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Abstract: The paper presents the design of nonlinear state feedback controller for arigid manipulator. In order
to obtain such controllers, a partial differential equation, HIJB equation, should be solved, which is difficult to
find a closed solution of that. In this paper, an efficient method using Taylor series expansion of nonlinear
terms is used to tackle this problem. The tracking performance of the robotic system, using linear and
nonlinear control actions is investigated. Simulation results show that the nonlinear control action has better
response than that of linearized counterpart.

Key-Words: - Rigid robot manipulator, nonlinear state feedback control, optimal control, HIB equation,

Taylor series expansion.

1 Introduction

Over the past decade, the problem of trgectory
tracking for robot manipulators has attracted the
attention of many researches, and various
algorithms have been proposed for the control of
robot manipulators, which consists of awide range
of dtrategies, such as adaptive controllers and
sliding mode control (Spong, 1992; Spong, and
Ortega, 1992; Cai, and Dai, 2001; Zhihong, and
Yu, 1997; Keleher, and Stonier, 2002; Battoliti,
and Lanari, 1996). One of these approaches is the
application of LQR controllers. In this technique a
state feedback is utilized such that a defined cost
function for the system is minimized. This cost
function is defined as a quadratic function of the
system state variables and inputs that results in a
first order controller. In spite of its simplicity, the
use of this controller has some disadvantages, such
as senditivity of the controller to the variation of
system parameters or the limited range of
controllable disturbances. In other words, the
domain of validity of the LQR controllers in
contrast to the actual systems, that are nonlinear,
has considerable limitations. These limitations
encouraged control engineers to introduce
nonlinear controllers for the design of controllers.
In spite of their complexity, nonlinear controllers
have the advantage of increasing the region of
stability. In (Y azdanpanah, Khorasani, Patel, 1999)
it has been proved that nonlinear feedback
controllers always have a larger egtimation of
domain of validity than controllers with linear

feedback. In (Yazdanpanah, Khorasani, Patel,
1998) this claim has been shown for a flexible link
manipulator. In this paper the above issues will be
considered by approximate solving of the HJB
equation using Taylor Series expansion. Using the
obtained controller the response of the closed-loop
system for tracking of fixed point and oscillating
reference signals are obtained, which the nonlinear
controller results better performance than the linear
one.

The paper is organized as follows: In Section 2 a
nonlinear model of a two-link robot manipulator is
given. Then in Section 3 nonlinear optimal control
laws are obtained by solving the HJB equation
using Taylor Series expansion of that. Some
simulation results are provided in Section 4.
Finally, the paper is concluded in Section 5.

2 System model

We begin with a genera analysis of an n-joint
rigid robotic manipulator system whose dynamics
may be described by the second-order nonlinear
vector differential equation:

M (g)a+h(q,q) = u(t) D

where q(t) is the nx1 vector of joint angular
positions, M(Q) is the nxn symmetric positive
definite inertia matrix, h(g,q)is the nx1 vector
containing Coriolis, centrifugal forces and gravity



torques, u(t) is the nxilvector of applied joint
torques (control inputs).
The dynamic eguations of the two-link robotic
manipulator are expressed in state variable form as
X =0, % =01, X3=0p,%g =0, With X=[X1 X X3
X ". The dynamics of this specific system is given
by the equations

X, = Xy (2-a)
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3 Nonlinear optimal control design
Optima control is the determination of control
signals due to optimize a predefined cost function
while fulfilling some constraints. Using dynamic
programming and optimality principle results in a
nonlinear partial differential equation known as
HJB equation. This equation has the following
form (Uinter, 2000; Y ang and Zhou, 1999):
Assume a system with the following differentia
equation

S =a(x(t),u(t),t) (4)

where x isthe state variables and u is the system

input vector. The problem of optimal control
design is to control the above system such that the
following cost function is minimized

I=hx(t) )+ | gx@unde  (5)
where g, h are definite functions and t,, t; are
constants. So, according the HIB equation

Jp (X(A),1) + H(x(®),u" (x(1), J,.t),t) =0 (6)

where J” is the minimum of the cost function, u”
is the input vector that minimizes H, and His
Hamilton function that is defined as follows

H(x(t),u” (x(t), 3., 1),1) = g(x(t), u(t), 1)
+J57 (x(0), t)-[a(x(t), u(t),t)]

As it can be seen the HIB equation is a partia
differential equation, and finding exact anaytical
solution forJ"is so difficult. However, there are

methods to find approximate solution for J* that
one of them is the use of Taylor Series Expansion

of desired order. According to (7) u”is a function
of J,, so expressing J, in the form of Taylor

(7)

Series expansion of order n leadsto a controller of
order (n-1). In order to obtain J, in the form of
Taylor Series expansion of ordern, the following
method has been proposed (Jalili-Kharagjoo and
Moezzi-Madani, 2003; Jdili-Kharagjoo and
Y azdanpanah, 2003).

1. Using a substitution we define new state
variables as the deviation of the state variables
from their steady state initial values.

2. If the system differential equations consist of
nonlinear terms, they will be replaced by their
Taylor Series expansion of order (n-1).

3. J* is written as n ordered polynomial of
state variables (x;,%,...,Xy) . In this form,
expressing J” is equivalent to a Taylor Series
expansion of the state variables (xg,X,,..., Xy) »
the coefficients of all terms are considered
unknown. Due to express J" as the Taylor
Series expansion completely, all possible terms
up to order n should be included. All possible
teems up to order 1 for the variables
(X1, X5, X)) CAN be obtained by expansion of

(Xy + Xo + vt X)) regardless of  their

coefficients.

4. The Taylor Series expansion of J” is given
to the HIB equation (7) and the coefficients of
different terms are sorted. Then the coefficients
of al terms in the form of x{!x}?..xI™ are set
equivalent to zero. Using this method, some
nonlinear equations of unknown coefficients in
Taylor Series expansion of J” are obtained.

5. The nonlinear equations obtained this way
are solved by numerical methods like Newton-
Rafson. So, the value of each coefficient can be
calculated.



In order to design an optimal controller a cost
function should be firstly considered. For this
system, the following cost function is considered

1 1 1 1
J= Io (E PX; +E P2X5 +E pauf +E pau3) (8)

where p,, p,, p;, p, and are positive constants.

Using the above procedure some nonlinear
equations are obtained that can be solved using
proper mathematics software. Here we have used
MAPLE

4 Simulation results
For simulation the following parameters are
considered

r, =1.0m,r, =0.8m, J; =5Kgm, J, =5Kgm
m, = 0.5Kg, m, =1.5kg, g = 9.8Kgm/ s?
P1=50,p, =50, p3 =1, p; =1

Using the proposed method the nonlinear optimal
control law for u, and u, can be obtained. Here are

the first and third order controllers.

Thefirst order optimal control laws:
u; =—-2.311x, +10.435x, + 34.788 X3 + 5.699 X,
u, =-10.421x, —8.374 X, +12.545 x5 + 4.112 X,

The third order optimal control laws:
U, = —2.312% +10.421X, + 34.784X5 + 5.711x, +.231xX,

+1.256% X3 — 3.406% X, + . 799X, %3 — 023X, X4 —.952%3X,
—1.0025 %o Xg + 0413 XX, — 2.239% %X, +.007 X5 X X
— AA2X2 %%, — BIIXE XX, +.998XE X, Xy — 55BXEX Xy

+ 3.221x§x2x4 + .945x§x1x2 +1.003x§x1x3 - .439x§x2x3
+1.203% +.777x3 —.048x2 + 3.405x% —.287x +.798x3
+1.965x2 +.038x3

U, = —10.421x —8.374X, +12.545x%; + 4.112X, +.456X,X,
+ 2.304% X3 +.341% X, —1.203X, X3 —.343X, X4 —1.002X3X,
+.095x2%,Xg +.213%2 %, X + 006X XX, +.032X5% X

— AA2X2x %, + 21 1XE XX, — 0234X5 % Xy +.998XE XX,
+1.201X3%,X, + 3.001x2 % X, —.058X2% % — . 159X3 X, X
—1.359%7 +.034x3 +.491x5 +1.045x2 +.108% —.426X3
—.887x5 +.281x;

In this section the MATLAB simulation highlights
the operation of the manipulator when tracking to a
steady state value; g,and g, converge to 0.85 and

1.25 respectively. Thereference signals are
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0y =1.25+e™" —%e““
Theinitial state values of the system are selected
as.

[, x, x3 x,]" =[0.8 0 0.8 0O

In Fig. 1 the closed-loop system responses using
the first order control law (dashed line) and the
third order controller (solid line) are depicted. Asit
is seen, the performance of the system with
nonlinear controller is better than the linear one.

In order to investigate further, the effect of
nonlinear control action on the performance of the
system, the tracking problem of an oscillatory
reference signal is considered. Here the desired
trajectory reference signals are defined as

0,y = 0.175(1— cos(2at )+ 0.175
0,2 = 0.22(1— cos(2nt ))+0.22

The initial state values of the system are selected
as.

[x, %, x3 x,]' =[0.1 01 1.3 0Of

As it can be seen from Fig. 2, the performance of
the closed-loop system using the third order
controller (solid line) is better than that of the first
order one (dashed line) and using the former the
system needs less energy to track the reference
signal sooner.

18 20

R PR
Time (sec)

05
o 2 18

* Time (sec)
Fig. 1: Closed-loop system responses for tracking a
fixed point reference signal using the first order
controller (dashed line) and the third order
controller (solid line).
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Fig. 2: Closed-loop system responses for tracking a
oscillatory reference signa using the first order
controller (dashed line) and the third order
controller (solid line).

6 Conclusion

In this paper, an optimal nonlinear state feedback
controller was applied to a two-link robot
manipulator. For this, the approximate solution of
HJB equation was obtained using Taylor series
expansion of nonlinear terms. The fixed point and
oscillatory reference signal tracking performance of
the closed-loop system with linear and nonlinear
controllers was compared. Simulation results
showed that the performance of the nonlinear
controller, which was a third order controller, was
better than that of the linear one and the energy of
output signal until reaching to the reference signal
using the nonlinear controller was less than that of
linear control action.
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