
 
 

EFFICIENT NEURAL NETWORK MODELING BASED ON DATAFLOW 
COMPUTING LANGUAGES 

 
D. A. Karras 

Hellenic Aerospace Industry and 
Hellenic Open University,  

Rodu 2, Ano Iliupolis, Athens 16342, 
Greece, 

tel: +30 6944 
226018, fax: +30 210 9945231 

 
 
 ABSTRACT 
 
We present an efficient dataflow modeling of Multilayer 
Perceptron (MLP) algorithm based on the directed graph 
concept but with controlled global states. More 
specifically, we investigate the dataflow implementation 
of two efficient and widely used MLP training algorithms, 
namely, on-line Backpropagation and Conjugate Gradient 
in its major versions. The proposed MLP dataflow 
modeling approach is applied to a medical diagnosis 
problem, namely, psychiatric case categorization based on 
evoked potential data classification. The whole system is 
implemented in the Labview-G programming environment 
and it is found that the modeling capabilities along with 
the results obtained from the proposed MLP dataflow 
implementation in G demonstrate its efficiency for 
medical diagnosis applications. 
 
KEY WORDS  
Dataflow Modeling, Multilayer Perceptrons, Computer 
Aided Diagnosis. 
 
 
1. INTRODUCTION 
 
The use of dataflow programming tools for system 
prototyping and development predates some of the recent 
work in compiling and scheduling dataflow graphs [1]. 
The dataflow paradigm is currently the approach to visual 
programming used most widely in industry [1-3]. One 
way in which the dataflow paradigm distinguishes itself 
from many other paradigms is through its explicitness 
(through the explicit rendering of the edges in the graph) 
about the dataflow relationships in the program [3].  In 
this paper we consider LabVIEW-G capabilities and 
discuss how we can take advantage of them in order to 
efficiently map MLP (Multilayer Perceptrons) training 
algorithms. 

LabVIEW (Laboratory Virtual instrument Engineering 
Workbench) is a graphical application development 
environment (ADE) developed by National Instruments 
Corporation for the Data Acquisition (DAQ), Test and 
Measurement (T&M) and the Industrial Automation (IA) 
markets. It is composed of several sub-tools targeted at 
making the development and prototyping of 
instrumentation applications very simple and efficient. 
One of its most important components is a compiler for the 
G programming language.  G is a dataflow language that 
due to its intuitive graphical representation and 
programmatic syntax has been well accepted in the 
instrumentation industry, especially by scientists and 
engineers that are familiar with programming concepts but 
are not professional software developers but rather domain 
experts. Though it is easy to use and flexible, it is built on 
an elegant and practical model of computation. This model 
could be described as the dataflow graph programming 
methodology [1-4].  

Dataflow graph methodology has been a successful 
representation for many computational procedures, and 
most importantly in DSP algorithms, since dataflow 
semantics is well matched with algorithmic function flow 
in DSP applications. In a dataflow graph, a node 
represents a function block such as an FIR filter or a Gain, 
and an arc between nodes represents the flow dependency. 
A function block may contain states inside, called local 
states or parameters. When a node is executed, it 
consumes a fixed number of data samples from each input 
arc, and produces a fixed number of data samples to each 
output arc.  These concepts of dataflow graph 
representation are very well suited to algorithmic 
procedures based on local computations. Neural 
Networks, and especially MLPs are ideal candidates for 
being implemented using the dataflow architecture, since 
they mainly involve local processing of information. 
However, they also, involve global information processing 
features, like learning parameters.  



It is well known that Artificial Neural Networks (ANNs) 
posses very interesting function approximation 
capabilities making them a very powerful tool in many 
scientific disciplines. More specifically ANNs have the 
theoretical ability to approximate arbitrary nonlinear 
mappings [4]; there is also the possibility that such an 
ANN approximation is more parsimonious , i.e. it requires 
less parameters, than other competitive techniques such as 
orthogonal polynomials, splines, or Fourier series. 
Moreover since ANNs can have multi-inputs and multi-
outputs, they can be naturally used for 
identification/control of multivariable systems; they can 
be trained off-line using past data records of the system to 
be controlled or they can be adapted on-line in order to 
compensate for changes in the controlled system. Also, 
since ANNs are parallel distributed processing devices [4] 
they can be implemented in parallel hardware. While 
MLPs have been successfully employed in a multitude of 
function approximation problems in general and, more 
specifically, in control applications, they suffer from some 
major drawbacks. First of all the lack of universally  
efficient training algorithms results in their poor 
approximation performance. Second, starting from a 
random initial point in the weight space, the path to the 
global minimum is often strewn with many local minima, 
imposing an oscillatory convergence for the weight update 
algorithm and therefore, resulting in a very slow learning 
process. These two drawbacks clearly emerge in real 
world problems [4]. Therefore, investigation for some 
means of improving MLP function approximation 
capabilities is demanded. Some ways to achieve this could 
be the development of better simulation models. 

The above mentioned MLP characteristics, local 
processing, intrinsic parallelism, global computation 
parameters, like learning parameters, their applicability in 
a broad set of tasks as well as their learning deficiencies 
make their efficient simulation an important research 
issue. Actually many computing environments, like the 
high level programming languages (C, Fortran etc.), the 
object oriented framework (e.g C++) and the web 
programming/object oriented framework (e.g Java) have 
been involved so far [4]. To the best of our knowledge the 
visual programming/ dataflow methodology has not been 
involved up to now in ANN modeling except from the 
Matlab/Simulink environment. However, this latter 
paradigm can model ANN following the black box 
methodology and not the dataflow one. Why to model 
ANN following the dataflow methodology? The main 
rationale from the research point of view is that in order to 
understand e.g. ANN learning deficiencies it is important 
to monitor the flow of network parameters and their 
changes in the intuitive manner the dataflow paradigm 
provides. In addition, the intrinsic parallelism of MLPs 
can be naturally modeled through it. We provide here the 
notion that the natural way of modeling ANNs and more 
specifically MLPs could be achieved by using the 
dataflow paradigm. 

To this end, we employ the known directed graph 
approach, extended with a mechanism for controlled 
global states, in MLP modeling as the step towards their 
dataflow graph architecture design. We suggest that such 
an MLP dataflow modeling approach, which enables 
periodic parameter update and dynamic behavior of 
function blocks, is quite effective. 

The proposed MLP dataflow modeling approach is 
applied to a medical diagnosis problem, namely, 
psychiatric case categorization based on evoked potential 
data classification. The whole system is implemented in 
the Labview-G programming environment and it is found 
that the modeling capabilities along with the results 
obtained from the proposed MLP dataflow 
implementation in G demonstrate its efficiency for 
medical diagnosis applications. 
 
 
2. MLP MODELING AND LABVIEW-G 
 
The implementation of MLP data flow modeling has been 
herein carried out in the G visual programming/ dataflow 
oriented language [5]. G uses “structured dataflow” 
semantics to specify high level concepts (e.g. loops). G 
could be also, examined in the context of other models of 
computation, such as cyclostatic, dynamic dataflow, and 
process networks which could find application in 
MLP/ANN modeling. G has useful subsets that can be 
statically or quasi-statically scheduled. Parallelism can be 
further exploited by allowing overlapping execution of 
loops, and adding array auto-subsetting. Another useful 
addition would be execution relative to a global clock. 
Finally, a view manager could present a G based dataflow 
architecture using a different model of computation. In the 
present paper we consider how these G concepts might be 
applied to the MLP training algorithm implementation and 
evaluation. 

To be more specific and understand the basic G 
characteristics we should first discuss the structure of G. 
The first thing to note is that  the basic difference between 
G and other programming languages is that the other 
programming systems use text-based languages to create 
lines of code, while G uses a graphical programming 
language to create programs in block diagram form.  

G programs are called virtual instruments (VIs) because 
their appearance and operation can imitate actual 
instruments. However, VIs are similar to the functions of 
conventional programming languages. A VI consists of an 
interactive user interface, a dataflow diagram that serves 
as the source code, and icon connections that set up the VI 
so that it can be called from higher level VIs. So, VI’s 
structure contains: 

a. The interactive user interface of a VI is called the front 
panel, because it simulates the panel of a physical 
instrument. The front panel of a VI is primarily a 
combination of controls and indicators. Controls simulate 
instrument input devices and supply data to the block 



diagram of the VI. Indicators simulate instrument output 
devices that display data acquired or generated by the 
block diagram of the VI. The front panel can contain 
knobs, pushbuttons, graphs, and other controls and 
indicators. You enter data using a mouse and keyboard, 
and then view the results on the computer screen. You can 
change the size, shape, and position of a control or 
indicator. In addition, each control or indicator has a pop-
up menu you can use to change various attributes or select 
different menu items.  

b. The VI receives instructions from a block diagram, 
which you construct in G. The block diagram is a pictorial 
solution to a programming problem. The block diagram is 
also the source code for the VI. 

c. VIs are hierarchical and modular. You can use them as 
top-level programs, or as subprograms within other 
programs or subprograms. A VI, when used within 
another VI, is called a subVI. The icon and connector of a 
VI work like a graphical parameter list so that other VIs 
can pass data to a subVI. 

With these features, G makes the best use of the concept 
of modular programming. You divide an application into a 
series of tasks, which you can divide again until a 
complicated application becomes a series of simple 
subtasks. You build a VI to accomplish each subtask and 
then combine those VIs on another block diagram to 
accomplish the larger task. Finally, the top-level VI 
contains a collection of subVIs that represent application 
functions. Because each subVI could be executed by 
itself, separately from the rest of the application, 
debugging is much easier. Furthermore, many low-level 
subVIs often perform tasks common to several 
applications, a specialized set of subVIs well-suited to 
certain applications like MLP modeling could be 
developed. Actually, the principal goal of the authors is to 
develop an efficient library of ANN algorithms in G, like 
an ANN-G toolbox 

In summary, G is a homogeneous, dynamic, 
multidimensional dataflow language [5,6,7]: 

• Homogeneous - G actors produce and consume a single 
token for each edge in the graph. 
• Dynamic - G includes constructs that allow portions of the 
graph to be conditionally executed based on the input data. 
• Multidimensional - G has full support for 
multidimensional arrays. Loop constructs in G can be used 
to combine individual tokens into arrays of tokens, or to 
separate array elements back into individual tokens. This is 
known as "auto-indexing" 
• Turing Complete: It has been demonstrated that if you 
can implement a Turing machine in a language, that 
language is Turing complete. A Turing machine has been 
implemented in G, so G satisfies this condition. 
• Bounded communication queues: Although the data 
structures contained in a token can be arbitrarily large, there 
can only be one token on any wire at any time 

• Structured dataflow: Instead of switch, select, and 
feedback loops, G has programming structures to control 
program flow. There is a structured case statement that 
will select one subgraph to execute based on a single 
input. There are while and for loops in which the user can 
specify feedback from one iteration to the next. (No other 
feedback allowed in G.) 
• Composability: Because load balancing is not an issue in 
scheduling homogenous dataflow, G diagrams can be 
clustered into sub-diagrams without affecting the 
correctness of the diagram. The only exception is that since 
G only allows feedback in a loop structure, the 
partitioning cannot be allowed to create a feedback loop. 
Furthermore, a node in G can be a VI written entirely in 
G. The sub-VI can be a binary compiled from within Lab 
VIEW, which allows libraries to be distributed without 
source. G does not need to know the internal 
implementation of a sub-VI to schedule it. 
• Explicit coupling: G supports non-dataflow 
communications directly in the diagram. Global variables, 
local variables, and synchronization primitives can be used 
to explicitly send data or control scheduling in a VI. This 
reduces the need to have hidden communication between 
nodes that might affect the scheduling algorithm. 
 
After this discussion about main G features we 
concentrate on MLP training through the most widely 
used leaning algorithm for large scale networks and 
problems, namely, the Conjugate Gradient algorithm [4] 
and its main characteristics related to the G suggested 
implementation. Similar characteristics hold for other 
MLP algorithms like Online Backpropagation etc. The 
algorithm is as follows [4] 
  
1.   We choose an initial weight vector w1. 
2.   Evaluate the gradient vector g1 and set the initial 
search direction d1 = -g1, for the weight multidimensional 
weight vector. 
3.   At step j, minimize E(wj+Adj) with respect to A to 
give wj+1 = wj + Amin dj . 
4.   Test to see if the stopping criterion is satisfied (forward 
pass). 
5.   Evaluate the new gradient vector gj+1. 
6.   Evaluate the new search direction using the form: 
        dj+1 = gj+1 + Bjdj  
in which Bj is given by the Hestenes Stiefel formula, the 
Polak – Ribiere formula or the Fletcher – Reeves formula. 
7. We set j = j+1 and go to 3. 
 
As it can be seen, the algorithm incorporates not only local 
computations but, also, global ones. Estimation of the 
Error function, the search direction and the parameters Bj 
implies global computation and exchange of information 
between local processing/ local States Update and global 
States Update.  If we, also, consider parallel 
implementation of this algorithm with all synchronization 
aspects we understand that the dataflow paradigm for such 
modeling purposes should be extended to allow, most 
importantly, global state manipulation.   



Intuitively, it is natural to implement the state update 
request using shared global states for coding parameters 
since the state update request is shared by several blocks 
and remains unchanged within the time frame of an epoch 
for instance. However, the basic dataflow model does not 
allow global states since they are the sources of side effects. 
In this paper, we present a modeling solution to fuse 
global states into dataflow model without side effects.  
The key idea of the proposed approach is to make a global 
table for global states with limited access and to 
piggyback a pointer to a global table entry on each local 
processing unit. As a result, a State Update (SU) request is 
implicitly delivered to the node with a global state. When 
an SU request is applied to the node with a global state, the 
node will update its local state with a new value of the 
global state before processing the data samples 
To manage a parameter of a block as a global state, we 
define a global state table (GST). The GST maintains the 
values of the parameters that may be changed from the 
outside through the SU request. And, it has limited access 
from outside; in short, it allows only one writer and many 
readers. An entry of the GST is a tuple {state_name, an 
array of state_values}. In a tuple, state_name is the name 
of the global state that is referred to by the associated 
blocks. And an array of state_values is a circular buffer to 
maintain state values. Since dataflow modeling allows 
concurrent executions of multiple iterations, we may keep 
all outstanding instances of the associated global states. The 
size of the array is determined by the scheduling result. 
Each global state is accessed by its name and an array of 
state values maintains the updated values of global states. 
Based on the above concepts we have achieved efficient 
dataflow modeling of MLP training / testing algorithms 
for the basic online/offline BP (Back Propagation) 
algorithm as well as the Conjugate Gradient algorithm in 
its different major versions.  
In the following figures 1-4 some basic screen-shots of the 
proposed LabView-G implementation of the MLP training 
algorithms are illustrated. 

Fig. 1 Basic entry VI 
 
 
 

Fig. 3.  Search Direction Update in the conjugate algorithm VI. 

Fig.4 VI for Leave one out evaluation in psychiatric case 
categorization modeled as a dataflow graph in G. 

Fig. 2.  Pattern processing VI. 



3. EXPERIMENTAL STUDY  
 
 Our first set of tests were made with the examination of 
simple logical problems, like XOR and AND. We used a 
small network that had two inputs, two neurons in one 
middle layer and one output. Every neuron was connected 
with all the neurons of the next layer. 
The training process on the Back Propagation algorithm 
was almost 100% successful. It needed a very short time 
to learn and the structure of the network could be said to 
be ideal. 

Likewise, the Conjugate Gradients algorithm also had a 
very high percent of success, over 80%, on the tests. The 
outcome could be better with the control of some 
parameters, but due to the fact that all of the initial 
parameters were random some tests failed to produce the 
desired outcome. 

The second set of tests was real data taken from medical 
brain activity measurements. There were six different sets 
of patterns on healthy and mentally ill people, measured 
and taken with electrodes and recorded as amplitude and 
latency points. We used the statistical method of Leave-
One-Out to train our networks. That is, one of the patterns 
of each set was left aside and the network trained and 
learned the other patterns. At the end, the pattern that was 
randomly left aside was imported as an input to out 
trained network to produce an evaluaton outcome. From 
the comparison of the result and the desired output that 
was known to us, we could establish the functionality of 
the test. 

From these tests, we managed to remark the following 
conclusions. If the network was trained for all of the 
patterns of each set and the final random pattern was one 
of the training set, then in most cases the network had an 
almost 100% success. This outcome, of course, was 
accomplished depending on the right initial parameters 
and training time given. 

For the method of Leave-One-Out, the percent was in 
range of 53% to 71%, depending on the different set, 
random pattern, initial parameters and time for the 
network to be trained. We could say that overall we had 
an average value of about 62% of success, quite 
reasonable for the difficult problem examined. 

We could mention that in many cases that we didn't have a 
desired output, the final outcome with regards to the factor 
E of the Error function of the training algorithm showed 
us, that the more the time given, the better the result. That 
is, our network was under-trained. On the other side, in 
other cases our network was over-trained, that is it could 
not be in a balance and produced wrong results no matter 
the time given to be trained. In that situation, our network 
was unstable and was not capable of computing the real 
and right parameters and values for the algorithm to work 
properly. 

Thus, the network was depending on structure and its 
values of initialization. In other words, various 

coefficients and number of Loops of each algorithm affect 
the training process. Also the n-Factor (critical value and 
parameter of the algorithms) affected the speed of the 
training process. For a small n-Factor  (e.g. 0.1 or 0.3)  we 
had  a slow change of the E  (Error function 9). That is, 
the network trained in a slower rhythm but it seemed to be 
more stable. On the other hand, a large n-Factor (e.g. 0.9 
or 1.0) we had a faster change of the E. The network 
learned faster, but there was the danger of it to become 
unstable. The time given for training, number of training 
Loops, affected the outcome. Also the structure of the 
network itself affected the result. We used a lot of 
different network "trees" in our tests. In most cases we 
used a net with 100 inputs, seven neurons in one middle 
layer and one output, with the neurons of its layer 
connected with all the neurons of the next layer. This 
structure has given us a lot of satisfying results.  

At the end, we must remark the fact that the best structure 
for the biomedical problem at hand of a neural network 
depends on the problem and method we follow to solve it. 
Finally, experimentation with MLPs modeled with the 
proposed LabView-G approach has revealed the easiness 
to debug and, moreover, to understand the MLP 
processing in a completely hierarchical/ visual way as 
well as to understand when/why such a process fails or 
succeeds. 
 
 
4. CONCLUSIONS 
 
An efficient implementation of MLP training/evaluation 
has been proposed in the LabView-G dataflow 
programming environment and some experimentation has 
been carried out with medical data. The future prospects 
of this work are to develop a complete library for ANN 
dataflow modeling. 
 
REFERENCES 
  
[1] M. Burnett and D. McIntyre, “Visual Programming.”, 
Computer 28(3):14-16, 1995 
[2] R. Pandey and M. Burnett, “Is it easier to write matrix 
manipulation programs visually or textually ? An 
empirical study.”, IEEE Symposium on Visual Languages, 
Bergen, Norway, 344-351, 1993 
[3] K. Whitley, “Visual Programming Languages and the 
empirical evidence for and against”, J. Visual Language 
and computing 8 (1), 1997, pp. 109-142 
[4] S. Haykin, “Neural Networks: A comprehensive 
foundation”, 1999, 2nd edition 
[5] National Instruments, LabVIEW Software Reference 
and User Manual, National Instruments, Feb. 1998.  
[6] B. Lee, and A. R. Hurson, "A Hybrid Scheme for 
Processing Data Structures in a Dataflow Environment," 
IEEE Transactions on Parallel and Distributed Systems, 
vol. 3, no. 1, pp. 83-96, Jan. 1992.  
[7]  B. Lee, and A. R. Hurson, "Dataflow Architectures 
and Multithreading," Computer, Aug. 1994, pp. 27-39. 


