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Abstract: The novel E-MACSC technique is for efficacious dynamic cache tuning. It is an enhanced version of 
the previous MACSC (model for adaptive cache size control) approach by eliminating the unpredictable time 
elements. The enhancement is achieved by substituting the point-estimate method adopted by the MACSC with 
the M3RT, which is a micro IEPM (Internet End-to-End Performance Measurement) technique. All the 
preliminary test results show that the E-MACSC not only upkeeps the prescribed minimum hit ratio consistently 
but also produces up to 5% better hit ratio than the MACSC. This makes the E-MACSC more suitable for time-
critical applications because it requires shorter execution time, which means better timeliness.        
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1 Introduction 
Browsing and data retrieval are normal World Wide 
Web (WWW) operations in this Internet era. Yet, 
studies (e.g. [1, 2]) show that: a) the size of a web 
page increases around 15% monthly, and b) 
comparatively the Internet backbone capacity 
improves only about 60% yearly. If this trend 
continues the Internet will come to a standstill due to 
congestion. An effective solution to alleviate WWW 
congestion is caching [3]. For example, if a cache has 
a 75% hit ratio and the average data retrieval time 
(latency without caching) is T, then the speedup by 
caching is S = T/(0.75*0 + 0.25*T) or 400%. Since 
the data found in the cache needs no long-haul data 
transfer across the Internet, more backbone 
bandwidth is freed for public sharing. The data to be 
retrieved may have time constraints, for instance, 
making a sound real-time investment decision before 
a deadline. Then, the data timeliness or freshness on 
top of correctness is significant [4]. This is well 
reflected by the following Zurich IBM comment: “... 
Distance still matters in the Information Age. 
Geographically distributed caching servers exist 
because the Internet alone cannot satisfy the desire to 
provide content quickly…”.  

The logical solution to secure timely data 
retrieval is to monitor and control the roundtrip time 
(RTT), which is the latency for sending a request and 
getting the result successfully. The CARP (Cache 
Array Routing Protocol [17]) is such an algorithm 

that cuts RTT by maximizing the hit ratio in a cluster 
by load balancing.  In the E-MACSC context WWW 
data retrieval is a client/server relationship [6]. The 
proxy needs to approach the web-server only when it 
cannot find the data object in its local data cache 
(LDC), as shown in Figure 1. The RTT between 
points (A) and (C) is broken down in this paper into 
several basic elements: client/server communication 
time (Tcomm), queuing delay at the server side (TQD), 
service time by the server (Tserv), and context 
switching delay (TCS) by the operating system at the 
server side. The delay for queuing and service is the 
server’s “Local response time”. The details of these 
elements are: a) Tcomm is the average time for the end-
to-end “Send” and “Response” path (across the 
channel), b) TQD depends on the rate of the incoming 
requests and the current server loading, and c) Tserv 
has two time components: Tlocate for locating the data 
object and Tretrieve to retrieve it; retrievelocateserv TTT += . 
 

 
Figure 1. Data retrieval over an Internet channel 



 

Since servT  involves the Internet DNS (Domain Name 
System) and data transfer, it incurs a significant delay. 
If the proxy server is equipped with an efficient local 
cache so that the data object can be retrieved directly, 
then Tserv is shortened due to Tlocate and Tretrieve 
elimination. The MACSC maintains the minimum hit 
ratio prescribed to the cache so that shorter RTT is 
guaranteed. This kind of technique is essential for 
good performance by small caching systems [13]. It 
helps paid-ISP’s (Internet Service Providers) to 
deliver fast data retrieval to keep customers happy [5]. 
The need for a high hit ratio incessantly inspires 
different relevant areas of research. The more popular 
topics include replacement strategies [3], caching of 
dynamic files [8], leveraging object popularity as an 
extra parameter [9], and adaptive caching (or caching 
adaptivity [10]). The previous MACSC technique for 
on-line dynamic cache tuning is a form of caching 
adaptivity. It leverages the relative data object 
popularities as the only parameter [18]. Our 
continued study of the MACSC reveals that it has a 
timeliness problem for serious real-time applications. 
To resolve this problem the E-MACSC (Enhanced 
MACSC), which uses the RTM 3 micro IEPM or 

IEPMM −  (Internet End-to-End Performance 
Measurement) technique [19,20,21], is proposed. 
This IEPMM −  technique is predictive, fast, 
accurate and insensitive to traffic patterns because it 
is derived from the Central Limit Theorem. In 
operation the two E-MACSC constituent objects run 
and collaborate in a concurrent manner; that is, 
“ RTMMACSCMACSCE 3+=− ”. 
 
 
2 Related Work 
The E-MACSC is an enhancement of the previous 
MACSC (model for adaptive cache size control) [18], 
which computes the standard deviation (SD) of the 
current relative popularity (RP) among the data 
objects on-line. The RP is embedded in the plot of 
“access frequencies versus the data objects”, known 
as the popularity distribution (PD). The data objects 
in the LDC belong to the “currently hot” subset of 
the repertoire in the web-server. The PD shape 
changes according to the seasonal user preference, 
and so does the SD of the PD. The MACSC model 
makes use of the difference between two consecutive 
SD values in two ways, as shown by equations (1) 
and (2), which compute the cache size (CS) 

adjustment differently. The following two terms:  
(SDThisSample/SDLastSample)2 and (SDThisSample/SDLastSample) 
are the popularity ratios (PR). 
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The initial cache size for the MACSC operation is 
ectSizeAverageObjobjectsSD SNC *= , where:  

a) SDC  is the initial cache size for the prescribed 
confidence level or hit ratio, in terms of the 
number of standard deviations.  

b) objectsN  is the number of data objects in the 
central region of the initial PD chosen to satisfy 
the prescribed confidence.  

c) ectSizeAverageObjS  is the average size of the data 
objects in the repertoire. 
The MACSC efficacy depends on its capability 

to precisely capture the continuous changes in the 
relative probability (RP) profile. Under all 
operational conditions the MACSC should strive to 
maintain the prescribed minimum hit ratio (e.g. one 
SD or 68.4%) by adjusting the cache size adaptively. 
A larger PD (probability distribution) variability 
needs a larger cache for the given hit-ratio because it 
includes more data objects. The popularity ratios (PR) 
by equation (1) and equation (2) produce very 
different effects. The suffixes: “Adjusted _VR” and 
“Adjusted _SR ” differentiate the PR by the VR 
(variance ratio) from that by the SR (standard 
deviation ratio). If Sb=SDThisSample and Sa =SDLastSample 

are assumed, 2)(
a

b
S
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S are the VR and 

SR ratios respectively. The MACSC estimates the SD 
or 

x
δ  and the mean (i.e. x ) by direct data 

measurement to get the shape of the current PD. This 
is carried out with the “N-equation”: 
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like the RTM 3 , is derived from the Central Limit 
Theorem [7]. The meanings of the parameters are as 
follows: a) E is the fractional error between x  and 
the true mean µ, b) k is the number of standard 
deviations for x  to deviate from µ but within an 
acceptable tolerance, c) N is the number of x data 



 

samples to satisfy the N-equation, and d) xδ  is the 
true (population’s) SD. The analysis of the 
preliminary MACSC performance data indicates that 
the speed and accuracy for estimating 

x
δ  and x  

should be improved. It is otherwise difficult to apply 
the MACSC techniques in real-time applications due 
to the unpredictable nature of the two time elements: 

SamplingT  and PET  (to be explained later). The x  

inaccuracy is caused by the absence of historical x  
data in the PE estimation process. The key issue here 
is how to incorporate past performance into the 
current x  estimation. A thorough explanation of the 
literature convinces us that the M3RT technique is 
suitable for the job. In its IEPMM −  form this 
technique operates as an independent logical 
entity/object to be invoked for estimation service by 
message passing. The preliminary experimental E-
MACSC results with different values for the damping 
factor P in equation (3) show that with the 

IEPMM −  support the x  accuracy is significantly 
improved. This can yield up to 5% more hit ratio than 
the MACSC with the point-estimate method. The 
correlation among the P value, the hit ratio and cache 
size will be explored thoroughly in the next phase of 
the research.  
 
 
3 The E-MACSC Details 
The E-MACSC has four main operational modules 
(Figure 2): 
a) M1-The CS (cache size) adjustment computation 

module that calculates by either the VR or the SR 
approach (i.e. equation (1) or equation (2)). 

b) M2 - The x  (sample mean) predicted by the 
M3RT IEPMM −  (i.e. ≈x Ai in equation (3)) 
technique that includes the past x  in the current 
prediction. 

c) M3 – It carries out the actual dynamic cache 
tuning with the adjustment computed above. 

d) M4 - Memory recycling to support the dynamic 
cache tuning process.   

 
Figure 2. The high-level E-MACSC model 

 
The core of the M3RT is the Convergence 

Algorithm (CA) represented by equation (3). The 
parameters are: a) iA  is the predicted x  for ith cycle, 

with µ≈x  [19,20], b) j
im is the jth sample mean in 

the ith cycle, c) f is the flush limit for fast convergence 
to the predicted mean (i.e. iA ), and there are 

)1( −f number of j
im in every ith cycle 

( ))1(,...,2,1 −= fj , and d) P is the damping factor 
chosen for smooth iA  convergence. The optimal 
range for f is always between 9 and 16 as previously 
confirmed empirically [9].  
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It is expected the M3RT provides three 
advantages. Firstly, it should make the E-MACSC 
yield a higher hit ratio than the previous MACSC that 
has point-estimate or PE rather than IEPM support. 
This is due to the fact that the M3RT yields more 
accurate x  or iA  predictions than the PE approach. 
Secondly, the M3RT estimation is faster with 
predictable execution time. For example, if it is 
assumed that for a sample size of 50 (i.e. 50=SS ) 
the PE process yields 25 and 7 for x  and 

x
δ  

respectively, for 126)( 2 ≈=
xE

kN xδ . This 

implies that the sample size of 50=SS  is incorrect 
and more data should be sampled (126-50=76) to 
recalculate x  and 

x
δ . The recalculation repeats until 

N is acceptable, and this gives SamplingT  and PET  the 
unpredictable nature as explained later. The M3RT 
does not have this problem because at the system 



 

steady state the current x  (or iA ) and 
x

δ  are always 
computed accurately with the f (flush limit) value 
chosen from the range: 9 to 16. Thirdly, the M3RT 
accuracy eliminates PET  repetition because xAi =  
is very close to the true mean µ [19] and is always 
available to immediately satisfy the N-equation. 
Conceptually 

x
δ  can now be computed in a single 

step by 
k

EAi
x =δ , and µ≈= xAi  implies xx δδ ≈ . 

The convergence speed to get iA  is associated with 
the P value, which smoothens out the oscillations in 
the convergence process [19]. Ideally the “dynamic 
cache tuner” should detect and capture the smallest 
changes in the relative popularity profile of the data 
objects quickly and accurately so that the seasonal 
change in user preference can be optimally reflected. 
 
 
4 Experimental Results 
Many experiments were carried out with the Java-
based E-MACSC prototype over the Aglets mobile 
agent platform. This stable Java-based platform [10] 
yields credible and scalable experimental results, 
which can be repeated in the open Internet 
environments. In the experiments the client and 
servers in Figure 1 become Java objects known as the 
aglets (agile applets). The essence of the setup for 
the experiments is shown in Figure 3. Figure 4 shows 
one of the experimental E-MACSC results, with 

1=P , for demonstration purposes. In this case, the 
driver aglet operates at the rate of 0.67 requests per 

second (rate of the clock interrupts). The requested 
data object is determined by generating a random 
number first with the chosen distribution. Then, the 
data object is interpolated along the X-axis (e.g. the 
normal PD distribution illustrated in Figure 3). The 
proxy aglet finds the requested data by both the PE 
and M3RT approaches running concurrently. If the 
data object cannot be found in the cache, then the 
proxy aglet invokes the I/O aglet to find it from the 
repertoire. This mimics the presence of a web server 
that handles 40,000 different files of an average size 
of 5K bytes. The size of the LDC is initialised to 50 
Megabytes for the prescribed minimum hit ratio of 
one standard deviation (SD = 1) or 68.3%. The 
replacement algorithm for the LDC is the basic LRU 
(least frequently used) approach. In all the 
experiments 250,000 data requests (i.e. 250,000 clock 
interrupts) were generated. Figure 4 shows how the 
E-MACSC controls the LDC size optimally and 
yields better hit ratio than the previous MACSC 
model. The analyses of all the test cases show that the 
hit ratio by the E-MACSC is up to 5% higher, as 
demonstrated in Figure 4. 

The computation time for the PE approach ( TotalT ) 

has several basic time components: a) SamplingT  for 
collecting enough samples to satisfy the N-equation, 
b) PET  for computing x  and 

x
δ  in order to satisfy 

the same criterion above, and c) PRT  for computing 
the adjustment and carrying out the physical dynamic 
cache tuning; PRPESampingTotal TTTT ++= . The time 

SamplingT  is a variable because it depends on the 

 

 
Figure 3. The testing environment for E-MACSC dynamic cache tuning 



 

unpredictable inter-arrival time (IAT) between two 
samples. For one of the experiments, with 50=SS , 
the timing analysis of PET  alone by the Intel’s VTune 
Performance Analyzer [22] shows that it needs an 
average of 1,673,100 clock cycles just for one 
computation pass (collecting 50 samples to compute 
x  and 

x
δ ). In fact, it is normal for such a calculation 

pass to be repeated until the N-equation is satisfied. 
The VTune shows that the IEPMM −  running on 
the same platform alone requires only 211 clock 
cycles on average to predict iAx ≈  and about 110 

clock cycles to compute 
x

δ  by: 
k

EAi
x =δ . In the 

light of this experiment, the M3RT saves roughly 
)32116731000( −  or 16730679 clock cycles in a 

predictable manner. The problem with the PE 
approach is that it may need P passes to compute x  
and xδ  that satisfies the N-equation. Therefore, the 
number of clock cycles saved by the E-MACSC 
compared to the MACSC is conceptually around 
Z*16730679. In all the test cases so far, Z varies 
from 10 to 40 depending on the average IAT. On a 
platform such as the Sony R505CT that operates at 
143MHz, the point-estimate method with no M3RT 
support is about 16730679*(1/143)*10-6≈11.7ms  
slower per pass for the x  and xδ  computations. 
Therefore, the E-MACSC model is more applicable 
for time-critical applications for better timeliness. 

The E-MACSC experimental results show that 
this novel technique yields a higher LDC hit ratio 
with more cache space consumption. For example, in 
the case shown in Figure 4, the average 5% higher hit 
ratio consumes 14 megabytes more cache space in 
the dynamic cache tuning process. The higher cache 
space consumption is the side effect from the fast and 
accurate x  and xδ  predictions by the IEPMM − . 
This effect is closely associated with the choice of the 
value for the damping factor P, and the rationale 
behind this association will be thoroughly explored in 
the near future. The general conclusion from the 
preliminary E-MACSC experimental results are as 
follows: a) it is essential to get x  accurately so that 

xδ  can be computed to gauge the popularity ratio(s) 
correctly for meaningful cache adjustment 
computation, b) the P factor filters out the x 

oscillations to yield a smooth and accurate iA  
convergence, but meanwhile this leads to small 

variations for xδ (i.e. 
k

EAi
x =δ ) and thus less 

sensitivity for the E-MACSC in response to small 
changes in the relative popularity profile of the data 
objects, c) less sensitivity yields less system 
responsiveness and more inertia, and d) the impact by 
the inertia are: i) a previous cache elongation leads to 
the higher hit ratio because after a cache elongation 
any change in user preference does not shrink xδ  
immediately, and ii) a previous cache shrinkage 
would lower the hit ratio because of slow response by 
the dynamic cache tuning process. The third and 
fourth observations above imply that the sensitivity 
and responsiveness by the E-MACSC to small 
changes need improvement. 
 

 
Figure 4. A case of more accurate LDC size control 

supported by M3RT (or CA) with P = 1 
 
 
5 Conclusion 
The novel E-MACSC technique for dynamic cache 
tuning is an enhanced version of the previous 
MSCSC model. The enhancement is achieved by 
replacing the point-estimate method for computing x  
and xδ  with the M3RT IEPMM − technique. In the 
E-MACSC the two component modules: the dynamic 
cache tuner (i.e. the MACSC without PE) and the 
M3RT run concurrently. The tuner gets the accurate 
x  and xδ  predictions immediately from the M3RT 
by message passing whenever it needs them. The 
accuracy of these predictions supported by the chosen 
f (flush limit) value eliminates the unpredictable 

SamplingT  and PET  time elements from the MACSC. It 



 

allows the E-MACSC to gain up to a 5% higher hit 
ratio by using less cache memory as demonstrated by 
the case in Figure 4. The next phase planned for the 
research is to explore and define: a) the association 
between the P factor and the gain in hit ratio by the 
E-MACSC, and b) the correlation between Z and the 
IAT. 
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