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Abstract: - Vector computers are suitable for processing vectors and matrices. Nevertheless, sophisticated 
algorithms are needed to process sparse vectors and matrices. Additionally, vector computers are not 
always the best computing platform because of their very high cost. We have designed a special 
architecture of a vector computer and implemented it within an FPGA. Our main objective is to build 
multiprocessors and vector machines within FPGAs because they offer a low cost alternative to 
supercomputers and other parallel machines. We demonstrate here that FPGAs provide a cost effective 
and reconfigurable means to implement vector computers. The implementation and performance of the 
above vector computer on an FPGA platform are also discussed. 
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1  Introduction 
Multiple issue, pipelined processors are 
particularly suitable for large scientific and 
engineering applications. Issuing multiple 
instructions in a clock cycle and pipelining a 
processor deeply could greatly enhance its 
performance. However, the problem of 
scheduling operations has the same complexity 
for both architectures. Vector processors are 
equipped with high- level operations on linear 
arrays of numbers - vectors. A vector instruction 
is equivalent to a loop implementation, where an 
iteration of the loop calculates one of the 
elements in the result. Vector instructions 
perform well for many vector problems 
associated with multiple- issue, deeply pipelined 
processors. A single vector instruction represents 
a lot of accumulated tasks. Thus the instruction 
bandwidth requirement is reduced. In contrast, 
the data bandwidth requirement increases 
substantially. Vector load and store instructions 
normally have a known access pattern. A single 
access is required for the complete vector rather 
than for a single element. As a result, memory-
latency is encountered once for the entire vector. 
Also, control hazards arising from loop branches  

 
 
are avoided as the vector instruction (which has 
predetermined behavior) replaces an entire loop. 
Accessing the memory with a predetermined 
index or stride (for non sequential accesses) 
makes a vector processor suitable for matrix 
handling. 
 
Many problems in engineering and science, such 
as power systems and simulation of complex 
systems, need the handling of matrices and 
vectors that are sparse. Vector processors have 
been suggested [1] and have been used [2, 3] to 
handle sparse matrices and vectors with 
significant speedup compared to scalar 
processors. Many algorithms have been proposed 
[4, 5] that further enhance the efficiency of the 
solutions to the above problems on vector 
machines. An architecture is proposed here to 
efficiently handle sparse matrices and vectors 
with FPGAs. Conventional vector processors are 
expensive. FPGAs provide an alternative 
platform for cost effective implementation of 
vector processors. The ease of reconfiguring 
FPGA-based platforms is also attractive. We 



have implemented our design on an FPGA and 
tested it successfully. 
 
Let us consider the solution to a set of linear 
equations of the form A.x = b, where A is a 
symmetric, nonsingular matrix (often sparse in 
many applications), x and b are vectors. Matrix 
A can first be factored as A = L.D.U for finding 
the solution based on an LU-decomposition 
algorithm, where L is the lower triangular matrix, 
U is the upper triangular matrix, and D is a 
diagonal matrix. The computation of L and U is 
preceded by ordering the rows and columns of A 
to minimize the number of new nonzero terms 
compared to A. The solution to ‘x’ involves a 
series of matrix-vector operations, which could 
be handled efficiently by a vector processor for 
the reasons explained above. Our ultimate 
objective in this project is to design and 
implement a vector machine in an FPGA to 
support high performance solution of linear 
equations. 
 
If we consider the multiplication of two matrices 
(stored in memory), one row of the first one and 
one column of the second one need to be loaded 
for each element of the result. This could be 
done using two vector instructions with the 
respective starting addresses of each of the 
matrices. Matrices are stored in either row-order 
or column-order. In either case, vector load 
operation would need access to memory 
locations that are a fixed distance apart (the 
distance being equal to the size of the row or 
column). This operation could be performed 
using a single vector instruction with a stride for 
accessing elements. 
Moreover, if the matrices are sparse and the 
location of nonzero elements is known, then a 
vector of indices could be formed with the 
offsets of nonzero elements. This index vector 
can be used with the starting address of the 
matrix to access those nonzero elements. This 
could also be achieved using a single vector 
instruction with an index vector.  

As an illustration, we can consider a result vector 
(V3) produced from two input vectors (V1, V2) 
using the equation V3 = (a×V1) +V2, where ‘a’ 
is a scalar. Using a scalar processor, it would 
require 2n loads, where n is the size of the vector. 
It also requires n multiplications and n additions. 
The number of instructions to represent the 
above would be approximately eight, considering 
only one control instruction per loop (there are 
four loops). Using a vector processor, there 
would be two loads (each with n elements), one 
multiplication and one addition. The number of 
instructions to represent the above would be four. 
This implies almost an n-fold reduction in 
instruction memory access latency. Also, the 
number of instruction fetches is half of that in 
the scalar operation. 
As the above operations are repeatedly 
encountered in handling matrices, the vector 
processor promises much better performance. 
 
A similar work with sparse matrix-vector 
operations has been reported in [7]. However, it 
deals with the  FPGA implementation of the 
multiplication algorithm for the sparse matrix-
vector product. This paper did not encompass the 
design of a complete vector processor. Work has 
been reported in [8] to handle this problem using 
multiple processors. However, the 
communication overhead among the processors 
and resources required to build such a machine 
can not be ignored. Also, the approach taken to 
build the multiprocessor was to use (repeatedly) 
a soft IP core. Taking advantage of the sparse 
nature in matrices for loading, processing and 
storing vector data elements suggests a 
substantial performance gain. Our approach is 
mainly to exploit this aspect and to design the 
vector processor from scratch. In fact, we have 
designed our vector machine to handle matrix 
operations, with a primary focus on LU 
decomposition. 
 
This paper discusses the architecture of our 
vector machine in terms of hardware and 
software. It also points out at specific 



improvements to the basic architecture proposed 
in [6] since our design is based on that early 
architecture. Then it presents the implementation 
details including the design hierarchy, 
implementation steps, verification, and 
implementation results. The paper also 
summarizes the performance of the machine. It 
concludes with direction for future research.  
  
2  Architecture of the Vector Processor 
The basic architecture is proposed in [6]. In our 
case, the vector computer consists of a vector 
processor and several memory modules. At 
present, the vector processor fetches, decodes 
and executes its own instructions. The processes 
of fetching and decoding are overlapped. The 
execution is sequential. One instruction is 
completely executed before the next one is 
started. 
 
It contains a program memory and eight data 
memory modules. The data memory modules are 
Low-Order Interleaved (LOI) and their access is 
pipelined. The program memory and the data 
memories are High-Order Interleaved (HOI). 
The processor has four 16-bit vector registers 
with sixteen elements in each. The complexity of 
the vector processor was kept low in this effort 
because we first wanted to see the viability of 
our FPGA-based approach. The processor will 
be enhanced substantially in the near future. It 
also contains a few scalar registers such as vector 
length register and vector mask register. The 
machine can handle only integer numbers at 
present. Each instruction is represented by a 
word (16 bits). The upper 8bits represent the op-
code. The lower 8bits represent the address of 
the operand (if any). Operands are accessed 
using the direct, implied and register addressing 
modes. All the operations on vector data are 
vector-register based. 
 
The processor can access 128 words of 
instruction memory. Each of the eight data 
memory modules can have 128 words (total = 
128×8 = 1024 words). The memory capacities 

can be easily expanded by providing additional 
address lines to the processor. However, there is 
a limit imposed by the FPGA platform that we 
used. The data memories are alternately accessed 
in (almost) consecutive clock cycles us ing two 
control lines. The memory mapping is shown in 
Table 1. 
 

Type Address 
Instruction Memory 000-7FFH 
Data Memory 0 800-FF0H 
Data Memory 1 801-FF1H 
Data Memory 2 802-FF2H 
Data Memory 3 803-FF3H 
Data Memory 4 804-FF4H 
Data Memory 5 805-FF5H 
Data Memory 6 806-FF6H 
Data Memory 7 807-FF7H 

Table 1: Memory Mapping of the Vector 
Computer 
 
As seen from the above table, the instruction 
(program) and data memories are high order 
interleaved as the MS part of the address selects 
one between the two. The data memory modules 
are pipelined sharing the interleaved address 
space (as shown in Fig. 1). The LS three bits of 
the last hexadecimal digit of the data address 
selects the module. The next bit of the data 
address is left unused. This means that 800H and 
808H maps to the same data address, as we have 
only eight data modules. This arrangement 
simplifies the readability of the addresses as 
shown in the above table. This implies that eight 
data elements can be read from/written into the 
memory with a single memory access. The data 
memories are accessed implicitly in low-order 
interleaved locations (in almost consecutive 
cycles) but the data within individual modules 
are stored in consecutive addresses. It ensures a 
low access latency that is characteristic of vector 
processors. 
 
All the memory modules are connected to the 
same address and data buses of the processor. 
The MS hexadecimal digit of the address is 
decoded to select between the program and the 
(eight) data memories (they are high order 



interleaved). This is evident from the address 
mapping shown in the above table. The data 
memories share the total data address space with 
interleaving. They are activated one at a time 
within an address cycle (using a control signal). 
As a result, the data from Data Memory 0 is put 
first on the data bus followed by the data from 
Data Memory 1, Data Memory 2, and so on 
(finally from Data Memory 7). However, the 
processor treats them as eight separate items and 
puts them in successive elements of a vector 
register. Writing into the memory is similar. It is 
to be noted that the processor generates only one 
address for accessing eight consecutive data 
elements as the memories are low order 
interleaved and pipelined.   
With the current design of eight data memories, 
it requires two memory accesses to load 
into/store from a sixteen element vector register. 
In general, it would be equal to the elements of 
the vector register divided by the pipelined 
memory modules. 
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Interleaved Memory Modules 
Fig. 1: The vector computer. 
 
3  Instruction Set Architecture (ISA) 
The vector processor’s instructions can be 
divided into the following groups. 
 
Load and store instructions 
Load/store instructions access vectors. Apart 
from the normal (vector) load and (vector) store, 
these instructions also support (vector) load and 
(vector) store with an index as well as with a 
stride. These instructions are particularly helpful 
for sparse vector/matrix loading/storing. Each 

instruction is fetched and decoded only once. 
Subsequently, an entire vector can be loaded 
from/stored into the memory.  
 
When the knowledge of the nonzero elements in 
a sparse vector is available, an index can be 
created with the positions of the nonzero 
elements. Using this index, those elements can 
be accessed efficiently. The ‘indexed load’ 
feature provides this facility. Similarly, if the 
sparse nature is regular (constant distance 
between nonzero elements), the nonzero 
elements could be accessed with a fixed stride.  
This is supported by the ‘stride load’ feature. The 
‘stride load’ feature also supports access of the 
elements on a column/row in a row-order 
/column-order stored matrix. The above two 
features are fully consistent with the ‘scatter and 
gather’ concepts for vector machines. 
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Arithmetic instructions 
These instructions allow addition, subtraction 
and multiplication of either two vectors or a 
scalar with a vector. The operations between the 
vectors are well reasoned. Addition and 
subtraction of vector elements with a scalar may 
be necessary when a ‘change of reference’ is 
needed. Similarly, multiplication of vector 
elements with a scalar may be necessary when 
‘scaling’ is needed. 
 

 



Comparison instructions 
These instructions allow comparison of either 
two vectors or a scalar with a vector. Various 
types of comparisons are supported such as 
‘Equal To’, ‘Greater Than’, ‘Less Than’, 
‘Greater Than or Equal To’, ‘Less Than or Equal 
To’, and ‘Not Equal To’. The comparison of two 
vectors is needed to make a ‘relative’ decision. 
The comparison of elements in a vector with a 
scalar is needed to make an ‘absolute’ decision 
based on a reference. 
Vector pre-processing instructions 
These instructions allow preparation of the 
vector processor. They include loading the vector 
length register, loading the vector mask register, 
and creating an index vector. The vector length 
register can be used to dynamically control the 
size of the vector register or the number of 
memory accesses. The mask register can be used 
to indicate which elements in a vector register 
need to be processed. It also (indirectly) 
indicates the number of elements to be processed. 
This number may be helpful in estimating the 
processing time.  All these features contribute to 
further efficiency. 
 
Our implementation contains twenty four 
instructions at this time with provision for the 
load/store to be pipelined or non-pipelined. The 
instruction format is shown below. 
                                
 
Opcode (1 byte)   Operand Address(1 byte) 
 
Let us now focus on the potential enhancements 
compared to [6]. The architecture [6] could be 
improved by extending the role of the vector 
mask register and the vector length register. The 
mask register could be used to specify the 
element-offsets that should be used in the 
processing. This would support efficient 
processing of sparse vectors. This register should 
be used (when necessary) in all the Arithmetic, 
Comparison and Load/Store instructions. The 
vector length register could be used to 
dynamically specify the length of the vector to 

be processed. This also would support efficient 
processing of sparse vectors with all zero 
elements after a certain length. This register 
should also be used (when necessary) in all the 
Arithmetic, Comparison and Load/Store 
instructions.These are under active consideration 
for implementation. 
 
Adding the elements of a vector register is 
required often in matrix-vector multiplication. 
This is not supported by the architecture [6]. 
Also, filling up a row (column) vector from each 
partial result is a useful operation. Both 
operations are not supported by the architecture 
in [6]. Both, however, are included in our design. 
 
4  Annapolis Reconfigurable Platform 
Reconfigurable chips (including FPGAs) can be 
programmed on the fly. They provide the 
flexibility of changing and adapting an 
implemented design. As a result they provide 
higher efficiency in applications that need 
frequent adaptations. The present state of the art 
in FPGAs provides a good compromise among 
cost, performance and power consumption. 
FPGAs are often used to implement circuits in 
consumer products. But little has been reported 
in the literature about the implementation of 
high-speed processors. Since current FPGAs are 
characterized by significant gate densities, we 
are motivated to implement the vector processor 
in an FPGA. In addition to providing flexibility, 
an FPGA-based platform provides the 
opportunity for hardware/software co-design. 
The Annapolis Micro Systems (AMS) provides 
such a platform – WILDSTAR II board ( Fig. 2). 
It provides a hardware board containing multiple 
FPGAs. The FPGAs can be programmed 
according to the needs of the application. They 
can communicate with the host computer. This 
provides the ability to run an application on the 
reconfigurable chips and read back the results for 
further processing. The cycle could be repeated 
with a different circuit implemented in the 
reconfigurable chips running a different 
application.  



5  Implementation and Testing  
The design is coded in behavioral VHDL. The 
top level design consists of the vector processor 
and memory modules (program and data).  In the 
next level, the vector processor is composed of a 
group of components (Length register, Mask 
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Fig. 2: The block diagram of the Annapolis 
Micro Systems WILDSTAR II reconfigurable 
board 
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Fig. 3: The vector processor 

register, R1, F0), arithmetic unit, and comparator 
unit. Please refer to Fig. 3 for the details of the 
simulated version of the vector processor. 
 
 
5.1  Verification and Implementation Steps  
The design has been simulated at the functional 
level. Every instruction has been executed and 
all of them produced the desired results. The 
design has been synthesized and mapped onto a 
Virtex II FPGA from Xilinx. The whole process 
was successful. However, there have been many 
modifications in the design (that was simulated 
earlier) in order to make it work in the actual 
target device. All the instructions have been 
tested successfully. A major modification is to 
implement a ‘dual-port’ memory. This was done 
to ensure compatibility with the available RAM 
in the FPGA.  
The target FPGA is embedded in a board that can 
be accessed with high level language (HLL) 
routines. These routines allow one to program 
an FPGA (with the desired design file), set clock 
frequency, reset design, write to and read from 
the design. 
The memory that works with the vector 
processor is first loaded with the program and 
the vector(s) using the HLL routine. 
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Then the design is reset. The vector processor 
then processes the input vector and stores back 
the resulting vector in the memory. The memory 
is read back by the HLL routine to verify the 
result. As the size of the programs was very short, 
the results could be read back after a few seconds.  
 
The total gate count, at present, for the 
complete design (the vector processor, one 
code memory and eight data memory modules) 
is about 677K equivalent gates. The maximum 
clock frequency used was 69MHz. However, 
due to the limited use of ‘pipelining’ techniques, 
some instructions execute at lower frequencies. 
The number of cycles needed for each 
instruction is shown in Tables 2 - 4.  
 
5.2  Performance Summary                         
Cycles Per Element (CPE) is the clock cycles 
needed to process one element of the vector.          

Instruction CPE 
Load vector 3 
Store vector 2 

Load vector with stride 3 
Store vector with stride 3 
Load vector with index 3 
Store vector with index 3 

 Table 2: Load/Store Instructions 
  

Instruction CPI 
Set all the bits of mask 1 

Move R1 to the length register 1 
Move the length register to R1 1 
Move F0 to the mask register 1 
Move the mask register to F0 1 

Count the ‘1’s in mask 1 

Table 3: Pre-processing Instructions 
 

Instruction CPE 
Add two vectors 3 

Add scalar to a vector 2 
Subtract two vectors 3 

Subtract scalar from a vector 3 
Subtract a vector from scalar 3 

Multiply two vectors 3 
Multiply vector with scalar 2 

Compare two vectors 1 
Compare vector with scalar 1 

Create an index vector 2 
Add the elements of C 3 

 
Table 4: Arithmetic/Comparison Instructions 

5.3  Performance Comparison 
Table 5 lists the performance of the scalar and 
vector processors for two different cases. 
8*8 Matrix Multiplication 

 Scalar 
 

Vector 
 

Reduction          
(in %) 

Instruction 
Count 

256 48 81.25 

Cycles 
Needed 

10752 
 

6552 
 

39.06 

  
16*16 Matrix Multiplication 

 Scalar 
 

Vector 
 

Reduction          
(in %) 

Instruction 
Count 

1024 96 90.62 

Cycles 
Needed 

66560 26208 
 

60.62 

Table 5: Performance Comparisons 
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7  Future Work 
The design will soon include the following 
improvements: 
Pipelining: More pipelining would be introduced 
among the various components of the vector 
processor. This would increase the execution rate. 
Expansion: 
-More data memory modules are to be added. 
- Longer vector registers are to be implemented. 
Controlled Execution: Execution of instructions 
controlled by the mask and the length registers is 
to be incorporated. 
Comprehensive testing: A real- life application 
would be used to run on the vector machine. 
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