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Abstract: - This paper studies responses of threBUS: this simple circuit can exhibit rich responses in-
) N pape . P .. cluding chaos. We analyze these responses numerically

dimensional (3-D) spiking oscillators to pulse-train in-= using the 1-D return maps and their LYanunov expo

put. The 3-D spiking oscillator consists of a linear sub? 9 P yap P

S : . nents.
circuit and a state-resetting switch. In order to analyzée . . .
In our previous literature, autonomous 3-D spiking

responses of the circuits, we introduce a mapping pro- . .
P PPING Pixcillators have been studied [1]-[3]. They can ex-

cedure based on a one-dimensional (1-D) return map... . : : :
) . . : it rich chaotic and bifurcating phenomena. Cou-
We then consider a simple 3-D spiking oscillator base - . . . .

Ing the 3-D spiking oscillators by impulsive signals,

on anRLC circuit. For equidistant and non-equidistart
d d a pulse-coupled network (PCN) can be constructed.

periodic pulse-train inputs, this simple circuit can ethe PCN can exhibit interesting chaos synchronous
hibit rich responses including chaos. We analyze the%e nomena. Note that 2-D spiking oscillators corre-

responses numerically by using the 1-D return ma saPn ) .
P umerica’y by Using u P spond to integrate-and-fire neurons (IFNs, [4]). PCNs
their Lyapunov exponents.

of the IFNs can exhibit various synchronous and asyn-
Key-Words: - Nonautonomous system, pulse-traihronous phenomena [5][6], and have many applica-
mapping procedure, chaos, bifurcation, synchronizatigéns including associative memories [7] and image pro-
cessors [8].
This paper provides the basic analysis results for 3-
1 Introduction D spiking oscillators having pulse-train input. Prelimi-
nary results can be found in Ref. [3]. These studies will
This paper studies responses of three-dimensional (3kB) fundamental to engineering applications including
spiking oscillators to pulse-train input. The 3-D spikPCNSs, pulse-based communications [9][10] and time
ing oscillator is a piecewise linear circuit consisting aferies prediction [11].
a linear subcircuit and a state-resetting switch. First,
we introduce _the_objectl\_/e c!rcmt model and a normél Circuit Modéd
form of the circuit equation in order to extract essen-

t'f"ll p.aramet(.ers. In order to a_nalyze responses of H—clﬁ 1 shows the circuit family of the spiking oscillators
circuits, we introduce a mapping procedure based Qi the pulse-train input/ (¢). Let the linear subcircuit
a one-dimensional (1-D) map focusing on the mOmegtinq|,de one memory element characterized by a state
when the input arrives. If the inputis an equidistant Pgsjaple .. The circuit dynamics is described by the
riodic pulse-train, the 1-D map can be return map. If t'?&llowing equation if the switcts is opened:

input is a non-equidistant periodic pulse-train, the cir-

cuit dynamics can be analyzed by a composite of differ- 4 {”] — {all al?} {”] : 1)
ent 1-D maps corresponding to different pulse-intervals. dt | 2 a1 a2 L%

We then consider a simple 3-D spiking oscillator bas@dhere the parameters; to az; are determined by the
on anRLC circuit. If the input does not present, thétructure ofN. U(t) is the pulse-train input:

circuit exhibits an equilibrium or chaotic attractor. For Vi att=0+ ", Ty,
equidistant and non-equidistant periodic pulse-train in- U(t) = { "

)

V;  otherwise,



v=V; Equations (1), (2) and (3) are transformed into the fol-

T k lowing normal form equation:
Linear i d [z _ 6 1][=x
+ S__i dr |y -1 6] ly]’
Subcircuit L X u) =V
M R £ oo for 2(7) < 1 andu(r) = 0,
N
I 1 atr=0+>7"dp,

u(r) = {0 otherwise,
self-switching: ifx(7) = 1 then
uwrm T, Ts ] (@(77),y(7)) = (¢, () = p(1 = q)),
| compulsory-switching: its(7) = 1 then
(@(r%),y(r")) = (¢, y(1) — p(z(7) — q))-
Apart from the normalized pulse-intervalg, this nor-
/ mal form equation has three parameters: the damping

""""""""""""""" 0, the jumping slope, and the base level The exact
piecewise solution fog(7) < 1 andu(r) = 0is

Bo] e[ ] ©

where(z(0), y(0)) denotes an initial state vectorat=
0.

(®)

t ——

Fig. 1: A circuit family of spiking oscillators with
pulse-train input.

wherem is a positive integed/y > Vi, andT,, > 0 is

the nth pulse-interval. The switcly' is closed instan-3 M apping Procedure

taneously if either reaches the threshold; or the

impulse signall/(t) = Vj arrives. At the momentIn order to analyze responses of the circuit, we intro-

when S is closed,v is reset to the base voltage in- duce a mapping procedure based on a 1-D map. Let the

stantaneously, holding=constant. Hereafter the reseénputu(7) have the first and second impulses-at 0

by v(t) = Vi (respectivelyl/ (t) = Vi) is referred to and~ = d, respectively. Letly = {(z,y,7)|z =

as self-switching (respectively, compulsory-switching), 7 = 0} and letL; = {(z,y,7) |z = ¢, 7 = d}.

The dynamics of these switchings are described by Sincex is reset toy at every compulsory-switching mo-
ment, we can set the initial condition &8, y,7) € Lo
without loss of generality. Let points oy and L, be

(3) represented by thei-coordinate. As a trajectory starts

self-switching: ifv(t) = Vr then

(v(tF), 2(t7)) = (E, 2(1)),

compflsory;switching: iU(t) = Vi then from a pointy, € Lo atT = 0, the next compulsory-
(v(tT), 2(tT)) = (E, 2(1)). switching occurs at = d and the trajectory is reset to
We focus on the case where Equation (1) has comp#eRointy; € L;. Then we can define the following 1-D
characteristic rootéw + jw, where map:
5w:w, Hq: Lo — L1, yo— 1, 1= Ha(yo), (7)
9 B (a1 +a 2 0 where the subscript corresponds to the pulse-interval
W T a2 an2an 2 d. For0 < 7 < d, some self-switchings may occur.

In this case the state vectgr, z) can vibrate below the HOWeVer, focusing on the compulsory-switching mo-

thresholdVz. Using the dimensionless variables arf€nt: the dynamics can be analyzed by the 1-D map.
This 1-D map is given analytically by using exact piece-

parameters: ; _
] wise solutions [3].
Tewh = —, Y= — <pv 4 412 z) : The 1-D map (7) can be a return mapijf = d for
Vr Vr w all n. Let DHy(yo) = ﬁHd(yO). Then the Lyapunov
1 . .
u(r) = - (U (Z) = V), (4) exponent of the return map is given by
Ve - Vp, N1
_ . 1
pozan LB o A= lim — 3 In[DHy(yn)|. (8)

20 ) VT N—oo N "0



Form > 2, the sequencéd, } is m periodic if there 2 @ (b)
exists a positive minimum integet such that,,;,,, = . ‘
d, for all n. Then the dynamics can be described by ay | |
composite of different 1-D mapd;,, corresponding to ok . L
different pulse-intervaldg,,:

H: Hy,oHg, ,o--0Hg, Yo Ym. (9)

- -1 0 1 2
Since the sequendgl,, } is m periodic, this composite X
map is a return map. The Lyapunov exponent of the
return map is given by Fig. 3: Typical attractors without input. (a) Equilib-
rium attractor (the case A = —0.01, ¢ = —0.8). (b)
1 = Chaotic attractor (the case B:= 0.05, ¢ = —0.4).
= lim —— In|DH
A Ngnoo mN Z n| (Ymi)|
N 1 m d andq can be controlled easily by the valuBsand F,
= ]\;Enoom—N % Jz:lln|DHd Ymitj—1)]- respectively. For simplicity, we focu@, ¢) on the fol-

lowing two cases:

A: §=-0.01, ¢=-038

B: §=0.05 ¢=-04
4 A Simple Circuit Model If the input is not present for the cases A and B, the cir-

cuit exhibits equilibrium and chaotic attractors as shown

Fig. 2 shows the simple 3-D spiking oscillator such thaf Fig. 3(a) and (b), respectively. Theoretical param-
the linear subcircuitV in Fig. 1 is replaced with theeters condition for existence of each attractor can be
RL subcircuit. Let the resistak take both positive andfound in Refs. [2] and [3]. Hereafter, we investigate re-
negative value. If the switcly is opened, the circuitsponses to periodic pulse-train input such that= d 4

(10)

dynamics is described by for oddn andd,, = dp for evenn.
Cdv . Ldz _ Ri . ,
b T v (11) 4.1 Typical responsesin the case A
forv(t) < VrandU(t) = VL. We consider how the input(7) change the equilib-

um attractor in Fig. 3(a). Fig. 4 shows typical re-
onses to periodic pulse-train inputs and correspond-
ing 1-D return maps with the Lyapunov exponents.
L {au a12} _ { 0 1/C ] ( F_ig..4(a) shows_ the chaotic response to e_quidistant pe-
’ ~1/L —R/L riodic pulse-train inputd = d4 = dg). This chaotic

response can be confirmed by a positive Lyapunov ex-

Using the dimensionless variables and parameterspghent of the 1-D return map in Fig. 4(e). For chaos
(4), we obtain the normal form equation (5), whelgeneration, local unstability is required. The circuit can
p = —o¢. Thatis, apart from the normalized pulsesxhibit self-switching by the occurrence of compulsory-
intervalsd,,, this circuit is characterized by two paramesyitching. These switchings can change the equilib-

ters: the damping and the base level The parametersyiym attractor in Fig. 3(a) into the chaotic attractor.
Figs. 4(b) and (c) show coexistence of the periodic and

The relationship between Equations (1) and (11) is tb
following:

a1 a2

V=V, chaotic responses to equidistant periodic pulse-train in-
_______________________ r——=-=-=----1 put. The circuit exhibits either response depending
U : on the initial state. This coexistence phenomenon can
fmp Ty s : also be confirmed in the 1-D return map in Fig. 4(f).
' —c & _'_ Ut =V, Fig. 4(d) shows the periodic response to non-equidistant

periodic pulse-train inputdy # dg). The correspond-

. . T E ing 1-D return map in Fig. 4(g) is a composite map of

e i the chaotic 1-D map in Fig. 4(e) and the coexistence 1-D
map in Fig. 4(f). A stable fixed poinf, corresponding

Fig. 2: A simple 3-D spiking oscillator with pulse-traing the periodic response appears in the composite map.

input. Fig. 6(a) shows the bifurcation diagram fbx andd .
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Fig. 5: Typical responses and 1-D return maps for peri-
odic pulse-train input (the case B:= 0.05, ¢ = —0.4).

(a) Chaotic response. (b) Periodic response. (c) Pe-
riodic response. (d) 1-D return map = fi(yo)

(A = 0.276). (e) 1-D return map; = fa(yo) (A =
—0.169). (f) Composite return mag, = fq, © fa, (vo)

(A = —0.0135).

4.2 Typical responsesin the case B

We consider how the input(7) change the chaotic at-
tractor in Fig. 3(b). Fig. 5 shows typical responses to pe-

Fig. 4: Typical responses and 1-D return maps for péadic pulse-train inputs and corresponding 1-D return

riodic pulse-train input (the case A: = —0.01, ¢ =

maps with the Lyapunov exponents. Fig. 5(a) shows

—0.8). (a) Chaotic response. (b) and (c): CoexistencetBe chaotic response to equidistant periodic pulse-train
periodic and chaotic responses. (d) Periodic resporiUt (@ = da = dp). This chaotic response can be
(e) 1-D return map; = f4(yo) (A = 0.0479). (f) 1-D confirmed by a positive Lyapunov exponent of the 1-D
return mapy; = fd(yﬂ) (A = —0.477 for periodic at- return map in Flg 5(d) Flg 5(b) shows the periOdiC
tractor; A = 0.427 for chaotic attractor). (g) Compositdesponse to equidistant periodic pulse-train input. A
return mapys = fq, © fas (vo) (A = —0.326).

stable fixed point, corresponding to the periodic re-
sponse appears in the 1-D return map 5(e). This means
that the periodic pulse-train input changes the chaotic
attractor in Fig. 3(b) into the periodic attractor. Fig. 5(c)
shows the periodic response to non-equidistant periodic



pulse-train inputd4 # dp). The corresponding 1-

D return map in Fig. 5(f) is a composite map of the
chaotic 1-D map in Fig. 5(d) and the periodic 1-D map
in Fig. 5(e). A stable fixed poing, corresponding to
the periodic response appears in the composite map.
Fig. 6(b) shows the bifurcation diagram f@g andd .

5 Conclusions

We have studied 3-D spiking oscillators with pulse-train
input. As an analysis tool, we have proposed a mapping
procedure based on a 1-D map focusing on the moment
of compulsory-switching. We have presented a simple
3-D spiking oscillator based on @\ circuit. Apply-

ing equidistant and non-equidistant periodic pulse-train
inputs, the circuit can exhibit various chaotic and peri-
odic responses. Using the mapping procedure, we have
analyzed these responses.

In future works, we are considering (1) detailed anal-
ysis of bifurcation phenomena for wider parameter re-
gion, and (2) analysis of responses of circuits to non-
periodic (or chaotic) pulse-train input.
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