = 0.1; h2 = 0.2; yp = 1.0; x =
2.0; βw = 5; βp = 1; κw = 0.5; κp = 0.5; βπ = 3;απ = 0.5; i = 0.5; βk = 1.0; V̄ = 0.8; s∗c = 0.8; δ∗ = 0.1; t∗c =
0.35; g∗ = 0.35;n∗ = 0.05;µ∗ = .05; h∗1 = 0.1; h∗2 = 0.2; yp∗ = 1.0; x∗ = 2.0; β∗w = 5; β∗p = 1.0; κ∗w = 0.5; κ∗p =
0.5; β∗π = 3;α∗

π = 0.5; i∗ = 0.5; β∗k = 1.0; V̄ ∗ = 0.8; βe = 0; β = 0; βε = 0;αε = 0.5; γc = .7; γ = 1; γ∗c =
.7; γ∗ = 1;mshock = 1.1
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due to differing inflation in the two countries considered, now exhibits a law of motion for
the real exchange rate η that is ‘linearly dependent’ on the two laws of motion for the two
price levels of the investigated economies. There is thus hysteresis present in the evolution
of the real exchange rate which is transmitted also to hysteresis in real wages and full
employment labor intensity, as shown in figure 4. We note that hysteresis can here also be
partly due to the kink in the Phillips curve, which when based on this fact implies that
the steady state employment rate need no longer coincide with the given NAIRU rate V̄ ,
if it is characterized by zero inflation rates in the steady state so that the kink becomes
operative immediately below the steady state.24

0.057 0.05, 2, 3w pnµ β β= > = = =

* * * *0.05 , 1.95, 0.5w pnµ β β= = = =

*0.05µ µ= =

Figure 5: The generation of persistent economic fluctuations in the case of positive steady
state inflation in country 125

Figure 5 shows in its lower part, and, in a striking fashion (for π and π∗), that only
radically damped oscillations may occur in the case where both countries pursue the policy

24Note that the shown fluctuations are obtained by throwing the economy out of the steady state via
a ten percent increase in the money supply. This is a large shock and one which shocks the economy the
more the further from the unstable steady state is the unstable limit cycle surrounding it.

25The parameters of this simulation run are as follows: sc = 0.8; δ = 0.1; tc = 0.35; g = 0.35;n =
0.05;µ = 0.057; h1 = 0.1; h2 = 0.2; yp = 1.0; x = 2.0; βw = 2; βp = 3; κw = 0.5; κp = 0.5; βπ = 3;απ =
0.5; i = 0.5; βk = 1.0; V̄ = 0.8; s∗c = 0.8; δ∗ = 0.1; t∗c = 0.35; g∗ = 0.35;n∗ = 0.05;µ∗ = 0.05; h∗1 = 0.1; h∗2 =
0.2; yp∗ = 1.0; x∗ = 2.0; β∗w = 1.95; β∗p = .5; κ∗w = 0.5; κ∗p = 0.5; β∗π = 3;α∗

π = 0.5; i∗ = 0.5; β∗k = 1.0; V̄ ∗ =
0.8; βe = 0; β = 0; βε = 0;αε = 0.5; γc = 0.5; γ = 1; γ∗c = .5; γ∗ = 1;mshock = 1.1
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of zero steady state inflation. In the upper part however we show what happens if country
one allows for 0.7 percent of inflation in the steady state by increasing its money supply
growth rate accordingly. There are now persistent fluctuations not only occurring in the
country that allows for such monetary policy, but also induced persistent fluctuations in the
other country, here with a significant degree of phase synchronization, since the Dornbusch
dynamics is again absent from the considered situation. The inflationary environment in
which the kinked money wage Phillips curve is operating does therefore matter very much
and may give rise to situations where the economy is no longer viable (which occurs here
for µ = 0.07).

* *0.06, 2, 0.5w wµ µ β β= = = =

* *0.06, 2.5, 0.6w wµ µ β β= = = =

Figure 6: Phase synchronization in a fixed exchange rate system.26

The time series in figure 6 (as usual for the inflationary climate variable in both countries)
show for varying wage adjustment speeds (and a 1 percent inflation rate in both countries
in the steady state) how phases get synchronized in the two countries, here with respect
to inflation rates. Due to the higher wage adjustment speed in country 1 we find in the
case of independent fluctuations that phase lengths differ considerably in the more volatile

26The parameters of this simulation run are as follows: sc = 0.8; δ = 0.1; tc = 0.35; g = 0.35;n =
0.05;µ = 0.06; h1 = 0.1; h2 = 0.2; yp = 1.0; x = 2.0; βw = 2.5; βp = 1; κw = 0.5; κp = 0.5; βπ = 3;απ =
0.5; i = 0.5; βk = 1.0; V̄ = 0.8; s∗c = 0.8; δ∗ = 0.1; t∗c = 0.35; g∗ = 0.35;n∗ = 0.05;µ∗ = 0.06; h∗1 = 0.1; h∗2 =
0.2; yp∗ = 1.0; x∗ = 2.0; β∗w = .6; β∗p = 1; κ∗w = 0.5; κ∗p = 0.5; β∗π = 3;α∗

π = 0.5; i∗ = 0.5; β∗k = 1.0; V̄ ∗ =
0.8; βe = 0; β = 0; βε = 0;αε = 0.5; γc = .5; γ = 1.5; γ∗c = .5; γ∗ = 1.5;mshock = 1.1



32

inflation dynamics of the home country from the ones observed abroad (with less flexible
wages). Yet once the countries are coupled with each other, as indicated by the parameter
set shown in footnote 26, cycle phase lengths become by and large synchronized in the upper
graph (though not their amplitudes), while we can see in the lower time series comparison
that phase length stay in a ratio of 2 to each other when only the significant peaks are
taken into account. There are thus various possibilities for phase synchronization to be
taken into account and to be explored further in future studies of the considered dynamics.

π

*π

*π

π

Transmission of inflation for a fixed exchange rate
for economies that differ in wage-price adjustment speeds

 and steady state inflation

Coupling by trade and financial links
(flexible exchange rate case)

Figure 7: Phase synchronization in a fixed exchange rate system and its loss under flexible
exchange rates.27

In the figure 7 (top) we show how cycles for countries that are interacting with respect to
trade (in a fixed exchange rate system) are to some extent synchronized (with respect to
the longer phase length in country 2). This synchronization gets lost to some extent in the
case of a flexible exchange rate system (βe = β = βε = 0.5), and this in a way that makes
the then still occurring persistent fluctuations (bottom figure) much more pronounced than

27The parameters of this simulation run are as follows: sc = 0.8; δ = 0.1; tc = 0.35; g = 0.35;n =
0.05;µ = 0.057; h1 = 0.1; h2 = 0.2; yp = 1.0; x = 2.0; βw = 2; βp = 3; κw = 0.5; κp = 0.5; βπ = 3;απ =
0.5; i = 0.5; βk = 1.0; V̄ = 0.8; s∗c = 0.8; δ2 = 0.1; t∗c = 0.35; g∗ = 0.35;n∗ = 0.05;µ∗ = 0.05; h∗1 = 0.1; h∗2 =
0.2; yp∗ = 1.0; x∗ = 2.0; β∗w = 1.95; β∗p = .5; κ∗w = 0.5; κ∗p = 0.5; β∗π = 3;α∗

π = 0.5; i∗ = 0.5; β∗k = 1.0; V̄ ∗ =
0.8; βe = 0; β = 0; βε = 0;αε = 0.5; γc = 0.5; γ = 1; γ∗c = .5; γ∗ = 1;mshock = 1.1
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they were in the fixed exchange rate case (top figure). Cycle interaction in the real and the
financial part thus may make such interacting economies fairly volatile.28

ω *ω

*ll

Complex attractors projected into
the real dynamics (with long transient behavior)

π
*π

0 2244t≤ ≤

π

1894 2368t≤ ≤

The transient phase in the
transmission of inflation
(up to t=125)

Periodically recurrent
de-synchronization
(t in 600--800)

π

*π

π

*π

Figure 8: Complex dynamics with recurrent loss of phase synchronization under flexible
exchange rates.29

Note with respect to figure 7 that countries are still very similar in their parameter values,
both with a kink in their money wage Phillips curve which however becomes operative only

28Fixed and flexible exchange rate regimes are compared in Baxter and Stockman (1989), Gerlach (1988)
and Greenwood and Williamson (1989). A two-country analysis for a fixed exchange rate regime that is
very much in the spirit of the model used here is provided in Asada (2003). There the case of fixed exchange
rates is considered on its own level and not just by setting a certain parameter in a flexible exchange rate
regime equal to one.

29The parameters of this simulation run are as follows: sc = 0.8; δ = 0.1; tc = 0.35; g = 0.35;n =
0.05;µ = 0.057; h1 = 0.1; h2 = 0.2; yp = 1.0; x = 2.0; βw = 2; βp = 3; κw = 0.5; κp = 0.5; βπ = 3;απ =
0.5; i = 0.5; βk = 1.0; V̄ = 0.8; s∗c = 0.8; δ∗ = 0.1; t∗c = 0.35; g∗ = 0.35;n∗ = 0.05;µ∗ = 0.05; h∗1 = 0.1; h∗2 =
0.2; yp∗ = 1.0; x∗ = 2.0; β∗w = 1.95; β∗p = .5; κ∗w = 0.5; κ∗p = 0.5; β∗π = 3;α∗

π = 0.5; i∗ = 0.5; β∗k = 1.0; V̄ ∗ =
0.8; βe = 2; β = 1; βε = 1;αε = 0.5; γc = 0.5; γ = 1; γ∗c = .5; γ∗ = 1;mshock = 1.1
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in country 2 due to the fact that the steady state exhibits zero inflation there. In this
country, we can observe therefore prolonged recessions where wage inflation is zero, but
not price inflation, as the top figure in 7 shows. Country 1 exhibits a much higher price
adjustment speed and only slightly higher wage adjustment speed and is thus less volatile
in the fluctuations of the inflationary climate series shown, since price flexibility, but not
wage flexibility, is stabilizing in the parameter range of the present case (as can be shown
by eigenvalue diagrams). Yet, due to the operation of the kink in country two, fluctuations
there are also much less volatile then they would be if some wage deflation would have been
allowed for.

In figure 8 we provide an example of a complex attractor in our two-country setup. Pro-
jected into the l, ω−phase subspaces these attractors appear (in the top figure) – after a
long transient phase – more or less as fairly simple quasi-periodic motions, a periodicity
that however goes hand in hand with slight increases in amplitude until there is an outbreak
of more irregular fluctuations as shown in the middle of figure 8. At the bottom in figure 8
we finally show the fluctuating inflationary climates in the transient period after the expan-
sionary monetary shock, applied in all our figures, with little phase synchronization over
the first 125 hundred years and to the right we show how phase synchronization gets lost
in periods where irregularities and amplitudes increase. Note here that the figure bottom
right only shows the upswings in the foreign economy while the longer periods where there
is some price, but no wage deflation, are not shown explicitly.

In figure 9 we consider again the case of no steady state inflation, now projecting the limit
cycle then obtained into various subspaces of the 10D phase space. We note first of all that
the steady state would be unstable in the absence of floors to money wages (here given by
the assumption of complete inflexibility downwards). In the first four panels in figure 9 we
see that real and monetary cycles are fairly different in the two countries, due to the much
higher wage-price flexibility in the country 1. Real wages and labor intensity are basically
negatively correlated as the next two panels then show and this also holds for the monetary
sector as the panels at the bottom indicate.

Yet more important than these findings are subsequent numerical findings shown in figures
9a. Top left we again show that the kink in the money wage PC rapidly gives rise to
stable limit cycle behavior, while the darker area in the middle of the figure shows the
behavior of the dynamics without the kink. These dynamics is on the one hand not as
volatile as the one with the kink, but on the other hand not viable over the very long
horizon (roughly 1300 years in this simulations run). Really striking however is that very
small variations in the growth rate of the money supply at home or abroad have dramatic
consequences on the dynamic outcome of the model. In the place of the limit cycle top left
(just discussed) we get the recurrent fluctuations directly below it when the growth of the
domestic money supply is changed from 0.05 to 0.051 while the dynamics is very close to
the steady state in between the shown irregular fluctuations (shown for a time horizon of
2300 years). Eigenvalue diagrams indeed confirm a very sensitive behavior of the maximum
eigenvalue close to the growth rate of the money supply where there is zero steady state
inflation.

In the opposite situation where µ∗ is changed from 0.05 to 0.051 we by contrast get con-
vergence to the steady state within the first 150 years, but finally economic breakdown
(after 700 years) due to a very small positive root of the dynamics. This breakdown can be
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delayed a bit if also the growth rate of domestic money supply is changed to 0.051, giving
rise to a second outburst as shown, but not to viability in the very long run.

l *l

ω *ω
*ππ

m *m

*ω

ω

*l

l

*m

m

*π

π

* *0.05 : 0.o oThe case µ µ π π= = = =

Figure 9: No steady state inflation and limit cycle projections.30

Figure 9a supplements figure 9 in the way just discussed and is of course based on the
same parameter values as figures 9. It shows finally in its bottom panels cases of very
minor steady state deflation. When there is steady state deflation in the domestic economy
(with its high speeds of adjustments in the wage price module of the model) we now get
convergence to the steady state, in the bottom left panel again confronted with the dark
area of the dynamics when the kink is removed from them. In the case of deflationary
policy in the foreign economy we however get instability both with and without the kink,

30The parameters of this simulation run are as follows: sc = 0.8; δ = 0.1; tc = 0.35; g = 0.35;n =
0.05;µ = .05; h1 = 0.1; h2 = 0.2; yp = 1.0; x = 2.0; βw = 3; βp = 3; κw = 0.5; κp = 0.5; βπ = 3;απ =
0.5; i = 0.5; βk = 1.0; V̄ = 0.8; s∗c = 0.8; δ∗ = 0.1; t∗c = 0.35; g∗ = 0.35;n∗ = 0.05;µ∗ = 0.05; h∗1 = 0.1; h∗2 =
0.2; yp∗ = 1.0; x∗ = 2.0; β∗w = 1; β∗p = 1; κ∗w = 0.5; κ∗p = 0.5; β∗π = 3;α∗

π = 0.5; i∗ = 0.5; β∗k = 1.0; V̄ ∗ =
.8; βe = 2.0; β = 1.2; βε = 1.0;αε = 0.5; γc = 0.5; γ = 1.0; γ∗c = 0.5; γ∗ = 1.0;mshock = 1.1
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though the kink makes the dynamics viable over a much longer horizon than in the case
of no kink in the money wage Phillips curve. We stress finally that the cycle length in the
show time series is approximately ten years and that this phase length tends to become
longer the more sluggish wages (and prices) become.

Kink and No Kink (dark area) No Kink (both mu = 0.051)

Kink (mu = 0.051 > mu* = 0.05) Kink (mu, mu* = 0.051, mu* = 0.05)

The second  recurrent cycle in
the shown irregular fluctuations

Kink and No Kink (dark area)

mu = 0.05 = mu*

(mu = 0.051 >  mu* = 0.05)

Kink and No Kink (dark area)
   (mu = 0. 049, mu* = 0.05)

Kink and No Kink (dark area)
   (mu = 0. 05, mu* = 0.049)

mu=0.051

Figure 9a: Steady state inflation and the generation of irregular time series patterns (here
shown for the inflation rate π).31

Finally in figure 10 we show a situation where countries have now been differentiated from
each other in most of their parameter values, not only in the wage price module. We
indicate various types of phase synchronization, basically by the establishment of negative
correlations and consider again the case of separated economies, of economies that are only

31The parameters of this simulation run are as follows: sc = 0.8; δ = 0.1; tc = 0.35; g = 0.35;n =
0.05;µ = .05; h1 = 0.1; h2 = 0.2; yp = 1.0; x = 2.0; βw = 3; βp = 3; κw = 0.5; κp = 0.5; βπ = 3;απ =
0.5; i = 0.5; βk = 1.0; V̄ = 0.8; s∗c = 0.8; δ∗ = 0.1; t∗c = 0.35; g∗ = 0.35;n∗ = 0.05;µ∗ = 0.05; h∗1 = 0.1; h∗2 =
0.2; yp∗ = 1.0; x∗ = 2.0; β∗w = 1; β∗p = 1; κ∗w = 0.5; κ∗p = 0.5; β∗π = 3;α∗

π = 0.5; i∗ = 0.5; β∗k = 1.0; V̄ ∗ =
.8; βe = 2.0; β = 1.2; βε = 1.0;αε = 0.5; γc = 0.5; γ = 1.0; γ∗c = 0.5; γ∗ = 1.0;mshock = 1.1
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linked via trade (the fixed exchange rate case) and economies that have the usual financial
links in addition.

Figure 10: Interacting economies with fast vs. slow wage-price dynamics and further
significant differences.32

This closes the numerical illustrations provided in this section for the case of two coupled
KWG economies, where wage price dynamics is at the main focus of interest (besides
income-distribution driven accumulation dynamics), but where the quantity dynamics of
the KMG modelling framework are still absent in this formulation of full capacity growth.

32The parameters of this simulation run are as follows: sc = 0.8; δ = 0.1; tc = 0.35; g = 0.35;n =
0.05;µ = 0.057; h1 = 0.1; h2 = 0.2; yp = 1.0; x = 2.0; βw = 2; βp = 3; κw = 0.5; κp = 0.5; βπ = 3;απ =
0.5; i = 0.5; βk = 1.0; V̄ = 0.8; s∗c = 0.8; δ∗ = 0.1; t∗c = 0.35; g∗ = 0.35;n∗ = 0.05;µ∗ = 0.05; h∗1 = 0.1; h∗2 =
0.2; yp∗ = 1.0; x∗ = 2.0; β∗w = 1.95; β∗p = .5; κ∗w = 0.5; κ∗p = 0.5; β∗π = 3;α∗

π = 0.5; i∗ = 0.5; β∗k = 1.0; V̄ ∗ =
0.8; βe = 2; β = 1; βε = 1;αε = 0.5; γc = 0.5; γ = 1; γ∗c = .5; γ∗ = 1;mshock = 1.1
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6 Conclusions

In this paper we have extended the KWG approach to the dynamics of closed economies
to the case of two interacting open economies. The model was introduced on the extensive
form level by way of nine submodules, presenting the behavioral equations, the laws of
motion and the budget equations of the sectors and markets. On the basis of simplifying
assumptions we then derived the 10D core dynamics implied by the model. The uniquely
determined interior steady state of the dynamics, its stability and its loss stability by way of
Hopf-bifurcations was discussed in an economically intuitive, but mathematically informal
way. Finally, in the case of local explosiveness of the dynamics around the steady state
we have bounded them by an institutionally determined kink in the money-wage Phillips
curve of the model (adding downward wage rigidity to it). This behavioral nonlinearity
restricts the dynamics around the interior steady state to economically meaningful domains
in many situations, a variety of which were investigated from the numerical point of view
in the preceding section of the paper. These numerical simulations of the dynamics showed
interesting features of more or less coupled oscillators and thus indicated that interesting
dynamics may be obtained from the coupling of models of monetary growth of the KWG
and other type when applied to the case of two interacting open economies.

Notation

The following list of symbols contains only domestic variables and parameters. Magnitudes
referring to the foreign country are defined analogously and are indicated by an asterisk
(∗), while domestic and foreign commodities are distinguished by the indices 1 and 2,
respectively. Real magnitudes are generally expressed in terms of the domestic good when
composite commodities are considered. We use w and c as index to characterize magnitudes
that refer to workers and pure asset holders respectively, while indices p, f and g refer
to private households, firms and the government. Superscript d characterizes demand
expressions, while the corresponding supply expressions do not have any index (in order to
save notation). We use the superscript e to denote expected variables, while subscript e is
used to denote the price of equities (the variable e is the nominal exchange rate).

A. Statically or dynamically endogenous variables:

Y output
Y p potential output
Y e expected sales
Y d aggregate demand C + I + δK +G
Y D

w , Y
D
c disposable income of workers and asset-holders

Uc = Y/Y p rate of capacity utilization (Ūc the NAIRU utilization rate)
Ld employment
L labor supply
V = Ld/L rate of employment (V̄ the employment–complement

of the NAIRU)
C = Cw + Cc private consumption
C1 consumption of the domestic good (index 1: good
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originates from country 1 = domestic economy)
C2 consumption of the foreign good (index 2: good

originates from country 2 = foreign economy)
Sp = Sw + Sc private savings
Sf savings of firms (= Yf , the income of firms)
Sg government savings
S = Sp + Sf + Sg total savings
I intended (= realized) fixed business investment
N stock of inventories
N d desired stock of inventories
I planned inventory investment (existing stock = N )
Ip planned total investment I + I
Ia = I + Ṅ actual total investment
∆Y e = Y e − Y d expectations error on the goods market
K capital stock
M money supply (index d: demand, growth rate µ0)
B domestic bonds, of which B1 and B∗

1 are held by domestic
and foreign asset-holders respectively (index d: demand)

B∗ foreign bonds, of which B2 and B∗
2 are held by domestic

and foreign asset-holders respectively (index d: demand)
E equities (index d: demand)
W real domestic wealth
R stock of foreign exchange
T = Tw + Tc real taxes
G government expenditure
Ex = X exports in terms of the domestic good
Im = Jd imports in terms of the domestic good
NX = Ex− Im net exports in terms of the domestic good
NFX net factor export payments (in AUD)
NCX net capital exports (in AUD)
nx = NX/K = (a) net exports per unit of capital
Z Surplus in the balance of payments (in AUD)
r nominal rate of interest (price of bonds pb = 1)
ρe expected rate of profit (before taxes)
w nominal wages
p price level
ω = w/p the real wage
u = ω/x the wage share
pc consumer price index
πe expected rate of inflation
πe

c expected rate of change in the consumer price index
pe price of equities
e exchange rate (units of domestic currency per unit of

foreign currency: AUD/USD or ¿/$)
ε expected rate of depreciation of the exchange rate e
ε expected excess profitability
εm expected medium-run excess profitability
η = p/(ep∗) real exchange rate (Goods∗/Goods)
Tc taxes on domestic capital income
Tw taxes on domestic wage income
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Xw excess capacity on the labor market
Xp excess capacity on the goods market

B. Parameters of the model

V̄ NAIRU-type normal utilization rate concept (of labor)
Ūc NAIRU-type normal utilization rate concept (of capital)
δ depreciation rate
µ̄(= µ) steady growth rate of the money supply
nl rate of natural growth
nx rate of productivity growth
n = nl + nx natural growth rate augmented by productivity growth
i1, i2 investment parameters
h1, h2 money demand parameters
βw wage adjustment parameter
βp price adjustment parameter
βπe inflationary expectations adjustment parameter
βn inventory adjustment parameter
βye demand expectations adjustment parameter
βe exchange rate adjustment parameter
β disequilibrium measure in international capital flows
βε adjustment parameter of exchange rate expectations
βε adjustment parameter for the investment climate
αnd desired inventory-output ratio
α weights for forward and backward looking expectations
απ impact of technical analysis on expected inflation
αε impact of chartists on expected exchange rate changes
κw, κp Weights of short– and long–run inflation (κwκp �= 1)
κ = (1 − κwκp)−1

yp = Y/K output–capital ratio
x = 1/ley = Y/Ld output–labor ratio
τw, τc tax rates on wage and interest income
sc savings–ratio (profits and interest)
sw savings–ratio (wages)
γw, γc share of the domestic good in consumption

of workers and capitalists
g = G/K fiscal policy parameter
tc tax to capital ratio of workers (net of interest)
tw tax to capital ratio of asset holders (net of interest)
j = Jd/Y import parameter
pb = 1 price of domestic bonds
γc, γ import function parameters
ξ risk premium

C. Further notation

ẋ time derivative of a variable x
x̂ growth rate of x
l′, lw total and partial derivatives
yw = y′(l)lw composite derivatives
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ro, etc. steady state values (r̄ parameter which may differ from ro)
y = Y/K, etc. real variables in intensive form
m = M/(pK), etc. nominal variables in intensive form
ν = N/K inventory-capital ratio
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