
An FPGA Based Vector Computer for Sparse Matrix-Vector
Processing

MUHAMMAD ZAFRUL HASAN and SOTIRIOS G. ZIAVRAS

Department of Electrical and Computer Engineering
New Jersey Institute of Technology

Newark, NJ 07102
U.S.A.

Abstract: - Vector computers are suitable for processing vectors and matrices. Nevertheless, sophisticated
algorithms are needed to process sparse vectors and matrices. Additionally, vector computers are not
always the best computing platform because of their very high cost. We have designed a special
architecture of a vector computer and implemented it within an FPGA. Our main objective is to build
multiprocessors and vector machines within FPGAs because they offer a low cost alternative to
supercomputers and other parallel machines. We demonstrate here that FPGAs provide a cost effective
and reconfigurable means to implement vector computers. The implementation and performance of the
above vector computer on an FPGA platform are also discussed.

Key-Words: - Vector, Matrix, Sparse, FPGA, Scalar, Memory Interleaving, Pipelining

1 Introduction
Multiple issue, pipelined processors are
particularly suitable for large scientific and
engineering applications. Issuing multiple
instructions in a clock cycle and pipelining a
processor deeply could greatly enhance its
performance. However, the problem of
scheduling operations has the same complexity
for both architectures. Vector processors are
equipped with high- level operations on linear
arrays of numbers - vectors. A vector instruction
is equivalent to a loop implementation, where an
iteration of the loop calculates one of the
elements in the result. Vector instructions
perform well for many vector problems
associated with multiple- issue, deeply pipelined
processors. A single vector instruction represents
a lot of accumulated tasks. Thus the instruction
bandwidth requirement is reduced. In contrast,
the data bandwidth requirement increases
substantially. Vector load and store instructions
normally have a known access pattern. A single
access is required for the complete vector rather
than for a single element. As a result, memory-
latency is encountered once for the entire vector.
Also, control hazards arising from loop branches

are avoided as the vector instruction (which has
predetermined behavior) replaces an entire loop.
Accessing the memory with a predetermined
index or stride (for non sequential accesses)
makes a vector processor suitable for matrix
handling.

Many problems in engineering and science, such
as power systems and simulation of complex
systems, need the handling of matrices and
vectors that are sparse. Vector processors have
been suggested [1] and have been used [2, 3] to
handle sparse matrices and vectors with
significant speedup compared to scalar
processors. Many algorithms have been proposed
[4, 5] that further enhance the efficiency of the
solutions to the above problems on vector
machines. An architecture is proposed here to
efficiently handle sparse matrices and vectors
with FPGAs. Conventional vector processors are
expensive. FPGAs provide an alternative
platform for cost effective implementation of
vector processors. The ease of reconfiguring
FPGA-based platforms is also attractive. We

have implemented our design on an FPGA and
tested it successfully.

Let us consider the solution to a set of linear
equations of the form A.x = b, where A is a
symmetric, nonsingular matrix (often sparse in
many applications), x and b are vectors. Matrix
A can first be factored as A = L.D.U for finding
the solution based on an LU-decomposition
algorithm, where L is the lower triangular matrix,
U is the upper triangular matrix, and D is a
diagonal matrix. The computation of L and U is
preceded by ordering the rows and columns of A
to minimize the number of new nonzero terms
compared to A. The solution to ‘x’ involves a
series of matrix-vector operations, which could
be handled efficiently by a vector processor for
the reasons explained above. Our ultimate
objective in this project is to design and
implement a vector machine in an FPGA to
support high performance solution of linear
equations.

If we consider the multiplication of two matrices
(stored in memory), one row of the first one and
one column of the second one need to be loaded
for each element of the result. This could be
done using two vector instructions with the
respective starting addresses of each of the
matrices. Matrices are stored in either row-order
or column-order. In either case, vector load
operation would need access to memory
locations that are a fixed distance apart (the
distance being equal to the size of the row or
column). This operation could be performed
using a single vector instruction with a stride for
accessing elements.
Moreover, if the matrices are sparse and the
location of nonzero elements is known, then a
vector of indices could be formed with the
offsets of nonzero elements. This index vector
can be used with the starting address of the
matrix to access those nonzero elements. This
could also be achieved using a single vector
instruction with an index vector.

As an illustration, we can consider a result vector
(V3) produced from two input vectors (V1, V2)
using the equation V3 = (a×V1) +V2, where ‘a’
is a scalar. Using a scalar processor, it would
require 2n loads, where n is the size of the vector.
It also requires n multiplications and n additions.
The number of instructions to represent the
above would be approximately eight, considering
only one control instruction per loop (there are
four loops). Using a vector processor, there
would be two loads (each with n elements), one
multiplication and one addition. The number of
instructions to represent the above would be four.
This implies almost an n-fold reduction in
instruction memory access latency. Also, the
number of instruction fetches is half of that in
the scalar operation.
As the above operations are repeatedly
encountered in handling matrices, the vector
processor promises much better performance.

A similar work with sparse matrix-vector
operations has been reported in [7]. However, it
deals with the FPGA implementation of the
multiplication algorithm for the sparse matrix-
vector product. This paper did not encompass the
design of a complete vector processor. Work has
been reported in [8] to handle this problem using
multiple processors. However, the
communication overhead among the processors
and resources required to build such a machine
can not be ignored. Also, the approach taken to
build the multiprocessor was to use (repeatedly)
a soft IP core. Taking advantage of the sparse
nature in matrices for loading, processing and
storing vector data elements suggests a
substantial performance gain. Our approach is
mainly to exploit this aspect and to design the
vector processor from scratch. In fact, we have
designed our vector machine to handle matrix
operations, with a primary focus on LU
decomposition.

This paper discusses the architecture of our
vector machine in terms of hardware and
software. It also points out at specific

improvements to the basic architecture proposed
in [6] since our design is based on that early
architecture. Then it presents the implementation
details including the design hierarchy,
implementation steps, verification, and
implementation results. The paper also
summarizes the performance of the machine. It
concludes with direction for future research.

2 Architecture of the Vector Processor
The basic architecture is proposed in [6]. In our
case, the vector computer consists of a vector
processor and several memory modules. At
present, the vector processor fetches, decodes
and executes its own instructions. The processes
of fetching and decoding are overlapped. The
execution is sequential. One instruction is
completely executed before the next one is
started.

It contains a program memory and eight data
memory modules. The data memory modules are
Low-Order Interleaved (LOI) and their access is
pipelined. The program memory and the data
memories are High-Order Interleaved (HOI).
The processor has four 16-bit vector registers
with sixteen elements in each. The complexity of
the vector processor was kept low in this effort
because we first wanted to see the viability of
our FPGA-based approach. The processor will
be enhanced substantially in the near future. It
also contains a few scalar registers such as vector
length register and vector mask register. The
machine can handle only integer numbers at
present. Each instruction is represented by a
word (16 bits). The upper 8bits represent the op-
code. The lower 8bits represent the address of
the operand (if any). Operands are accessed
using the direct, implied and register addressing
modes. All the operations on vector data are
vector-register based.

The processor can access 128 words of
instruction memory. Each of the eight data
memory modules can have 128 words (total =
128×8 = 1024 words). The memory capacities

can be easily expanded by providing additional
address lines to the processor. However, there is
a limit imposed by the FPGA platform that we
used. The data memories are alternately accessed
in (almost) consecutive clock cycles us ing two
control lines. The memory mapping is shown in
Table 1.

Type Address
Instruction Memory 000-7FFH
Data Memory 0 800-FF0H
Data Memory 1 801-FF1H
Data Memory 2 802-FF2H
Data Memory 3 803-FF3H
Data Memory 4 804-FF4H
Data Memory 5 805-FF5H
Data Memory 6 806-FF6H
Data Memory 7 807-FF7H

Table 1: Memory Mapping of the Vector
Computer

As seen from the above table, the instruction
(program) and data memories are high order
interleaved as the MS part of the address selects
one between the two. The data memory modules
are pipelined sharing the interleaved address
space (as shown in Fig. 1). The LS three bits of
the last hexadecimal digit of the data address
selects the module. The next bit of the data
address is left unused. This means that 800H and
808H maps to the same data address, as we have
only eight data modules. This arrangement
simplifies the readability of the addresses as
shown in the above table. This implies that eight
data elements can be read from/written into the
memory with a single memory access. The data
memories are accessed implicitly in low-order
interleaved locations (in almost consecutive
cycles) but the data within individual modules
are stored in consecutive addresses. It ensures a
low access latency that is characteristic of vector
processors.

All the memory modules are connected to the
same address and data buses of the processor.
The MS hexadecimal digit of the address is
decoded to select between the program and the
(eight) data memories (they are high order

interleaved). This is evident from the address
mapping shown in the above table. The data
memories share the total data address space with
interleaving. They are activated one at a time
within an address cycle (using a control signal).
As a result, the data from Data Memory 0 is put
first on the data bus followed by the data from
Data Memory 1, Data Memory 2, and so on
(finally from Data Memory 7). However, the
processor treats them as eight separate items and
puts them in successive elements of a vector
register. Writing into the memory is similar. It is
to be noted that the processor generates only one
address for accessing eight consecutive data
elements as the memories are low order
interleaved and pipelined.
With the current design of eight data memories,
it requires two memory accesses to load
into/store from a sixteen element vector register.
In general, it would be equal to the elements of
the vector register divided by the pipelined
memory modules.

 Memory Locations
 7 6 ……. 1
 15 14 ……. 9

 7 6 ……. 1

Interleaved Memory Modules
Fig. 1: The vector computer.

3 Instruction Set Architecture (ISA)
The vector processor’s instructions can be
divided into the following groups.

Load and store instructions
Load/store instructions access vectors. Apart
from the normal (vector) load and (vector) store,
these instructions also support (vector) load and
(vector) store with an index as well as with a
stride. These instructions are particularly helpful
for sparse vector/matrix loading/storing. Each

instruction is fetched and decoded only once.
Subsequently, an entire vector can be loaded
from/stored into the memory.

When the knowledge of the nonzero elements in
a sparse vector is available, an index can be
created with the positions of the nonzero
elements. Using this index, those elements can
be accessed efficiently. The ‘indexed load’
feature provides this facility. Similarly, if the
sparse nature is regular (constant distance
between nonzero elements), the nonzero
elements could be accessed with a fixed stride.
This is supported by the ‘stride load’ feature. The
‘stride load’ feature also supports access of the
elements on a column/row in a row-order
/column-order stored matrix. The above two
features are fully consistent with the ‘scatter and
gather’ concepts for vector machines.

 0
 8

 Vector Processor

Arithmetic instructions
These instructions allow addition, subtraction
and multiplication of either two vectors or a
scalar with a vector. The operations between the
vectors are well reasoned. Addition and
subtraction of vector elements with a scalar may
be necessary when a ‘change of reference’ is
needed. Similarly, multiplication of vector
elements with a scalar may be necessary when
‘scaling’ is needed.

Comparison instructions
These instructions allow comparison of either
two vectors or a scalar with a vector. Various
types of comparisons are supported such as
‘Equal To’, ‘Greater Than’, ‘Less Than’,
‘Greater Than or Equal To’, ‘Less Than or Equal
To’, and ‘Not Equal To’. The comparison of two
vectors is needed to make a ‘relative’ decision.
The comparison of elements in a vector with a
scalar is needed to make an ‘absolute’ decision
based on a reference.
Vector pre-processing instructions
These instructions allow preparation of the
vector processor. They include loading the vector
length register, loading the vector mask register,
and creating an index vector. The vector length
register can be used to dynamically control the
size of the vector register or the number of
memory accesses. The mask register can be used
to indicate which elements in a vector register
need to be processed. It also (indirectly)
indicates the number of elements to be processed.
This number may be helpful in estimating the
processing time. All these features contribute to
further efficiency.

Our implementation contains twenty four
instructions at this time with provision for the
load/store to be pipelined or non-pipelined. The
instruction format is shown below.

Opcode (1 byte) Operand Address(1 byte)

Let us now focus on the potential enhancements
compared to [6]. The architecture [6] could be
improved by extending the role of the vector
mask register and the vector length register. The
mask register could be used to specify the
element-offsets that should be used in the
processing. This would support efficient
processing of sparse vectors. This register should
be used (when necessary) in all the Arithmetic,
Comparison and Load/Store instructions. The
vector length register could be used to
dynamically specify the length of the vector to

be processed. This also would support efficient
processing of sparse vectors with all zero
elements after a certain length. This register
should also be used (when necessary) in all the
Arithmetic, Comparison and Load/Store
instructions.These are under active consideration
for implementation.

Adding the elements of a vector register is
required often in matrix-vector multiplication.
This is not supported by the architecture [6].
Also, filling up a row (column) vector from each
partial result is a useful operation. Both
operations are not supported by the architecture
in [6]. Both, however, are included in our design.

4 Annapolis Reconfigurable Platform
Reconfigurable chips (including FPGAs) can be
programmed on the fly. They provide the
flexibility of changing and adapting an
implemented design. As a result they provide
higher efficiency in applications that need
frequent adaptations. The present state of the art
in FPGAs provides a good compromise among
cost, performance and power consumption.
FPGAs are often used to implement circuits in
consumer products. But little has been reported
in the literature about the implementation of
high-speed processors. Since current FPGAs are
characterized by significant gate densities, we
are motivated to implement the vector processor
in an FPGA. In addition to providing flexibility,
an FPGA-based platform provides the
opportunity for hardware/software co-design.
The Annapolis Micro Systems (AMS) provides
such a platform – WILDSTAR II board (Fig. 2).
It provides a hardware board containing multiple
FPGAs. The FPGAs can be programmed
according to the needs of the application. They
can communicate with the host computer. This
provides the ability to run an application on the
reconfigurable chips and read back the results for
further processing. The cycle could be repeated
with a different circuit implemented in the
reconfigurable chips running a different
application.

5 Implementation and Testing
The design is coded in behavioral VHDL. The
top level design consists of the vector processor
and memory modules (program and data). In the
next level, the vector processor is composed of a
group of components (Length register, Mask

 SRAM SRAM

 VIRTEX II
 FPGAs

 FPGA

 PCI CONTROLLER

 PCI Bus (To Host)

Fig. 2: The block diagram of the Annapolis
Micro Systems WILDSTAR II reconfigurable
board

Functional Units Scalar Registers

 Mask
Arithmetic

 Length

Comparator R0

 Internal Bus
Shift

One Counter Controller

Fig. 3: The vector processor

register, R1, F0), arithmetic unit, and comparator
unit. Please refer to Fig. 3 for the details of the
simulated version of the vector processor.

5.1 Verification and Implementation Steps
The design has been simulated at the functional
level. Every instruction has been executed and
all of them produced the desired results. The
design has been synthesized and mapped onto a
Virtex II FPGA from Xilinx. The whole process
was successful. However, there have been many
modifications in the design (that was simulated
earlier) in order to make it work in the actual
target device. All the instructions have been
tested successfully. A major modification is to
implement a ‘dual-port’ memory. This was done
to ensure compatibility with the available RAM
in the FPGA.
The target FPGA is embedded in a board that can
be accessed with high level language (HLL)
routines. These routines allow one to program
an FPGA (with the desired design file), set clock
frequency, reset design, write to and read from
the design.
The memory that works with the vector
processor is first loaded with the program and
the vector(s) using the HLL routine.

Vector
Registers

 Memory Modules

Then the design is reset. The vector processor
then processes the input vector and stores back
the resulting vector in the memory. The memory
is read back by the HLL routine to verify the
result. As the size of the programs was very short,
the results could be read back after a few seconds.

The total gate count, at present, for the
complete design (the vector processor, one
code memory and eight data memory modules)
is about 677K equivalent gates. The maximum
clock frequency used was 69MHz. However,
due to the limited use of ‘pipelining’ techniques,
some instructions execute at lower frequencies.
The number of cycles needed for each
instruction is shown in Tables 2 - 4.

5.2 Performance Summary
Cycles Per Element (CPE) is the clock cycles
needed to process one element of the vector.

Instruction CPE
Load vector 3
Store vector 2

Load vector with stride 3
Store vector with stride 3
Load vector with index 3
Store vector with index 3

 Table 2: Load/Store Instructions

Instruction CPI
Set all the bits of mask 1

Move R1 to the length register 1
Move the length register to R1 1
Move F0 to the mask register 1
Move the mask register to F0 1

Count the ‘1’s in mask 1

Table 3: Pre-processing Instructions

Instruction CPE
Add two vectors 3

Add scalar to a vector 2
Subtract two vectors 3

Subtract scalar from a vector 3
Subtract a vector from scalar 3

Multiply two vectors 3
Multiply vector with scalar 2

Compare two vectors 1
Compare vector with scalar 1

Create an index vector 2
Add the elements of C 3

Table 4: Arithmetic/Comparison Instructions

5.3 Performance Comparison
Table 5 lists the performance of the scalar and
vector processors for two different cases.
8*8 Matrix Multiplication

 Scalar

Vector

Reduction
(in %)

Instruction
Count

256 48 81.25

Cycles
Needed

10752

6552

39.06

16*16 Matrix Multiplication

 Scalar

Vector

Reduction
(in %)

Instruction
Count

1024 96 90.62

Cycles
Needed

66560 26208

60.62

Table 5: Performance Comparisons

6 Acknowledgement
This work was supported in part by the U.S.
Department of Energy under grant ER63384.

7 Future Work
The design will soon include the following
improvements:
Pipelining: More pipelining would be introduced
among the various components of the vector
processor. This would increase the execution rate.
Expansion:
-More data memory modules are to be added.
- Longer vector registers are to be implemented.
Controlled Execution: Execution of instructions
controlled by the mask and the length registers is
to be incorporated.
Comprehensive testing: A real- life application
would be used to run on the vector machine.

References:
[1] D. J. Tylavsky and A. Bose “Parallel
Processing in Power System Computation”,
IEEE Transactions on Power Systems, Vol. 7,
No. 2, May 1992.

[2] H. S. Huang and C. N. Lu “Efficient Storage
Scheme and Algorithms for W-Matrix Vector
Multiplication on Vector Computers”, IEEE

Transactions on Power Systems, Vol. 9, No. 2,
May 1994.

[3] G. P. Granelli, M. Montagna, and G. L.
Pasini “A W-Matrix Based Fast Decoupled Load
Flow for Contingency Studies on Vector
Computers”, IEEE Transactions on Power
Systems, Vol. 8, No. 3, August 1993.

[4] M. K. Enns, W. F. Tinney, and F. L.
Alvarado “Sparse Matrix Inverse Factors”, IEEE
Transactions on Power Systems, Vol. 5, No. 2,
May 1990.

[5] F. L. Alvarado, D. C. Yu, and R. Betancourt
“Partitioned Sparse A-1 Method”, IEEE
Transactions on Power Systems, Vol. 5, No. 2,
May 1990.

[6] R. M. Russel “The CRAY-1 Processor
System”, Comm. of the ACM Vol. 21, No.1,
January, 1978, 63-72.
[7] ElGindy. H and Yen-Liang Shue “On Sparse
Matrix Vector Multiplication with FPGA Based
System”, 11th Annual IEEE Symposium on Field
Programmable Custom Computing Machines,
April 2002.

[8] X. Wang and S.G. Ziavras “Parallel LU
Factorization of Sparse Matrices on FPGA-
Based Configurable Computing Engines”,
Concurrency and Computation, March 2004.

[9] J. L. Hennessy and D. A. Patterson
“Computer Architecture: A Quantitative
Approach”, (Second Edition), Morgan Kauffman
Publishers Inc., 1996.

