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Abstract: - In this paper, the problem of stabilizing an open-loop unstable second-order system with time 
delay is considered. A constant feedback gain is utilized to stabilize the system. Using a modified version of 
Hermite-Biehler Theorem, which is applicable to quasi-polynomials- the complete set of stabilizing constant 
feedback gains for open-loop unstable plants, is determined. The desired closed-loop performance, e.g., 
overshoot, settling time, rise time, etc. can be achieved by proper selection of the gain within the boundaries 
of obtained set of stabilizing gains. The results reported here will serve as a stepping stone for tackling the 
more complicated case of analytic control and stabilization of second order systems with time delay, using a 
PI or a PID controller. The proposed procedure is studied on a numerical example. 
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1   Introduction 
An important aspect of tuning a controller in 
process control industries is to develop a 
mathematical model that describes the behaviour 
of the process. Most of the models used to adjust 
the controller parameters are simple parametric 
models of first or second order which include a 
time delay term [1]. Despite the apparent 
simplicity of these models, the stability analysis of 
resulting closed-loop system is quite a complicated 
problem due to the presence of an infinite number 
of roots of the characteristic equation. In this 
paper, we will consider the problem of 
characterizing the set of all constant gains that 
stabilize a given second-order plant with time 
delay. It is interesting to point out that even though 
most of the tuning techniques based on second 
order models with time delay to provide 
satisfactory results, the range of stabilizing all 
constant gain values remain unknown to the best 
of the author's knowledge.  
Recently, the problem of stabilization using fixed 
order and structure controllers has been tacked 
using the so-called Hermite-Biehler theorem [2,3]. 
In [3] a Generalization of this theorem was derived 
and then used to compute the set of all stabilizing 
P, PI and PID controllers for a given linear, time 
invariant plant described by a rational transfer 
function. Since the plants containing time delay, 
the synthesis results presented in [4], cannot be 
applied directly to such plants. In [5,6,7] using a 
version of the Hermite-Biehler theorem applicable 
to quasipolynomials, the whole stabilizing set of P, 

PI and PID gains for first order plants with time 
delay is obtained. In this paper, we will make use 
of these results to solve the problem of stabilizing 
a second order plant with time delay. 
 
 

2   Preliminary Results on Analysis 
Systems with Time Delay 
Many problems in process control engineering 
involve time delays. These time delays lead to 
dynamic models with characteristic equations of 
the form 
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where d(s), ni(s) for i=1,2,…,m, are polynomials 
with real coefficients. Characteristic equations of 
this form are also known as quasipolynomials. It 
can be shown that the so-called Hermite-Biehler 
Theorem for Hurwitz polynomials [8,9] does not 
carry over to arbitrary functions f(s) of the 
complex variable s. However, Pontryagin [10] 
studied entire functions of the form P(s,es), where 
P(s,t) is a polynomial in two variables and is 
called a quasipolynomial. Based on Pontryagin's 
results, a suitable extension of the Hermite-Biehler 
Theorem can be developed [9,11] to study the 
stability of certain classes of quasipolynomials 
characterized as follows. In (1) we make the 
assumptions: 
 
A1. deg[d(s)]=n and deg[ni(s)]<1 for i=1,2,…,m; 
A2. 0<T1<T2<…<Tm.  



 
Instead of (1) we can consider the 
quasipolynomial 
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Since msTe  does not have any finite zeros, the 
zeros of )(sδ are identical to those of )(* sδ . 

However, the quasipolynomial )(* sδ has a principal 
term [11] since the coefficient of the term 

containing the highest powers of s and se  is 
nonzero. It then follows that this quasipolynomial 
is either of the delay or of the neutral type [4]. 
This being the case, the stability of the system 
with characteristic equation (1) is equivalent to the 
condition that all the zeros of )(* sδ be in the open 
left-half plane. We will say equivalently that 

)(* sδ is Hurwitz or is stable. The following 
theorem gives necessary and sufficient conditions 
for the stability of )(* sδ [11]. 
 
Theorem 1. Let )(* sδ  be given by (2), and write 

),()()(* wjwjw ir δδδ +=  where )(wrδ  and )(wiδ  
represent, respectively, the real and imaginary 
parts of )(* jwδ . Under assumption (A1) and (A2), 

)(* sδ is stable if and only if 

(1)  )(wrδ  and )(wiδ  have only simple real roots 
and these interlace, 
(2)  ,0)()()()( >′−′ oroioroi wwww δδδδ  for some 

wo in  ( )∞∞− , . 

Where )(wrδ ′  and )(wiδ ′  denotes the first derivative 

with respect to w of )(wrδ  and )(wiδ , respectively. 

 
Theorem 2.  Let M and N denote the highest 
powers of s and es, respectively, in )(* sδ . Let η  be 
an appropriate constant such that the coefficients 
of terms of highest degree in )(wrδ  and )(wiδ  do not 

vanish at η=w . Then for the equations 

)0)(/(0)( == ww ir δδ to have only real roots, it is 
necessary and sufficient that in the interval 

ηπηπ +≤≤+− lwl 22 ,  

))(/()( ww ir δδ  has exactly 4lN+M real roots 
starting with a sufficiently large l.. 
 
 

3   Open-loop Second-order Systems 
with Time Delay  

The second-order plants with time delay can be 
mathematically described by 
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where k represent the steady state gain, L time 
delay, a1 and ao plant parameters. 
Consider the feedback control system shown in 
Fig. 1 where r is the command signal, y is the 
output, G(s) is the plant, and C(s) is the controller. 
Here, C(s)=kp. Our objective is to analytically 
determine the values of the controller parameter in 
which the closed-loop system is stable.  
 

)(sG

Fig. 1. Feedback control system. 
 
If the open-loop system is unstable, it means that 

01 >a  and 0<oa . We assume that 0>k  and 
0>L .  It is clear that when the time delay of the 

model is zero, i.e., the closed-loop characteristic 
equation of the system is given by  

( )po kkasass +++= 1
2)(δ  

If we assume that the steady-state gain k of the 
plant is positive, the conditions for the stability of 
the system are 

 01 >a     and    
k

a
k o

p −>  (4) 

Now, we will consider the case where the time 
delay is different from zero. In this case, the 
closed-loop characteristic equation of the plant is 
given by 
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Due to the presence of e-Ls, the number of zeros 
of )(sδ  is infinite and this make the stability check 
so difficult. For this, we consider the 
quasipolynomial )(* sδ  defined by 
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Substituting ,jws =  we have 

)()()(* wjwjw ir δδδ +=  

where 
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Substituting z=Lw leads to 
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4   Stabilization Using a Constant 
Feedback Gain 
In this section, we present a Theorem that gives a 
closed form solution to the constant gain 
stabilization problem for an open-loop unstable 
plant. From (4), it is seen that an unstable open-
loop plant can be stabilized using a constant gain 
only if it has a single unstable pole. This means 
that an unstable but stabilizable plant must 
necessarily have 01 >a and 0<oa . As before, let 
us assume that 0>k and 0>L . 
 
Theorem 3 Under the above assumption on k and 
L, a necessary condition for a gain pk  to 

simultaneously stabilize the delay-free and the 

plant with delay is L
a

a

o

>1 . If this necessary 

condition is satisfied, then the set of all stabilizing 
gains pk  for a given open-loop unstable plant with 

transfer function G(s) as in (3) is given by 
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where 1z  is the solution of the equation 
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in the interval ( )π,0 . 
 
Proof. According to Theorem 1, we need to check 
two conditions to ensure the stability of the 
quasipolynomial )(* sδ : 
First, the condition 2 of Theorem 1 is checked: 

0)()()()()( >′−′= oiororoio wwwwwE δδδδ  for some 
wo in ( )∞∞− , . 

Let us take wo=zo=0. Thus 0)( =oi zδ  and 

opor akkz +=)(δ . We also have 
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From (4), it is clear that from the closed-loop 
stability of the delay-free system, we have 

0)( >+ op akk . Hence, to have )( ozE >0, we must 

have 01 >+
L

a
ao  or L

a

a

o

>− 1 , 

L
a

a
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>⇒ 1 . 

We now check condition 1 of Theorem 1: the 
interlacing of the roots of )(zrδ  and )(ziδ . We can 
compute the roots of imaginary part, i.e., 0)( =ziδ . 
This gives the following equation 
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From the above equation we can see that zo=0 is a 
root of the imaginary part. Also, it is clear that 

,...,2,1, =llπ  are not roots of the imaginary part. 
Thus for 0≠z , we can rewrite the previous 
equation as 
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An analytic solution of (11) is difficult to find. 
However, we can plot the two terms involved in 

the equation, i.e., )cot(z and 
zLa

aLz

1

0
22 −

 to study 

the nature of real solutions. Let us denote the 
positive real roots of (11) by ,...,2,1, =jz j , 

arranged in increasing order of magnitude. Clearly 
the non-negative real roots of the imaginary part 
satisfy 
 ( ) ( ) ( ),...3,2,2,,,0 321 πππππ ∈∈∈ zzz   (12) 

Let us now use Theorem 2 to check if )(wiδ has 
only real roots. Substituting s1=Ls in the 

expression of )(* sδ , we can see that for the new 
quasipolynomials in s1, M=2 and N=1. Next we 
choose 4/πη =  to satisfy the requirement of 

)(ziδ does not vanish at η=w . It can be easily 

seen that in the interval [ ] [ ]4/7,04/2,0 πππ =− , 

0)( =ziδ has three real roots including a real root 

at origin. Since )(ziδ  is an odd function it follows 



that in the interval [ ]4/7,4/7 ππ− , 0)( =ziδ  will 

have 5 real roots also 0)( =ziδ  has one real root 
in ]4/9,4/7( ππ . Thus, )(ziδ has 64 =+ MN real 
roots in the interval [ ]4/2,4/2 ππππ ++− . 
Moreover, )(ziδ  has two real roots in each of the 
intervals [ ]4/)1(2,4/2 ππππ +++− ll  and 

[ ]4/2,4/)1(2 ππππ +−++− ll  for ,....2,1=l  Hence, it 
follows that )(ziδ has exactly MlN +4 real roots in 

[ ]4/2,4/2 ππππ ++− ll , which by Theorem 2 

implies that )(ziδ has only real roots. 

We now evaluate )(zrδ at the roots of the 

imaginary part )(ziδ . For 0=oz using (7) we 
obtain 
 .)( opor akkz +=δ   (13) 

For ,...,2,1, =jz j  using (7) and (11) we obtain 

 
)sin(

)(
1

j

j
pjr zL

za
kkz −=δ  (14) 

Thus, we obtain 
 [ ])()( jpjr zMkkz −=δ   (15) 

where 
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It was stated that 
k

a
k o

p −> . Thus, from (13) we see 

that 0)( >or zδ . Then, interlacing the roots of 

)(zrδ and )(ziδ  is equivalent to 

,0)(,0)(,0)( 321 <>< zzz rrr δδδ  and so on. Using this 
fact and equations (13) and (15) we obtain 
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From (12) we can see that zj for odd values of j, are 
either in the first or second quarter. Thus for odd 
values of j, sin(zj)>0 and from (16), we conclude 
that M(zj)>0 for odd values of the parameter j. 
Similarly, we can see that M(zj)<0 for even values 
of parameter j. thus the inequalities (17) can be 
rewritten as 

k

a
k o
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and 
 ( ) ( )jjpjj MkM ,...5,3,1,...6,4,2 minmax == <<   (18) 

Using (11), we have 
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where the plus sign (+) is used for odd values of j, 
and the minus sign (-) is used for even values of j.  

Notice that since 0<oa , we have oaa 22
1 ≥ . Thus, 

(19) we can see that )( jzM  is a monotonically 

increasing function for odd values of j and it is a 
monotonically decreasing function for even values 

of j. Moreover, it is seen that 
k

a
M o−=)0( . Using 

these observations, the bounds of pk  can be 

expressed as  
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Note that for values of pk  in the above range, the 

interlacing property and the fact that the roots of 
)(ziδ are all real can be used in Theorem 3 to 

guarantee that )(zrδ  also has only real roots. Thus 
all the conditions of Theorem 1 are satisfied and 
this completes the proof. 
 
 

5   Numerical example 
We now present to illustrate the applications of 
Theorem 3. 

Example Consider the constant gain stabilization 
problem for a plant with parameters as 

151.0,2148.1sec,6.3,442.0 1 −==== oaaLk [1]. 
The transfer function of this plant is as follows 
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Since the plant is open-loop unstable we will use 
Theorem 3 to obtain the set of stabilizing gains. 
According to (11), we compute ( )π,01 ∈z  
satisfying 

z

z
z

37328.4

95696.1
)cot(

2 +=  

Solving the above equation we obtain 
97179.01 =z . Thus, from (20) the set of stabilizing 

gains is given by 

97179.034163.0 << pk . 

Open-loop system response of the above system is 
depicted in Fig. 2. As it can be seen the system is 



open-loop unstable. The closed-loop system 
response with a pk  of the above range, 52.0=pk , 

is shown in the Fig. 2, which is stable. 

    

 
Fig. 2. Open-loop and closed-loop responses. 
 
 

 
6   Conclusion 
In this paper, we have obtained a characterization 
of the complete set of stabilizing constant feedback 
gains for a given open-loop unstable second-order 
plus time delay system. This result is based on an 
extension of the Hermite-Biehler Theorem to 
quasipolynomials, due to Pontryagin, and opens up 
the possibility of designing feedback gains to 
optimize given performance criteria. The 
characterization also provides us with a tool to 
understand the relationship between the time delay 
exhibited by a system and its stabilization using a 
feedback gain. Using the obtained feedback gains, 
the desired closed-loop performance such as 
settling time, rise time, overshoot, etc. can be 
received. This research is preparation to 
analytically calculate of all stabilizing PI and PID 
case for second-order systems with time delay, 
which is a challenging problem.  
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