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Abstract: - This paper studies responses of three-
dimensional (3-D) spiking oscillators to pulse-train in-
put. The 3-D spiking oscillator consists of a linear sub-
circuit and a state-resetting switch. In order to analyze
responses of the circuits, we introduce a mapping pro-
cedure based on a one-dimensional (1-D) return map.
We then consider a simple 3-D spiking oscillator based
on anRLC circuit. For equidistant and non-equidistant
periodic pulse-train inputs, this simple circuit can ex-
hibit rich responses including chaos. We analyze these
responses numerically by using the 1-D return maps and
their Lyapunov exponents.
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1 Introduction

This paper studies responses of three-dimensional (3-D)
spiking oscillators to pulse-train input. The 3-D spik-
ing oscillator is a piecewise linear circuit consisting of
a linear subcircuit and a state-resetting switch. First,
we introduce the objective circuit model and a normal
form of the circuit equation in order to extract essen-
tial parameters. In order to analyze responses of the
circuits, we introduce a mapping procedure based on
a one-dimensional (1-D) map focusing on the moment
when the input arrives. If the input is an equidistant pe-
riodic pulse-train, the 1-D map can be return map. If the
input is a non-equidistant periodic pulse-train, the cir-
cuit dynamics can be analyzed by a composite of differ-
ent 1-D maps corresponding to different pulse-intervals.
We then consider a simple 3-D spiking oscillator based
on anRLC circuit. If the input does not present, the
circuit exhibits an equilibrium or chaotic attractor. For
equidistant and non-equidistant periodic pulse-train in-

puts, this simple circuit can exhibit rich responses in-
cluding chaos. We analyze these responses numerically
by using the 1-D return maps and their Lyapunov expo-
nents.

In our previous literature, autonomous 3-D spiking
oscillators have been studied [1]-[3]. They can ex-
hibit rich chaotic and bifurcating phenomena. Cou-
pling the 3-D spiking oscillators by impulsive signals,
a pulse-coupled network (PCN) can be constructed.
The PCN can exhibit interesting chaos synchronous
phenomena. Note that 2-D spiking oscillators corre-
spond to integrate-and-fire neurons (IFNs, [4]). PCNs
of the IFNs can exhibit various synchronous and asyn-
chronous phenomena [5][6], and have many applica-
tions including associative memories [7] and image pro-
cessors [8].

This paper provides the basic analysis results for 3-
D spiking oscillators having pulse-train input. Prelimi-
nary results can be found in Ref. [3]. These studies will
be fundamental to engineering applications including
PCNs, pulse-based communications [9][10] and time
series prediction [11].

2 Circuit Model

Fig. 1 shows the circuit family of the spiking oscillators
with the pulse-train inputU(t). Let the linear subcircuit
N include one memory element characterized by a state
variablez. The circuit dynamics is described by the
following equation if the switchS is opened:

d

dt

[
v
z

]
=

[
a11 a12

a21 a22

] [
v
z

]
, (1)

where the parametersa11 to a22 are determined by the
structure ofN . U(t) is the pulse-train input:

U(t) =
{

VH at t = 0 +
∑m

n=1 Tn,
VL otherwise,

(2)
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Fig. 1: A circuit family of spiking oscillators with
pulse-train input.

wherem is a positive integer,VH > VL, andTn > 0 is
the nth pulse-interval. The switchS is closed instan-
taneously if eitherv reaches the thresholdVT or the
impulse signalU(t) = VH arrives. At the moment
whenS is closed,v is reset to the base voltageE in-
stantaneously, holdingz=constant. Hereafter the reset
by v(t) = VT (respectively,U(t) = VH ) is referred to
as self-switching (respectively, compulsory-switching).
The dynamics of these switchings are described by

self-switching: ifv(t) = VT then
(v(t+), z(t+)) = (E, z(t)),

compulsory-switching: ifU(t) = VH then
(v(t+), z(t+)) = (E, z(t)).

(3)

We focus on the case where Equation (1) has complex
characteristic rootsδω ± jω, where

δω =
a11 + a22

2
,

ω2 = a11a22 − a12a21 −
(

a11 + a22

2

)2

> 0.

In this case the state vector(v, z) can vibrate below the
thresholdVT . Using the dimensionless variables and
parameters:

τ = ωt, x =
v

VT
, y =

1
VT

(
p v +

a12

ω
z

)
,

u(τ) =
1

VH − VL

(
U

(
τ
ω

) − VL

)
,

p =
a11 − a22

2ω
, q =

E

VT
, dn = ωTn,

(4)

Equations (1), (2) and (3) are transformed into the fol-
lowing normal form equation:

d

dτ

[
x
y

]
=

[
δ 1
−1 δ

] [
x
y

]
,

for x(τ) < 1 andu(τ) = 0,

u(τ) =
{

1 at τ = 0 +
∑m

n=1 dn,
0 otherwise,

self-switching: ifx(τ) = 1 then
(x(τ+), y(τ+)) = (q, y(τ) − p(1 − q)),

compulsory-switching: ifu(τ) = 1 then
(x(τ+), y(τ+)) = (q, y(τ) − p(x(τ) − q)).

(5)

Apart from the normalized pulse-intervalsdn, this nor-
mal form equation has three parameters: the damping
δ, the jumping slopep, and the base levelq. The exact
piecewise solution forx(τ) < 1 andu(τ) = 0 is

[
x(τ)
y(τ)

]
= eδτ

[
cos τ sin τ
− sin τ cos τ

] [
x(0)
y(0)

]
, (6)

where(x(0), y(0)) denotes an initial state vector atτ =
0.

3 Mapping Procedure

In order to analyze responses of the circuit, we intro-
duce a mapping procedure based on a 1-D map. Let the
input u(τ) have the first and second impulses atτ = 0
and τ = d, respectively. LetL0 = { (x, y, τ) |x =
q, τ = 0 } and letL1 = { (x, y, τ) |x = q, τ = d }.
Sincex is reset toq at every compulsory-switching mo-
ment, we can set the initial condition as(x, y, τ) ∈ L0

without loss of generality. Let points onL0 andL1 be
represented by theiry-coordinate. As a trajectory starts
from a pointy0 ∈ L0 at τ = 0, the next compulsory-
switching occurs atτ = d and the trajectory is reset to
a pointy1 ∈ L1. Then we can define the following 1-D
map:

Hd : L0 → L1, y0 �→ y1, y1 = Hd(y0), (7)

where the subscriptd corresponds to the pulse-interval
d. For 0 < τ < d, some self-switchings may occur.
However, focusing on the compulsory-switching mo-
ment, the dynamics can be analyzed by the 1-D map.
This 1-D map is given analytically by using exact piece-
wise solutions [3].

The 1-D map (7) can be a return map ifdn = d for
all n. Let DHd(y0) ≡ d

dy0
Hd(y0). Then the Lyapunov

exponent of the return map is given by

λ = lim
N→∞

1
N

N−1∑
n=0

ln |DHd(yn)|. (8)



For m ≥ 2, the sequence{dn} is m periodic if there
exists a positive minimum integerm such thatdn+m =
dn for all n. Then the dynamics can be described by a
composite of different 1-D mapsHdn corresponding to
different pulse-intervalsdn:

H : Hdm ◦ Hdm−1 ◦ · · · ◦ Hd1 , y0 �→ ym. (9)

Since the sequence{dn} is m periodic, this composite
map is a return map. The Lyapunov exponent of the
return map is given by

λ = lim
N→∞

1
mN

N−1∑
i=0

ln |DH(ymi)|

= lim
N→∞

1
mN

N−1∑
i=0

m∑
j=1

ln |DHdj (ymi+j−1)|.
(10)

4 A Simple Circuit Model

Fig. 2 shows the simple 3-D spiking oscillator such that
the linear subcircuitN in Fig. 1 is replaced with the
RL subcircuit. Let the resistorR take both positive and
negative value. If the switchS is opened, the circuit
dynamics is described by

C
dv

dt
= i, L

di

dt
= −v − Ri,

for v(t) < VT andU(t) = VL.

(11)

The relationship between Equations (1) and (11) is the
following:

z = i,

[
a11 a12

a21 a22

]
=

[
0 1/C

−1/L −R/L

]
. (12)

Using the dimensionless variables and parameters in
(4), we obtain the normal form equation (5), where
p = −δ. That is, apart from the normalized pulse-
intervalsdn, this circuit is characterized by two parame-
ters: the dampingδ and the base levelq. The parameters
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Fig. 2: A simple 3-D spiking oscillator with pulse-train
input.

 

x

y

2

1

0

1−

2−
2101−2−

)(a )(b

Fig. 3: Typical attractors without input. (a) Equilib-
rium attractor (the case A:δ = −0.01, q = −0.8). (b)
Chaotic attractor (the case B:δ = 0.05, q = −0.4).

δ andq can be controlled easily by the valuesR andE,
respectively. For simplicity, we focus(δ, q) on the fol-
lowing two cases:

A : δ = −0.01, q = −0.8
B : δ = 0.05, q = −0.4

If the input is not present for the cases A and B, the cir-
cuit exhibits equilibrium and chaotic attractors as shown
in Fig. 3(a) and (b), respectively. Theoretical param-
eters condition for existence of each attractor can be
found in Refs. [2] and [3]. Hereafter, we investigate re-
sponses to periodic pulse-train input such thatdn = dA

for oddn anddn = dB for evenn.

4.1 Typical responses in the case A

We consider how the inputu(τ) change the equilib-
rium attractor in Fig. 3(a). Fig. 4 shows typical re-
sponses to periodic pulse-train inputs and correspond-
ing 1-D return maps with the Lyapunov exponents.
Fig. 4(a) shows the chaotic response to equidistant pe-
riodic pulse-train input (d ≡ dA = dB). This chaotic
response can be confirmed by a positive Lyapunov ex-
ponent of the 1-D return map in Fig. 4(e). For chaos
generation, local unstability is required. The circuit can
exhibit self-switching by the occurrence of compulsory-
switching. These switchings can change the equilib-
rium attractor in Fig. 3(a) into the chaotic attractor.
Figs. 4(b) and (c) show coexistence of the periodic and
chaotic responses to equidistant periodic pulse-train in-
put. The circuit exhibits either response depending
on the initial state. This coexistence phenomenon can
also be confirmed in the 1-D return map in Fig. 4(f).
Fig. 4(d) shows the periodic response to non-equidistant
periodic pulse-train input (dA �= dB). The correspond-
ing 1-D return map in Fig. 4(g) is a composite map of
the chaotic 1-D map in Fig. 4(e) and the coexistence 1-D
map in Fig. 4(f). A stable fixed pointyp corresponding
to the periodic response appears in the composite map.
Fig. 6(a) shows the bifurcation diagram fordA anddB.
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Fig. 4: Typical responses and 1-D return maps for pe-
riodic pulse-train input (the case A:δ = −0.01, q =
−0.8). (a) Chaotic response. (b) and (c): Coexistence of
periodic and chaotic responses. (d) Periodic response.
(e) 1-D return mapy1 = fd(y0) (λ = 0.0479). (f) 1-D
return mapy1 = fd(y0) (λ = −0.477 for periodic at-
tractor;λ = 0.427 for chaotic attractor). (g) Composite
return mapy2 = fdA

◦ fdB
(y0) (λ = −0.326).
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Fig. 5: Typical responses and 1-D return maps for peri-
odic pulse-train input (the case B:δ = 0.05, q = −0.4).
(a) Chaotic response. (b) Periodic response. (c) Pe-
riodic response. (d) 1-D return mapy1 = fd(y0)
(λ = 0.276). (e) 1-D return mapy1 = fd(y0) (λ =
−0.169). (f) Composite return mapy2 = fdB

◦ fdA
(y0)

(λ = −0.0135).

4.2 Typical responses in the case B

We consider how the inputu(τ) change the chaotic at-
tractor in Fig. 3(b). Fig. 5 shows typical responses to pe-
riodic pulse-train inputs and corresponding 1-D return
maps with the Lyapunov exponents. Fig. 5(a) shows
the chaotic response to equidistant periodic pulse-train
input (d ≡ dA = dB). This chaotic response can be
confirmed by a positive Lyapunov exponent of the 1-D
return map in Fig. 5(d). Fig. 5(b) shows the periodic
response to equidistant periodic pulse-train input. A
stable fixed pointyp corresponding to the periodic re-
sponse appears in the 1-D return map 5(e). This means
that the periodic pulse-train input changes the chaotic
attractor in Fig. 3(b) into the periodic attractor. Fig. 5(c)
shows the periodic response to non-equidistant periodic



pulse-train input (dA �= dB). The corresponding 1-
D return map in Fig. 5(f) is a composite map of the
chaotic 1-D map in Fig. 5(d) and the periodic 1-D map
in Fig. 5(e). A stable fixed pointyp corresponding to
the periodic response appears in the composite map.
Fig. 6(b) shows the bifurcation diagram fordA anddB.

5 Conclusions

We have studied 3-D spiking oscillators with pulse-train
input. As an analysis tool, we have proposed a mapping
procedure based on a 1-D map focusing on the moment
of compulsory-switching. We have presented a simple
3-D spiking oscillator based on anRLC circuit. Apply-
ing equidistant and non-equidistant periodic pulse-train
inputs, the circuit can exhibit various chaotic and peri-
odic responses. Using the mapping procedure, we have
analyzed these responses.

In future works, we are considering (1) detailed anal-
ysis of bifurcation phenomena for wider parameter re-
gion, and (2) analysis of responses of circuits to non-
periodic (or chaotic) pulse-train input.
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