

A combined SVM regression
methodology for modelling robotic

manipulators inverse dynamics

D. A. Karras*

*Hellenic Aerospace Industry, Hellenic Open University and Chalkis Institute of
Technology Dept. Automation, Rodu 2, Ano Iliupolis, 16342 Athens, Hellas,

Abstract: A novel approach is presented for approximating real continuous functions of many
variables using a two-stage neural network technique. In the first stage, a group of Support Vector
Machines (SVMs) is involved in approximating the function based on different methods for selecting
and transforming the input variables. In the second stage, an SVM is employed to combine the function
approximation decisions of the previous stage’s group of SVMs. Different kinds of Artificial Neural
Networks are used at this stage, including SVM, Multilayer Perceptron (MLP) and Perceptron. Their
performance is compared with simple averaging and other statistical methods for combining the
outputs of many regressors. The proposed methodology is applied to the design of a neural-adaptive
controller which combines the two-stage neural network model with a servo PD feedback controller.
The different feature extraction methods involved in this case include the Fourier as well as the
Wavelet transform of the input variables, which are samples belonging in the mappings of position,
velocity and acceleration as functions of time.

 1

I. ISSUES ON CONTROL OF ROBOTIC
MANIPULATORS

 Robot manipulators have become increasingly important in the field of flexible

automation. High speed and high precision trajectory tracking are indispensable
capabilities for versatile applications of manipulators.

 It is very common that manipulators are subject to structured and/or unstructured

uncertainties. Structured uncertainty is characterised by having a correct
dynamical model but with parameter uncertainty due to imprecision of the
manipulator link properties, unknown loads, inaccuracies in the torque constants
of the actuators, and so on. Unstructured uncertainty is characterised by
unmodelled dynamics.

 Although conventional adaptive controllers are effective in compensating for the

influence of structured uncertainty, it is not clear that adaptive means alone can
overcome the effects of unstructured uncertainty.

 Multiple Layer Perceptrons (MLPs) have been used for the construction of Neural

- Adaptive Controllers to cope with both types of uncertainty

II. WHY TO USE NEURAL NETWORKS

 The design of current industrial robots, is based on simple joint servo-mechanisms

assigned to the different joints of the arm. This results in reduced servo-response
speed, thus limiting the precision and the accuracy of the end effector and
producing sub-optima performance. The increasingly sophisticated tasks required
of robot manipulators have called for better control techniques to enhance high-
speed tracking accuracy whilst operating in uncertain enviroments.

 Many control schemes have been developed to overcome this problem. However,

the performance of all these methods is highly dependent on the accurate
modeling of robot dynamics.

 The advantage of a neural adaptive control technique for robot manipulators is

that it avoids this a priori modeling problem. The control technique is generic in
the sense that the controller parameters are not dependent on any parameter
estimation, as opposed to many conventional adaptive control methods.

 2

III. THE COMPUTED TORQUE MODEL

A very convenient starting point for the development of an ANN controller is the
computed-torque algorithm. The computed torque method is a well established robot
control technique which takes account of the dynamic coupling between the robot
links. Its main disadvantage is the assumption of an exactly known dynamic model,
which is not realisable in practice. However, the basic algorithm remains important, as
it forms the basis of various adaptive and neural controllers which have been
developed to overcome the requirement for an exactly known dynamic model.

In this model the robotic manipulator is consisted of n connected rigid bodies.
The first end is fixed in its base while the last end is assumed to be free. These rigid
links are connected through revolute or prismatic joints, a mechanical torque is
applied on each joint. The dynamic Euler-Lagrange equation of the robotic
manipulator is given by

M(q)q V(q, q) F (q) F (q) G(q) ô ôv d d&& & & &+ + + + + = (1)

Or equivalently

M(q)q N(q, q) ô ôd&& &+ + = (2)

where q(t) ∈ Rn is the joint variable.

V(q, q)& (nx1) representing the effects of Centipetal and
Coriolis.

M(q) (nxn) Inertia matrix
Fv(&q),Fd(&q) (nx1) friction vectors

G(q) (nx1) gravity vector
q, &q, &&q (nx1) vectors containing the position, velocity

and acceleration joint variables
τ(t), τd(t) (nx1) vectors of torque (input) and disturbance
Ν(q, &q) (nx1) vector of containing all of the nonlinear

terms.

 3

Inner and Outer Loop Design

Performing feedback linearization via the use of an appropriate control input function
u produces a linear system with respect to the joint variable tracking error and
decomposes the problem in an inner and an outer loop design problems

M(q)

τ

Outer Loop
Feedback

Arm

Non Linear
Inner
Loop

N(q, q&)

Linear
System

-

dq&&

u

q,q &

Figure 1. Computed torque control scheme, showing inner and outer loops

For example if

u q M (N ô1= + −−&&)d (3)

Defining

x
e
e=







&

(4)

then

d
dt

e
e

0 I
0 0

e
e

0
I u

0
I w& &








 =

















 +








 +










(5)

Where
w M ô1 d= − (6)

 4

PID outer Loop Design

A very common procedure is to use a PD or PID Outer Loop design. In these cases
the control function u produced by the outer loop takes the form

u K e K ev p= − −& or εKeKeKu pv i++= & (7)

The computed torque control scheme is depicted by the following figure

q&q

N(q,)q&Kp

M(q)1/s Robot
Arm

Κi

Κv

dq&&

qd

e&
dq&

e ε
q&

q

-

-

q

τ

Figure 2. PΙD Computed torque control.

In the PD controller the overall robot arm input becomes

ô M q q K e K e N q,qv p= + + +()(&& &) (&)d (8)

&& &e K e K e wv p+ + = , where w M ô1 d= − (9)

Or in a state space form

d
dt p v

e
e

0 I
K K

e
e

0
I w& &








 = − −

















 +










(10)

 5

IV. THE FEEDBACK-ERROR-LEARNING
METHOD

The method was first proposed by Kawato and co-workers (1987). The basic idea is to
combine an already available and tuned conventional feedback controller with an
ANN acting as the feed-forward controller.

 The feedback controller should at least be good enough to stabilize the plant when
used alone, but it does not need to be optimally tuned. For simplicity such a
feedback controller is normally a PID controller.

 The aim is to adapt the ANN in order to minimize the tracking error e defined as

the difference between a reference signal and the measured output (usually a
subset of the state vector).

 It was proposed that the output of the feedback controller is used as the ANN

output error and therefore it was called the Feedback-Error-Learning method.

 Using the feedback error signal as the ANN output error the problem of back-
propagating the control error through the plant (or through the model of the pant),
used in earlier ANN control techniques, is avoided.

 Before being trained, the ANN is initialized such that its output is zero for any

input. Hopefully, as the ANN is being trained, it will smoothly take over control
from the feedback controller and at the same time improve the overall control
performance. In this way the ANN is being trained to be the inverse dynamical
model of the plant.

 6

In the above scheme Kawato proposed composing the ANN input by using, at each
time step, the desired angle joints and their respective desired velocities and desired
accelerations.

Since in order to learn the true inverse dynamical model of the plant it is necessary to
associate the vector []T

k
T

k xx)()(1+ to Tk, the implicit assumption of the feedback-
error learning method is that the feedback controller is adequate so that, when used
alone to control the plant, the plant approximately follows the correct trajectory, i.e.
[] []T

k
T

k
Td

k
Td

k xxxx)()()()(11 ++ ≈ . Therefore one can state that the role of the
feedback controller is to provide an approximate solution for the problem. Because of
this, when used within such a control structure, the ANN tends to be trained more
rapidly than in other situations.

When trained this scheme is adequate for a specific trajectory. More training is
demanded when a new trajectory is to be followed.

 7

V. INVERSE DYNAMIC MODEL
APPROXIMATION AND PARAMETER

ADAPTATION AT THE SAME TIME

 ANN
Model.

ROBOT
UPDATING
ALGORITHM

KvKp

torque

+

+

++

_+

_+

Desired acceleration Actual velocity

Actual position

Desired velocity

Desired position

N

Neuro-controller based computed torque architecture

In this scheme ([Morris, Zalzala 1996], the ANN performs on-line approximation of
the inverse dynamics of the manipulator and at the same time there is an adaptive
element that estimates the true values of the unknown system parameters.

 It requires an on-line ANN training algorithm. Approaches taken from least
squares filtering are proposed for weight adaptation.

 This requires that the output of the ANNs have to be linearized.
 The parameter adaptation mechanism (in order to be feasible) relies on its

linearization around a nominal trajectory. This corresponds to a condition where
the system operates in the vicinity of the desired trajectories and the ANN
parameters are close to their desired values.

VI. DRAWBACKS OF CURRENT NEURO-
CONTROLLER METHODOLOGIES IN THE

COMPUTED-TORQUE ALGORITHM

MLPs and RBFs are universal function approximators It is practically, however, not

easy to train them to approximate the arbitrarily complex continuous functions met

due to the uncertainties in control tasks, since

 8

 the lack of universally efficient learning algorithms results in poor approximation

performance.

 starting from a random initial point in the weight space, the path to the global

minimum is often strewn with many local minima (especially for MLPs),

imposing an oscillatory convergence for the weight update algorithm and

therefore, results in a very slow learning process.

VII. THE PROPOSED METHOD

PRINCIPLES
 Improvement of ANN function approximation capabilities by combining different

function approximation methodologies, based on different approximation features.

 A two stage methodology should be involved

 In the first stage, a group of Support Vector Machines (SVMs) is involved in

approximating the function based on different methods for selecting and

transforming the input variables

 In the second stage, an SVM is employed to combine the function

approximation decisions of the previous stage's group of SVMs.

 The different feature extraction methods involved in this case include the raw

input variables, their Fourier as well as their Wavelet transform. The input

variables, are samples belonging in the mappings of position, velocity and

acceleration as functions of time.

 We call these different feature extraction methods for function approximation as

FTM [Feature Transformation Methods]

 9

VIII. THE PROPOSED TWO-STAGE

METHODOLOGY USING COMBINATION

OF SVMs

 With the SVMs, the task of nonlinear regression could be defined as follows: Let

f(X) be a m-D scalar valued function to be approximated. Then, a suitable

regression model to be considered is: D = f(X) + n, where X is the input vector, n

is the noise. Given, the training sample set {(Xi, Di)} (i=1,..,N) then, the SVM

training is the optimization problem: Find the Lagrange Multipliers {λi} (i=1,

..,N) and {λ’i} (i=1, ..,N) that maximize the objective function, Q(λi , λ’i) = Σι=1..Ν

Di (λi - λ’i) – e Σι=1..Ν (λi + λ’i) – ½ Σι=1..Ν Σj=1..Ν (λi - λ’i) (λj - λ’j) K(Xi, Xj) subject

to the constraints: Σi=1..Ν (λi - λ’i) =0 and 0<= λi <=C, 0<= λ’i<=C for i=1..N,

where C a user defined constant. K(Xi, Xj) are the kernel functions, in our case the

radial basis kernel K(X, Xj) = exp(-1/2σ2 || X - Xj||2). => => F(X) = Σi=1..Ν (λi -

λ’i) K(X, Xi)

 10

SubNet 1

SubNet S

SubNet 2

C - NET

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

X 1

X 2

XS

Y

.

.

.

.

.

.

.

.

.

.

.

.

O1

O2

OS

.

.

.

Figure 1. The schematic architecture of the two-stage function
approximation system.

 The ANN controller inputs are the sampled trajectories of the actual position,

velocity and desired acceleration up to time instance t. Desired output: N(t) =

T(true)(t)-T(false-PD estimation)(t). This comprises FTM 1.

 FTM 2 comprises the DFT transform of the sample trajectories

 FTM 3 comprises the DWT [Daubechies Basis] transform of the sample

trajectories

 FTM 4 comprises the DWT [Coifflet Basis] transform of the sample trajectories

SVM

SVM

SVM

SVM

FTM 1

FTM 2

FTM S

 11

IX. SIMULATIONS

1) A two-link planar elbow arm was used. The manipulator was modeled as a two

rigid links of lengths l1 = 1m and l2 = 1m, point masses m1 =0.8kg and m2 = 2.3kg

corresponding to the false PD model. True masses varied within the 10% interval

of these values. 12 variations were considered for each such link mass. A fourth

order Runge-Kutta algorithm, step size h= 0.01, has been invoked.

2) The desired position trajectory has the components

)/2sin(11 Ttg πθ = and)/2sin(22 Ttg πθ =

 with period T = 2s and amplitudes gi = 0.1 rad. The time constant of the closed-

loop system was selected as 0.1s.

3) For every one of the 144 total pair masses variations the curves of desired

acceleration, actual trajectory and actual velocity along with the associated torque

N to be modelled are obtained. Each such curve has been sampled into 30 points,

from which, using sliding windows of length lw, we have formed training and test

patterns for the ANN as follows.

4) Each ANN input pattern contains lw points for the desired acceleration, the

corresponding lw points for the actual trajectory and finally, the lw corresponding

points for the actual velocity. The desired output value is the associated torque N

of the lw -th sample. In our simulations lw = 6 and we have used 2000 patterns for

ANN training and the rest 1600 patterns for testing.

5) The method was tested on a model where the false masses were assumed to be

10% lower than the true values (i.e the maximum deviation considered here). The

figures show the trajectory errors for the two joints, when a correction torque,

provided by the corresponding approximation approach, is added at the torque

given by the PD controller.

 12

0 2 4 6 8 10
-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1
TRAJECTORY ERROR (e)

TIME (s e c)
Trajectory error when the correcting torque provided by one only approximating SVM

(MLP produces worse results) (one-stage methodology) is applied

0 2 4 6 8 10
-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1
T R A J E C T O R Y E R R O R (e)

T I M E (s e c)
Trajectory error when the correcting torque provided by the combined SVMs two-

stage methodology is applied

