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Abstract: A novel approach is presented for approximating real continuous functions of many 
variables using a two-stage neural network technique. In the first stage, a group of Support Vector 
Machines (SVMs) is involved in approximating the function based on different methods for selecting 
and transforming the input variables. In the second stage, an SVM is employed to combine the function 
approximation decisions of the previous stage’s group of SVMs. Different kinds of Artificial Neural 
Networks are used at this stage, including SVM, Multilayer Perceptron (MLP) and Perceptron. Their 
performance is compared with simple averaging and other statistical methods for combining the 
outputs of many regressors. The proposed methodology is applied to the design of a neural-adaptive 
controller which combines the two-stage neural network model with a servo PD feedback controller. 
The different feature extraction methods involved in this case include the Fourier as well as the 
Wavelet transform of the input variables, which are samples belonging in the mappings of position, 
velocity and acceleration as functions of time. 
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I. ISSUES ON CONTROL OF ROBOTIC 
MANIPULATORS 

 
 Robot manipulators have become increasingly important in the field of flexible 

automation. High speed and high precision trajectory tracking are indispensable 
capabilities for versatile applications of manipulators.  

 
 It is very common that manipulators are subject to structured and/or  unstructured 

uncertainties. Structured uncertainty is characterised by having a correct 
dynamical model but with parameter uncertainty due to imprecision of the 
manipulator link properties, unknown loads, inaccuracies in the torque constants 
of the actuators, and so on. Unstructured uncertainty is characterised by 
unmodelled dynamics. 

 
 Although conventional adaptive controllers are effective in compensating for the 

influence of structured uncertainty, it is not clear that adaptive means alone can 
overcome the effects of unstructured uncertainty.  

 
 Multiple Layer Perceptrons (MLPs)  have been used for the construction of Neural 

- Adaptive Controllers to  cope with both types of uncertainty  

 
II. WHY TO USE NEURAL NETWORKS 

 
 The design of current industrial robots, is based on simple joint servo-mechanisms 

assigned to the different joints of the arm. This results in reduced servo-response 
speed, thus limiting the precision and the accuracy of the end effector and 
producing sub-optima performance. The increasingly sophisticated tasks required 
of robot manipulators have called for better control techniques to enhance high-
speed tracking accuracy whilst operating in uncertain enviroments.  

 
 Many control schemes have been developed to overcome this problem. However, 

the performance of all these methods is highly dependent on the accurate 
modeling of robot dynamics. 

 
 The advantage of a neural adaptive control technique for robot manipulators is 

that it avoids this a priori modeling problem. The control technique is generic in 
the sense that the controller parameters are not dependent on any parameter 
estimation, as opposed to many conventional adaptive control methods. 
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III. THE COMPUTED TORQUE MODEL 
 
A very convenient starting point for the development of an ANN controller is the 
computed-torque algorithm. The computed torque method is a well established robot 
control technique which takes account of the dynamic coupling between the robot 
links. Its main disadvantage is the assumption of an exactly known dynamic model, 
which is not realisable in practice. However, the basic algorithm remains important, as 
it forms the basis of various adaptive and neural controllers which have been 
developed to overcome the requirement for an exactly known dynamic model. 
 

In this model the robotic manipulator is consisted of n connected rigid bodies. 
The first end is fixed in its base while the last end is assumed to be free. These rigid 
links are connected through revolute or prismatic joints, a mechanical torque is 
applied on each joint. The dynamic Euler-Lagrange equation of the robotic 
manipulator is given by 
 
M(q)q V(q, q) F (q) F (q) G(q) ô ôv d d&& & & &+ + + + + =  (1) 

Or equivalently 
 

M(q)q N(q, q) ô ôd&& &+ + =  (2) 

 
where q(t) ∈  Rn is the joint variable. 
 

V(q, q)&  (nx1) representing the effects of Centipetal and 
Coriolis.  

M(q) (nxn)  Inertia matrix 
Fv( &q),Fd( &q) (nx1) friction vectors  

G(q) (nx1) gravity vector 
q, &q, &&q  (nx1) vectors containing the position, velocity 

and acceleration joint variables 
τ(t), τd(t) (nx1) vectors of torque (input) and disturbance 
Ν(q, &q) (nx1) vector of containing all of the nonlinear 

terms. 
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Inner and Outer Loop Design 
 
Performing feedback linearization via the use of an appropriate control input function 
u produces a linear system with respect to the joint variable tracking error and 
decomposes the problem in an inner and an outer loop design problems 
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Figure 1.  Computed torque control scheme, showing inner and outer loops 
 
For example if 
 

u q M (N ô1= + −−&& )d  (3) 
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Where  
w M ô1 d= −  (6) 
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PID outer Loop Design 
 
A very common procedure is to use a PD or PID Outer Loop design. In these cases 
the control function u produced by the outer loop takes the form 
 

u K e K ev p= − −&  or εKeKeKu pv i++= &  (7) 

 
The computed torque control scheme is depicted by the following figure 
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Figure 2. PΙD Computed torque control. 
 
In the PD controller the overall robot arm input becomes 
 

ô M q q K e K e N q,qv p= + + +( )(&& & ) ( & )d  (8) 

 
&& &e K e K e wv p+ + = , where w M ô1 d= −  (9) 

 
Or in a state space form 
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IV. THE FEEDBACK-ERROR-LEARNING 
METHOD 

 
The method was first proposed by Kawato and co-workers (1987). The basic idea is to 
combine an already available and tuned conventional feedback controller with an 
ANN acting as the feed-forward controller. 
 

 The feedback controller should at least be good enough to stabilize the plant when 
used alone, but it does not need to be optimally tuned. For simplicity such a 
feedback controller is normally a PID controller. 

 
 The aim is to adapt the ANN in order to minimize the tracking error e  defined as 

the difference between a reference signal and the measured output (usually a 
subset of the state vector). 

 
 It was proposed that the output of the feedback controller is used as the ANN 

output error and therefore it was called the Feedback-Error-Learning method. 
 

 Using the feedback error signal as the ANN output error the problem of back-
propagating the control error through the plant (or through the model of the pant), 
used in earlier ANN control techniques, is avoided. 

 
 Before being trained, the ANN is initialized such that its output is zero for any 

input. Hopefully, as the ANN is being trained, it will smoothly take over control 
from the feedback controller and at the same time improve the overall control 
performance. In this way the ANN is being trained to be the inverse dynamical 
model of the plant. 
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In the above scheme Kawato proposed composing the ANN input by using, at each 
time step, the desired angle joints and their respective desired velocities and desired 
accelerations. 
 
Since in order to learn the true inverse dynamical model of the plant it is necessary to 
associate the vector [ ]T

k
T

k xx )()( 1+  to Tk, the implicit assumption of the feedback-
error learning method is that the feedback controller is adequate so that, when used 
alone to control the plant, the plant approximately follows the correct trajectory, i.e. 
[ ] [ ]T

k
T

k
Td

k
Td

k xxxx )()()()( 11 ++ ≈ . Therefore one can state that the role of the 
feedback controller is to provide an approximate solution for the problem. Because of 
this, when used within such a control structure, the ANN tends to be trained more 
rapidly than in other situations. 
 
When trained this scheme is adequate for a specific trajectory. More training is 
demanded when a new trajectory is to be followed. 
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V. INVERSE DYNAMIC MODEL 
APPROXIMATION AND PARAMETER 

ADAPTATION AT THE SAME TIME 
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Neuro-controller based computed torque architecture 

 
In this scheme  ([Morris, Zalzala 1996], the ANN performs on-line approximation of  
the inverse dynamics of the manipulator and at the same time there is an adaptive 
element that estimates the true values of the unknown system parameters. 
 

 It requires an on-line ANN training algorithm.  Approaches taken from least 
squares filtering are proposed for weight adaptation. 

 This requires that the output of the ANNs have to be linearized. 
 The parameter adaptation mechanism (in order to be feasible) relies on its 

linearization around a nominal trajectory.  This corresponds to a condition where 
the system operates in the vicinity of the desired trajectories and the ANN 
parameters are close to their desired values. 

 
 

VI. DRAWBACKS OF CURRENT NEURO-
CONTROLLER METHODOLOGIES IN THE 

COMPUTED-TORQUE ALGORITHM 
 
MLPs and RBFs are universal function approximators It is practically, however, not 

easy to train them to approximate the arbitrarily complex continuous functions met 

due to the uncertainties in control tasks, since 
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 the lack of universally efficient learning algorithms results in poor  approximation 

performance.  

 

 starting from a random initial point in the weight space, the path to the global 

minimum is often strewn with many local minima (especially for MLPs), 

imposing an oscillatory convergence for the weight update algorithm and 

therefore, results in a very slow learning process.  

 

VII. THE PROPOSED METHOD 

PRINCIPLES 
 Improvement of ANN function approximation capabilities by combining different 

function approximation methodologies, based on different approximation features. 

 A two stage methodology should be involved 

 In the first stage, a group of Support Vector Machines (SVMs) is involved in 

approximating the function based on different methods for selecting and 

transforming the input variables 

 In the second stage, an SVM is employed to combine the function 

approximation decisions of the previous stage's group of SVMs. 

 The different feature extraction methods involved in this case include the raw 

input variables, their Fourier as well as their Wavelet transform. The input 

variables, are samples belonging in the mappings of position, velocity and 

acceleration as functions of time.  

 We call these different feature extraction methods for function approximation as 

FTM [Feature Transformation Methods] 
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VIII. THE PROPOSED TWO-STAGE 

METHODOLOGY USING COMBINATION 

OF SVMs 
 

 With the SVMs, the task of nonlinear regression could be defined as follows: Let 

f(X) be a m-D scalar valued function to be approximated. Then, a suitable 

regression model to be considered is: D = f(X) + n, where X is the input vector, n 

is the noise. Given, the training sample set {(Xi, Di)} (i=1,..,N) then, the SVM 

training is the optimization problem: Find the Lagrange Multipliers {λi} (i=1, 

..,N) and {λ’i} (i=1, ..,N) that maximize the objective function, Q(λi , λ’i) = Σι=1..Ν 

Di (λi - λ’i) – e Σι=1..Ν (λi + λ’i) – ½ Σι=1..Ν Σj=1..Ν (λi - λ’i) (λj - λ’j) K(Xi, Xj)  subject 

to the constraints: Σi=1..Ν (λi - λ’i) =0 and 0<= λi <=C, 0<= λ’i<=C for i=1..N, 

where C a user defined constant. K(Xi, Xj) are the kernel functions, in our case the 

radial basis kernel K(X, Xj) = exp(-1/2σ2 || X - Xj||2).  =>  => F(X) = Σi=1..Ν (λi - 

λ’i) K(X, Xi) 
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Figure 1. The schematic architecture of the two-stage function 
approximation system. 

 
 The ANN controller inputs are the sampled trajectories of the actual position, 

velocity and desired acceleration up to time instance t. Desired output: N(t) = 

T(true)(t)-T(false-PD estimation)(t). This comprises FTM 1. 

 FTM 2 comprises the DFT transform of the sample trajectories 

 FTM 3 comprises the DWT [Daubechies Basis] transform of the sample 

trajectories 

 FTM 4 comprises the DWT [Coifflet Basis] transform of the sample trajectories 
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IX. SIMULATIONS 
 
1) A two-link planar elbow arm was used. The manipulator was modeled as a two 

rigid links of lengths l1 = 1m and l2 = 1m, point masses m1 =0.8kg and m2 = 2.3kg 

corresponding to the false PD model. True masses varied within the 10% interval 

of these values. 12 variations were considered for each such link mass. A fourth 

order Runge-Kutta algorithm, step size h= 0.01, has been invoked. 

2)  The desired position trajectory has the components 

)/2sin(11 Ttg πθ =  and )/2sin(22 Ttg πθ =   

      with period T = 2s and amplitudes gi = 0.1 rad. The time constant      of the closed-

loop system was selected as 0.1s.  

 

3) For every one of the 144 total pair masses variations the curves of desired 

acceleration, actual trajectory and actual velocity along with the associated torque 

N to be modelled are obtained. Each such curve has been sampled into 30 points, 

from which, using sliding windows of length lw, we have formed training and test 

patterns for the ANN as follows.  

4) Each ANN input pattern contains lw points for the desired acceleration, the 

corresponding lw points for the actual trajectory and finally, the lw corresponding 

points for the actual velocity. The desired output value is the associated torque N 

of the lw -th sample. In our simulations lw = 6 and we have used 2000 patterns for 

ANN training and the rest 1600 patterns for testing. 

5) The method was tested on a model where the false masses were assumed to be 

10% lower than the true values (i.e the maximum deviation considered here). The 

figures show the trajectory errors for the two joints, when a correction torque, 

provided by the corresponding approximation approach, is added at the torque 

given by the PD controller. 
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