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We study the nonlinear propagation of electromagnetic wave [EMW]
in an isotropic charge-free antiferromagnetic medium by considering the
two-sublattice model at low energy configurations. It is found that in
the case of isotropic medium the dynamics is governed by a perturbed
MKdV equation. It is also found that the magnetic field component of
the EMW decelerates and the shape is distorted. Further the magnitude
of the magnetic field is getting damped as time progressed. The above
results are due to the interlocking of the adjacent antiparallel spins in
the antiferromagnetic medium. In the case of an anisotropic medium the
EM wave propagation is governed by the completely integrable derivative
NLS equation which possess soliton solutions.

I. Introduction

There has been increased interest in the recent times
in the study of nonlinear systems which are integrable
and show regular behavior in the form of solitons. In
this context ferromagnet with different magnetic inter-
actions are inherently nonlinear in nature. It is found
that the effect of nonlinearity in the ferromagnet with bi-
linear exchange interaction leads to localized structures
called magnetic solitons [1]. The reason for the magnetic
solitons in ferromagnetic medium is the integrable na-
ture of the Landau-Lifshitz (LL) equation governing the
spin dynamics in ferromagnet. The other class of inter-
esting integrable nonlinear system is the electromagnetic
wave (EMW) propagation in optical fibers. Hasegawa
and Tappert [2] showed theoretically that an optical pulse
in a dielectric fiber medium during propagation form an
envelope soliton due to Kerr effect in the medium which
was experimentally demonstrated by Mollenauer etal [3].
Another class of nonlinear system is the antiferromag-
netic media. Though nonlinear spin dynamics of ferro-
magnetic systems have been studied extensively [1, 4–10],
the study of antiferromagnetic spin systems is still in the
infant stage, because, unlike in ferromagnets, in the case
of antiferromagnets the adjacent spins are aligned an-
tiparallel to each other and hence the system is treated
as a two sublattice model and thus the dynamics is gov-
erned by highly nontrivial coupled nonlinear partial dif-
ferential equations. Very recently some progress has been
made in understanding the spin dynamics of the one
dimensional classical continuum isotropic antiferromag-
netic systems [11–15]. Interesting finite energy solutions
including multi-solitons have been obtained in these sys-
tems only in certain limiting cases [11]. Also, when the

adjacent antiparallel spins are locked together its dynam-
ics is identified interms of twists and other classes of spin
configurations [12–15].

In a very different context the interaction of EMW in
ferromagnetic medium has become very important espe-
cially in relation to ferrite devices at microwave frequen-
cies such as ferrite loaded wave guides [16]. This prob-
lem was extensively studied from the linear view point
by linearizing the equation describing the spin dynam-
ics in ferromagnets [17]. However, this study was not
able to explain the rich and the interesting nonlinear dy-
namics observed in the ferromagnetic resonance experi-
ments such as saturation of the main ferromagnetic res-
onances (FMR), absorption of energy in the FMR etc.
at high power levels. This was explained by several
authors by studying the exact nonlinear equation (for
details refer [18]. Also, this problem of propagation of
EMW in a ferromagnetic medium in the context of dis-
persion less propagation was studied and it was found
that the magnetic field component of the EMW is mod-
ulated in the form of solitons as it propagates in a ferro-
magnetic medium and the magnetization excitations in
the medium are governed by soliton modes [19–23]. In
this context antiferromagnetic materials are equally im-
portant as they also exhibit long range order, with the
exchange interaction leading to an antiparallel ordering
of spins in the minimum energy configuration. Hence,
the study of propagation of EMW in antiferromagnetic
medium is also equally interesting and the same can be
studied along the lines of ferromagnetic medium. This
topic of problem is found to have potential applications
in the areas of magneto optical recording, switching etc.
[24]. In the present paper, we study EMW propaga-
tion in an antiferromagnetic medium, by solving the spin



2

equation coupled with Maxwell’s equations using a re-
ductive perturbation method. In section II, we present
the mathematical model for the antiferromagnetic system
and construct the spin equation for the problem and the
Maxwell’s equations for EMW propagation. We study
EMW propagation in isotropic as well as anisotropic an-
tiferromagnetic medium using a reductive perturbation
method in section III and conclude the results in section
IV.

II. Antiferromagnetic model and EWW equation

The Heisenberg model of the effective Hamiltonian for
an anisotropic antiferromagnet with N-spins in an inho-
mogeneous and time dependent external magnetic field
H(r, t) can be written as

H =
∑

i

[−JSi · Si+1 + A(Sx
i )2 − γ̂Si ·H

]
. (1)

Here Si represents the spin angular momentum opera-
tor which in the classical limit can be replaced by three
component vectors Si = (Sx

i , Sy
i , Sz

i ) and the external
magnetic field H(r, t) = (Hx,Hy, Hz) in our problem
is infact the magnetic field component of the propagat-
ing EMW. In Eq.(1), J represents the exchange integral
which take only values less than zero, A is the anisotropy
parameter and γ̂ = gµB where g is the gyromagnetic
ratio and µB is the Bohr magneton. The dynamics of
spins can be considered from a classical point of view by
treating spin as a dynamical variable and suitable canon-
ical equations can be obtained in analogy with the spin-
less nonrelativistic particle. Therefore, for the given spin
Hamiltonian, we can write down the classical equations
of motion for the spin vectors Sa,i and Sb,i−1 in the con-
tinuum limit as

∂Sa(r, t)
∂t

= Sa ∧ [2J(Sb + λ · ∇Sb

− 2ASx
an + γ̂H] , (2)

∂Sb([r− λ], t)
∂t

= Sb ∧ [2J(Sa − λ · ∇Sa

+ 2ASx
b n + γ̂H] , (3)

Sa = (Sx
a , Sy

a , Sz
a),Sb = (Sx

b , Sy
b , Sz

b ),Sa
2 = 1 = Sb

2.

While writing the equations of motion (II) for the two
sublattices, we have considered the positive and negative
x directions as the easy axes of magnetization for the
sublattices a and b respectively. Eqs.(II) in the classical
continuum limit describe the spin dynamics in the a and
b sublattices of the anisotropic antiferromagnet in the
presence of an external inhomogeneous and time depen-
dent magnetic field which in our problem is the magnetic
field component of the propagating EMW. Eqs.(II) are
analogous to the Landau-Lifshitz equation in ferromag-
nets [25]. Now adding and subtracting Eqs.(2) and (3)

and defining two unit vectors M and M′ which we call as
the staggered and total magnetization vectors in the form

[12–14] M = (1−ρ2)
−1
2

2S (Sa − Sb), M′ = 1
2Sρ (Sa + Sb),

where M = (Mx,My,Mz) and M′ = (M ′x,M ′y,M ′z),
M ·M′ = 0 and ρ2 = 1

2 (1 + Sa·Sb

S2 ), we obtain

∂M
∂t

= 4JSρ(M ∧M′) +
2JλSρ2

(
√

1− ρ2)
(M′ ∧ ∂M′

∂x
)

−2JSλ
√

1− ρ2(M ∧ ∂M
∂x

) + γ̂(M ∧H)

− 2AS√
1− ρ2

[
(1− ρ2)MxM + ρ2M ′xM′] ∧ n,(4)

∂M′

∂t
= 2JSλ

{√
1− ρ2

∂

∂x
(M ∧M′)

}
+ γ̂(M′ ∧H)

−2AS
√

1− ρ2(MxM′ + M ′xM) ∧ n. (5)

On substituting M and M′ in Eqs.(II) and assuming
that the low energy configurations correspond to |Sa −
Sb| ≈ 2S and |Sa + Sb| ≈ 0, when ρ ¿ 1, after suitable
rescaling and redefinition of parameters, the dynamics is
dominated by the equation

∂M
∂t

= M ∧ {γ̂H− Jλ∇M− 2AMxn)} , (6)

The above equation represents the dynamics of magne-
tization in a classical continuum Heisenberg anisotropic
antiferromagnetic medium in the presence of an inho-
mogeneous time dependent external magnetic field when
the adjacent antiparallel spins are locked together. The
isotropic limit of Eqs.(II) in the absence of any external
field has been solved and twist-like excitations have been
found [13–15]

The dynamics of electromagnetic field in a material
medium is described by Maxwell’s equations which in the
absence of stationary and moving charges can be written
as [26]

∇ ·E = 0, ∇ ·B = 0, (7)

∇∧E = −∂B
∂t

, ∇∧H = ε0
∂E
∂t

. (8)

Here the fields H(r, t) = (Hx,Hy,Hz), B(r, t) =
(Bx, By, Bz) and E(r, t) = (Ex, Ey, Ez) have the usual
meaning of the magnetic field, magnetic induction and
electric field respectively and ε0 is the dielectric con-
stant of the medium. The above three field in anti-
ferromagnetic medium is connected by the relation [26]
B = µ0 [H + M], where µ0 is the permeability of the
medium. Now, taking curl on both sides of the second
of Eq.(8) and using the first of (8) and the relation con-
necting H,B and M and after little algebra we obtain

∂2

∂t2
[H + M] = c2

[∇2H−∇(∇.H)
]
. (9)

Here c = 1√
µ0ε0

is the velocity of propagation of the
EMW in the antiferromagnetic medium. Eq.(9) describes
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the propagation of EMW in antiferromagnetic medium.
Thus, the set of coupled equations (6) and (9) completely
describe the propagation of EMW in an anisotropic an-
tiferromagnetic medium when the adjacent antiparallel
spins are locked under low energy configurations.

III. EMW in antiferromagnetic medium

In order to find the nature of propagation of EMW
in the antiferromagnetic medium, we now have to solve
the set of coupled equations (6) and (9). However, the
nonlinear character of Eq.(6) makes the problem of solv-
ing them difficult and therefore we restrict ourselves to
one dimension. We are interested in finding soliton so-
lutions to these equations so that one can have lossless
propagation of EMW in the medium in the form of elec-
tromagnetic solitons. Infact, we are going to study the
nonlinear modulation of the slowly varying EM plane
wave of small but finite amplitude in the antiferromag-
netic medium into soliton using a reductive perturbation
method developed by Tanuiti and Yajima [27]. Very re-
cently, the reductive perturbation method has been suc-
cessfully used to study the electromagnetic soliton prop-
agation in different ferromagnetic media by the present
authors and also by few others [19–23]. Experience sug-
gests that the magnetization and the magnetic fields have
to be expanded uniformly and nonuniformly respectively
in the case of isotropic and anisotropic media. Also an ex-
amination of the dispersion relation for the plane EMW
propagation suggests us to introduce different coordinate
stretchings in the case of isotropic and anisotropic media.
This has made us to treat the propagation of EMW in
isotropic and anisotropic media separately.

A. Isotropic medium

We first consider the propagation of EMW in an
isotropic antiferromagnetic medium and therefore try to
solve the set of coupled equations (6) and (9) in one di-
mension in the isotropic limit by setting A = 0. We
expand the magnetization and the magnetic field about
an undisturbed uniform state specified by M0 and H0 as

M = M0 + εM1 + ε2M2..., (10)
H = H0 + εH1 + ε2H2.... (11)

Without loss of generality we assume that the one di-
mensional plane waves propagate along the x-direction
and therefore assume that H and M can be treated as
functions of (x − vt) alone where v is the speed of the
wave. We also introduce slow variables to separate the
system into rapidly varying and slowly varying parts by
stretching the time and the newly introduced wave vari-
able as τ = ε3t and ξ = ε(x − vt), where ε is a small
parameter. Also we make the lattice spacing to be very

small by rescaling λ = ελ and λx = λy = λz = λ. We now
substitute Eqs.(III A) and use the newly introduced slow
variables in the one dimensional (say x) component equa-
tions of (6) and (9) and collect the coefficients of different
powers of ε, and solve the resultant equations. On solv-
ing the equations at O(ε0), we obtain Hx

0 = −Mx
0 = 0,

Hy
0 = kMy

0 , Hz
0 = kMz

0 , where k = v2

c2−v2 . Similarly on
solving the equations at O(ε1), after using the solutions
at O(ε0) we obtain Hx

1 = −Mx
1 ,Hy

1 = kMy
1 ,Hz

1 = kMz
1 ,

and

∂My
0

∂ξ
= σMz

0 Mx
1 , (12)

∂Mz
0

∂ξ
= −σMy

0 Mx
1 . (13)

Here σ = (1+k)
v . Finally, at O(ε2), we obtain

Hx
2 = −Mx

2 , (14)
∂

∂ξ
[Hy

2 − kMy
2 ] = −∂My

0

∂τ
, (15)

∂

∂ξ
[Hz

2 − kMz
2 ] = −∂Mz

0

∂τ
(16)

and

−v
∂Mx

1

∂ξ
= Jλ

[
Mz

0

∂My
0

∂ξ
−My

0

∂Mz
0

∂ξ

]

+ [My
0 (Hz

2 − kMz
2 )−Mz

0 (Hy
2 − kMy

2 )] , (17)
∂My

1

∂ξ
= σ [Mz

0 Mx
2 + Mz

1 Mx
1 ] , (18)

−∂Mz
1

∂ξ
= σ [My

0 Mx
2 + My

1 Mx
1 ] . (19)

While writing equations (III A), we have used the results
of the previous orders of perturbation.

To proceed further we assume that the EMW is prop-
agating obliquely at an angle θ with reference to the uni-
form fields in the medium. Hence we represent the un-
perturbed uniform magnetization M0 in terms of polar
coordinates in a unit sphere. As the magnetization M0

is restricted to (y-z)-plane in the lowest order of pertur-
bation (i.e.Mx

0 = 0), we can choose the azimuthal angle
φ as π

2 so that M0 is represented by

M0 = (0, sin θ(ξ), cos θ(ξ)). (20)

In view of this, Eq.(12) can be rewritten as

Mx
1 = − 1

σ

∂θ

∂ξ
. (21)

which on using in Eq.(17) gives

−α
∂2θ

∂ξ2
= β

∂θ

∂ξ
+ cos θ

∂

∂τ

∫ ξ

−∞
sin θdξ′

− sin θ
∂

∂τ

∫ ξ

−∞
cos θdξ′. (22)
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FIG. 1: Evolution of Mx
1 for η = 0.01, α = 0.1 and σ = −2.

Here α = v
σ and β = Jλ. While writing Eq.(22) we have

rescaled τ → σ
2k τ . After differentiating Eq.(22) twice and

using the results of the previous steps and integrating
with respect to ξ and after many lengthy calculations,
we obtain the following perturbed modified Korteweg-
de-Vries (PMKDV) equation

∂f

∂τ
+

3
2
αf2 ∂f

∂ξ
+α

∂3f

∂ξ3
= −β

[
∂2f

∂ξ2
+

∂

∂ξ

(
f

∫ ξ

−∞
f2dξ

)]
,

(23)
where f = ∂θ

∂ξ . It may be noted that when J = 0,(then
β = 0) the right hand side of Eq.(23) vanishes thus re-
ducing to the well known completely integrable modified
Korteweg-de-Vries (MKDV) equation for which the N-
soliton solutions have been found using the Inverse Scat-
tering Transform (IST) method [28]. For instance, the
one-soliton solution of the MKDV equation is written as
[28].

f = 2
√

η

α
sech

[√
η

α
(ξ − ητ)

]
, (24)

where η is a real constant. Knowing f , θ can be straight
away calculated and further the components of magne-
tization M can be obtained from the Eqs.(20) and (21).
Knowing M the magnetic field H can be evaluated and
hence the magnetic induction B can be obtained from the
linear relation connecting H, B and M. For instance, the
x-component of magnetization at the O(ε) is given by

Mx
1 =

−2
σ

√
η

α
sech

[√
η

α
(ξ − ητ)

]
. (25)

Fig.(2) shows the evolution of Mx
1 for σ = −2, η = 0.01

and α = 0.1 when J = β = 0. This implies that when the
Zeeman energy dominates over the exchange energy (i.e.
when J ¿ 1 of the antiferromagnetic medium that nor-
mally happens at microwave frequency the magnetic field

component of the EMW on interacting with the magne-
tization of the medium, generates excitation of magne-
tization in the form of soliton(EM spin soliton) in the
medium and also the plane EMW is modulated in the
form of soliton (EM soliton).

In the general case when J 6= 0 (β 6= 0), then we
have the full PMKDV equation (23) which on solving will
bring out the effect of perturbation due to spin-spin ex-
change interaction on the soliton during evolution. This
can be done using a soliton perturbation theory [22, 29]
based on the IST theory. The results show that a small
structural difference will lead to slow variation of soli-
ton parameters and distortion of the soliton shape. The
one soliton solution of Eq.(23) under perturbation can be
written in the form [22]

f = 2g0(τ) [sech(u)−W (u, τ)] , (26)

where u = 2g0(τ) [ξ − φ0(τ)] and the parameters g0(τ)
and φ0(τ) are found from the relations

dg0

dτ
=

1
2

∫ ∞

−∞
R

du

coshu
, (27)

and

dφ0

dτ
= 4g2

0 +
1

4g2
0

∫ ∞

−∞
R

udu

coshu
. (28)

Here R stands for the right hand side of Eq.(23). The
correction to the soliton namely W (u, τ) is determined
from a cumbersome expression which has the asymptotic
forms

W =
1

32g4
0

u2 exp (−u)
∫ ∞

−∞
R

du

coshu
, u →∞, (29)

W =
1

32g4
0

2σ′u
∫ ∞

−∞
Rdu, u → −∞, . (30)

where 1
σ′ = 8

∫
g2
0dτ .

On evaluating the integrals in Eqs.(27) and (28) the
velocity v′(τ) = dφ0

dτ of the soliton is found to evolve as

v′(τ) = v′(0)
[
1 +

4
3
βτv′(0)

]−1

, (31)

where v′(0) is the initial velocity of the soliton. From
Eq.(31) we observe that the soliton is getting decelerated,
and as an illustration we have shown the deceleration of
Mx

1 for v′(0) = 1 and β = 3
4 in Fig(3). Eqs.(III A) give

the variation of soliton shape by the asymptotic relations
W = (−β

6g0
)u2 exp (−u) as u →∞ and W = −βπ

2g0
exp (σ′u)

as u → −∞. Again, knowing f from Eq.(26), the value
of θ can be found using the relation f = ∂θ

∂ξ and then the
magnetization of the medium and consequently the mag-
netic induction and the magnetic field component of the
EMW can also be computed as done in the unperturbed
case. For example the value Mx

1 when (J 6= 0) is given
by

Mx
1 =

−2
σ

g0(τ) [sech(u)−W (u, τ)] , (32)

Here u, g0 and W takes the form as given below Eq.(22).
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FIG. 2: Deceleration of Mx
1 for v′(0) = 1 and β = 3
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B. Anisotropic Medium

Now, we study the propagation of EMW in the
anisotropic antiferromagnetic medium by solving the full
(A 6= 0) one dimensional version of the coupled equations
(6) and (9). The anisotropic character of the medium
suggests us to make a nonuniform expansion of the mag-
netization M and magnetic field H. Since, the easy axis
of magnetization of the anisotropic medium lies parallel
to the direction of propagation (x-direction), we assume
that at the lowest order of expansion the magnetization
of the medium and the magnetic field lie parallel to the
anisotropic axis and turn around to the y − z plane at
higher orders.

Mx = M0 + εMx
1 + ε2Mx

2 + ..., (33)

Mα = ε
1
2 [Mα

1 + εMα
2 + ...] , (34)

and
Hx = H0 + εHx

1 + ε2Hx
2 + ..., (35)

Hα = ε
1
2 [Hα

1 + εHα
2 + ...] , . (36)

where α= y, z and ε is the same perturbation parame-
ter used in the isotropic limit. Also the magnetic field is
expanded in the same way. It may be noted that along
the direction of propagation of the EMW (i.e.) along x-
direction the magnetization and the magnetic field have
been expanded about uniform values M0 and H0 respec-
tively. Before carrying out the analysis, for consider-
ing the slowly varying part of the EMW we introduce
the slow variables ξ = (x − vt) and τ = ε2t, based on
the nonuniform expansion which are different from the
isotropic case.

We now substitute the expansions of M and H as
given in Eqs.(III B) in the component form of the one
dimensional version of Eqs.(6) and (9) and collect the
terms proportional to different powers of ε. On solving

the resultant equations at O(ε0), we obtain the relation
H0 = −M0,H

α
1 = kMα

1 , where k ≡ (H0/M0) = v2

c2−v2 .
At O(ε1), after using the results at O(ε0) we finally ob-
tain Hx

1 = −Mx
1 and also

∂

∂ξ
[Hα

2 − kMα
2 ] = −

(
∂Hα

1

∂τ

)
, (37)

∂Mx
1

∂ξ
=
−Jλ

v

[
Mz

1

∂My
1

∂ξ
−My

1

∂Mz
1

∂ξ

]

+
1
v

[
My

1

∫ ξ

−∞

∂Mz
1

∂τ
dξ′ −Mz

1

∫ ξ

−∞

∂My
1

∂τ
dξ′

]
,(38)

∂My
1

∂ξ
=
−JλM0

v

∂Mz
1

∂ξ
+ σMx

1 Mz
1

+
AM0

v
Mz

1 −
M0

v

∫ ξ

−∞

∂Mz
1

∂τ
dξ′, (39)

∂Mz
1

∂ξ
=

JλM0

v

∂2My
1

∂ξ2
− σMx

1 My
1 −

AM0

v
My

1

+
M0

v

∫ ξ

−∞

∂My
1

∂τ
dξ′. (40)

Here we have rescaled τ → τ
2k . In order to identify

the above set of equations with more standard nonlinear
partial differential equations, we define

ψ = (My
1 − iMz

1 ), | ψ |2 = Mx
1 . (41)

The above definitions suggest that Mx
1 = My

1
2 + Mz

1
2,

which is in accordance with the nonuniform expansion we
have made for the magnetization of the medium. After a
single differentiation of Eqs.(39) and (40) and using the
transformation X = ξ + Aτ , the resultant equations can
be combined together and after some simple algebra we
finally obtain

iψτ + ψXX + iα′[| ψ |2ψ]X = 0, (42)

where α′ = −σv
M0
√

v
M0

+iJλ
and X is rescaled as

−1√
v

M0
+iJa

X. Here the suffices X and τ represent par-

tial derivatives. It may be verified that on using the
definitions (41), Eq.(38) can also be rewritten in the
form of Eq.(42). From Eq.(42), it can be observed that
even if the lattice parameter is made smaller by writing
λ → ελ, the magnetization shows the same dynamics ex-
cept for a change in the coefficient of the nonlinear term.
Thus, Eq.(42) represents the dynamics of magnetization
in an anisotropic antiferromagnetic medium at the first
order of expansion when the EMW propagates through it.
Eq.(42) is the well known completely integrable deriva-
tive nonlinear Schrödinger (DNLS) equation. The DNLS
equation has been solved by Kaup and Newell [30] us-
ing IST and also solved by Liu etal using Hirota’s bi-
linearisation procedure [31] and N-soliton solutions were
obtained. For instance the one soliton solution can be
written as

ψ = Psech(ζ + A0)tanh(ζ + A0). (43)
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FIG. 3: Evolution of Mx
1 for Ω1R = 0.08, Ω1I = 0.003, η1R =

0.02 and α = 0.1

where ζ = Ω1R(Ω1RX + τ) + η
(0)
1R , Ω1 = Ω1R + iΩ1I ,

is a complex constant where Ω1R is the real part and
Ω1I is the imaginary part of Ω1 respectively, and η

(0)
1R is

the real part of the complex constant η1 associated with
the soliton. P = exp[iΩ1I(Ω1Iτ + X) + A] and A0 =
η
(0)
1R + A, A = 1

2 ln( iα′Ω1
8Ω2

1R
). Using Eq.(43) in Eqs.(42) we

can find the components of magnetization of the medium
at O(ε1). For example the magnetization component Mx

1

is given as

Mx
1 = sech2(ζ + A0)tanh2(ζ + A0). (44)

Here ζ takes the form as given below Eq.(43). Fig.(6)
represents the evolution of Mx

1 for the values of Ω1R =
0.08, Ω1I = 0.003, η1R = 0.02 and α = 0.1. Knowing
the magnetization, the magnetic field components of the
EMW can be written down straight away.

IV. Conclusions

In this paper, we studied the propagation of EMW
in an isotropic charge-free antiferromagnetic medium by
treating the system as a two-sublattice model. This prob-
lem is analyzed using an uniform perturbation analysis
by stretching the space and time variables and perturbing
the fields. It is found that the dynamics of the magnetic
field component of the EMW and the magnetization ex-
citations are governed by perturbed modified KdV equa-
tion. This shows that as the magnetic field component
of the EMW interacts with the magnetization of the an-
tiferromagnetic medium, it is modulated in the form of
soliton and as it further propagates in the medium the
amplitude of the soliton decreases and gets damped. Fur-
ther, the velocity of the soliton also decreases. It is also
found that the shape of the soliton is also distorted. The

magnetization excitations due to the interaction of the
magnetic field component of the EMW is found have the
similar excitations. Though the spin dynamics of this
isotropic antiferromagnetic system is found to have soli-
ton excitations as its isotropic ferromagnetic counterpart,
the results of the EMW propagation in this medium is
not similar to that in isotropic ferromagnetic medium,
where the magnetic field component of the EMW and
the magnetization of the medium are modulated in the
form of solitons, This change in the dynamics of the elec-
tromagnetic field and the magnetization of the medium is
attributed to the interlocking of the adjacent antiparallel
spins in the two-sublattice of the antiferromagnet.
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