
Periodic Oscillatory Solution in Delayed
Competitive-cooperative Neural Networks: A Decomposition

Approach∗

Jinde Cao and Kun Yuan †

Abstract: In this paper, the problems of exponential convergence and the exponential stability

of the periodic solution for a general class of non-autonomous competitive-cooperative neural net-

works are analyzed via the decomposition approach. The idea is to divide the connection weights

into inhibitory or excitatory types and thereby to embed a competitive-cooperative delayed neu-

ral network into an augmented cooperative delay system through a symmetric transformation.Some

simple necessary and sufficient conditions are derived to ensure the componentwise exponential con-

vergence and the exponential stability of the periodic solution of the considered neural networks.

These results generalize and improve the previous works, and they are easy to check and apply in

practice.
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1 Introduction

Competitive and cooperative mechanisms arise from biological networks. The excitatory-

inhibitory connectivity structure of neural networks is similar to the competitive-cooperative mech-

anism of biological networks. By competitive connection we mean the way in which a neuron’s

firing inhibits the firing the other neurons. Conversely, cooperative connection refers to the way

in which a neuron’s firing excites the firing of others. In most cases, the activation of a neuron

is characterized by a sigmoid function. The competitive-cooperative connection pattern can thus

be recognized by the sign of the weights: positive weights are due to excitatory synapses, negative

weights are due to inhibitory synapses, while a zero weight indicates no neural connection at all.
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These mechanisms play an important role in the collective dynamics in neural networks. The sta-

bility analysis of such systems has raised great interest [1-8]. Recently, several efforts have been

devoted to the study of general competitive-cooperative neural networks using monotone dynami-

cal system theory [7-9]. In particular, a decomposition approach has been proposed in [7-9], that

consists of dividing the connectivity of a neural network into an augmented cooperative dynamical

system. Using this method, several necessary and sufficient conditions on guaranteed component

exponential convergence have been established for competitive-cooperative neural networks with de-

lay in [9]. In the same way, some sufficient and necessary conditions on componentwise exponential

convergence have been established for discrete-time neural networks in [7]. A similar approach that

embeds a competitive-cooperative neural networks into a larger cooperative system has also been

presented in [8] to confirm the stabilization effect of inhibitory self-connections on general delayed

neural networks.

Studies on neural dynamical systems not only involve discussion of stability property, but also

involve many dynamics behavior such as periodic oscillatory, bifurcation and chaos. In many ap-

plications, the property of periodic solutions is of great interest. To the best of our knowledge, few

authors study the periodic solution by the discussion of componentwise exponential convergence

and the application of contraction mapping principle. We will extend the studies in [9] and give

some sufficient and necessary conditions on componentwise exponential convergence for the more

general class of non-autonomous competitive-cooperative neural networks. In this paper, we do not

require the activation functions to be bounded, differentiable and global Lipschitz continuous; also

we do not assume that the considered model has any equilibriums. Specially, we give conditions on

the global exponential stability and the existence of the periodic solution of delayed neural networks

by the method using in [10-13,18]. In addition, one example is given to illustrate the results.

2 Preliminaries

2.1 Model description

The delay neural networks we consider are modelled by the following nonlinear functional

equation
dx

dt
= −Ax(t) + Bf(x(t)) + Cg(x(t− τ)) + I(t), (1)

where x(t) ∈ Rn is the neural state vector at time t, and τ > 0 is the time delay in the net-

works; A = diag[a1, a2, · · · , an] with every ai > 0 is the relax matrix, the entries of B and

C may be positive (excitatory synapses) or negative (inhibitory synapses); the last term I(t) is

the bounded external input function to the networks; f(x) = [f1(x1), f2(x2), · · · , fn(xn)]T and

g(x) = [g1(x1), g2(x2), · · · , gn(xn)]T are vector-valued output functions which possess the following

properties:

(H1) fi, gi are continuous and monotone nondecreasing , i = 1, 2, · · · , n;

(H2) fi(r1) ≤ αir1, gi(r1) ≤ βir1, for any r1 ∈ R+ , where αi > 0, βi > 0 are constants,
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i = 1, 2, · · · , n.

For convenience, the sector nonlinear function class z is defined by the functions which satisfy (H1)

and (H2).

Assume that the nonlinear system (1) is supplemented with initial values of the type x(t) =

φ(t), t ∈ [−τ, 0]. It is usually assumed that the given n-vector function φ is continuous though

it need only be measurable for Eq.(1) to be well defined. Here, we also assume a bounded and

piecewise continuous initial function with finite discontinuity points.

To characterize the dynamical behavior of model (1), we consider two bounded, continuous

and differentiable functions ξ(t), ζ(t) : [−τ,∞) → Rn, with ξ(t) > 0, ζ(t) > 0 and define the

time-variant set

Ωξ,ζ(t) = {x ∈ Rn : −ξ(t) ≤ x(t) ≤ ζ(t)},
where and throughout inequalities between vectors are in componentwise sense.

Definition 1. If for every f, g ∈ z, and for any t0 > 0, the solution of Eq.(1) satisfies x(t) ∈ Ωξ,ζ(t)

for t ≥ t0 whenever x(t0 + θ) ∈ Ωξ,ζ(t0 + θ) for θ ∈ [−τ, 0], we call the set Ωξ,ζ(t) a guaranteed

trapping region of model (1). That is, Ωξ,ζ(t) is such a set in Rn where solutions, once they enter,

can not leave as time increases.

Definition 2. If Ωξ,ζ(t) is a guaranteed trapping region, we further impose certain restriction on

the set Ωξ,ζ(t) by letting

ξ(t) = αe−σt, ζ(t) = βe−σt, (2)

for some scalar σ > 0 and two constant vectors α, β ∈ Rn with α, β > 0, then the system is said to

be guaranteed componentwise exponentially convergent (GCEC).

We will establish necessary and sufficient conditions for the guaranteed trapping region. This is

done by using the decomposition approach to be developed below.

2.2 A decomposition approach

We split the connection matrices B and C into two parts, respectively:

B = B+ −B−, C = C+ − C−,

with b+
ij = max{bij, 0}, c+

ij = max{cij, 0} signifying the excitatory weights and bij− = max{−bij, 0},
c−ij = max{−cij, 0} the inhibitory weights. The system (1) can be rewritten as

dx

dt
= −Ax(t) + (B+ −B−)f(x(t)) + (C+ − C−)g(x(t− τ)) + I(t). (3)

Now take the symmetric transformation y = −x from Eq.(3), it follows that

dy

dt
= −Ay(t) + B+f̃(x(t)) + B−f(x(t)) + C+g̃(x(t− τ)) + C−g(y(t− τ))− I(t), (4)

dx

dt
= −Ax(t) + B−f̃(x(t)) + B+f(x(t)) + C−g̃(x(t− τ)) + C+g(y(t− τ)) + I(t), (5)
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where f̃(u) = −f(−u), g̃(u) = −g(−u). Obviously, f̃ , g̃ ∈ z. Accordingly, we introduce the

following augmented system:

ḋ(t) = −Λd(t) + Π1h1(d(t)) + Π2h2(d(t− τ)) + Ĩ(t), (6)

where

d(t) =

[
p(t)
q(t)

]
, Λ =

[
A 0
0 A

]
, Π1 =

[
B+ B−

B− B+

]
, Π2 =

[
C+ C−

C− C+

]
,

h1(d(t)) =

[
f̃(p(t))
f(q(t))

]
, h2(d(t)) =

[
g̃(p(t))
g(q(t))

]
, Ĩ(t) =

[ −I(t)
I(t)

]
.

Noticing the (element-wise) non-negativity of Πi (i=1, 2), system (6) itself is cooperative and hence

possesses the following important order-preserving property.

Lemma 1. Let u(t) and v(t) be the solutions of Eq.(6). Then u(t0 + θ) ≤ v(t0 + θ) for θ ∈ [−τ, 0]

implies u(t) ≤ v(t) for t ≥ t0 ≥ 0. Moreover, if u(t) satisfies ω̇(t) ≥ −Λω(t) + Π1h1(ω1(t)) +

Π2h2(ω(t− τ)) + Ĩ(t) for t ≥ t0 ≥ 0, then u(t0 + θ) ≤ ω(t0 + θ) for θ ∈ [−τ, 0] implies u(t) ≤ ω(t)

for t ≥ t0 ≥ 0.

This is a specialization of general results (e.g., [14,17]) on monotone dynamics of cooperative

delay differential systems to Eq.(6). It indicates that the sates of a cooperative system will retain

for all time their initial relationship, a partial ordering induced by the subset of non-negative state

vectors of the state space. In the literature, such results are also referred to as comparison principles

for delay systems [16].

Lemma 2. Assume for Eqs.(3) and (6) that the initial condition −p(t0 + θ) ≤ x(t0 + θ) ≤ q(t0 + θ)

holds for θ ∈ [−τ, 0], then −p(t) ≤ x(t) ≤ q(t) for t ≥ t0 ≥ 0.

Proof. Since x(t) is the solution of Eq.(3),

u(t) =

[ −x(t)
x(t)

]

is the solution of Eq.(6).

Then,

u(t) =

[ −x(t)
x(t)

]
and v(t) =

[
p(t)
q(t)

]

are solutions of Eq.(6). From −p(t0 + θ) ≤ x(t0 + θ) ≤ q(t0 + θ), we have

u(t0 + θ) =

[ −x(t0 + θ)
x(t0 + θ)

]
≤

[ −p(t0 + θ)
q(t0 + θ)

]
= v(t0 + θ).

By Lemma 1, we can deduce u(t) ≤ v(t), that is −p(t) ≤ x(t) ≤ q(t). This completes the proof. 2
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3 Main results

3.1 Componentwise exponential convergence

We present here necessary and sufficient conditions for trapping regions of model (1).

Theorem 1. The set Ωξ,ζ(t) is a guaranteed trapping region for model (1) if and only if

Γ̇(t) ≥ (−Λ + Π1Σ1)Γ(t) + Π2Σ2Γ(t− τ) + Ĩ(t), t ≥ 0, (7)

where Γ(t) = [ξ(t)T ζ(t)T ]T , Σ1 = diag[α1, · · · , αn, α1, · · · , αn], Σ2 = diag[β1, · · · , βn, β1, · · · , βn].

Proof. We first proceed to show the efficiency of condition (7). From the definition of the class z it

is easy to see that h1(Γ(t)) ≤ Σ1Γ(t), h2(Γ(t−τ)) ≤ Σ2Γ(t−τ). Then by noticing the non-negativity

of the entries of matrices Π1 and Π2, it follows that Π1h1(Γ(t)) ≤ Π1Σ1Γ(t), Π2h2(Γ(t − τ)) ≤
Π1Σ1Γ(t− τ). Hence, if condition (7) holds, then we have

Γ̇(t) ≥ (−Λ + Π1h1(Γ(t)) + Π2h2(Γ(t− τ)) + Ĩ(t), t ≥ 0. (8)

Now consider an arbitrary f, g ∈ z and let x(t) be the solution of the corresponding Eq.(1) with the

initial value satisfying −ξ(θ) ≤ x(θ) ≤ ζ(θ) for θ ∈ [−τ, 0]. Take in Eq.(6) P (θ) = ξ(θ), q(θ) = ζ(θ)

and without loss of generality, let the initial time t0 = 0, then by Lemma 2,

−p(t) ≤ x(t) ≤ q(t), t ≥ 0. (9)

Meanwhile, let u(θ) = [p(θ)T q(θ)T ]T = Γ(θ). From condition (8) and Lemma 1,

u(t) ≤ Γ(t), t ≥ 0.

This together with condition (9) yields

−ξ(t) ≤ x(t) ≤ ζ(t), t ≥ 0.

Therefore, condition (7) is sufficient for Ωξ,ζt to be a guaranteed trapping region for the system.

To see the necessity of the condition, let us suppose that Ωξ,ζt is a guaranteed trapping region

for system (1), but the condition (7) is false. Then there should exist an index i ∈ {1, · · · , n} and

a time t1 > 0, such that

ξ̇i(t1) < −aiξi(t1) + B+
i K1ξ(t1) + B−

i K1ζ(t1) + C+
i K2ξ(t1 − τ) + C−

i K2ζ(t1 − τ)− Ii(t1) (10)

or

ζ̇i(t1) < −aiζi(t1) + B+
i K1ξ(t1) + B+

i K1ζ(t1) + C−
i K2ξ(t1 − τ) + C+

i K2ζ(t1 − τ) + Ii(t1), (11)

where B+
i , B−

i , C+
i and C−

i are the ith row vectors of matrices B+, B−, C+ and C−, respectively,

and K1 = diag[α1, · · · , αn], K2 = diag[β1, · · · , βn].

Next pick for Eq.(1) particular activation functions f(x), g(x) defined by f(x) = 1
2
(|K1(x + δ1)| −
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|K1(x− δ1)|) and g(x) = 1
2
(|K2(x + δ2)| − |K2(x− δ2)|) with δ1 = ξ(t1) + ζ(t1) and δ2 = ξ(t1− τ) +

ζ(t1 − τ).

Clearly f(x), g(x) ∈ z and

f(−ξ(t1)) = −k1ξ(t1), f(ζ(t1)) = k1ζ(t1), (12)

g(−ξ(t1 − τ)) = −k2ξ(t1 − τ), g(ζ(t1 − τ)) = k2ζ(t1 − τ). (13)

Then, consider the solution x(t) with x(t1 + θ) ∈ Ωξ,ζ(t1 + θ) for θ ∈ [−τ, 0] defined by

if bii ≥ 0

xi(t1 + θ) =




−ξi(t1), if θ = 0,
−ξi(t1 + θ), if θ ∈ [−τ, 0), cii ≥ 0,
−ζi(t1 + θ), if θ ∈ [−τ, 0), cii < 0,

and for j 6= i, j = 1, · · · , n

xj(t1 + θ) =





−ξj(t1), if θ = 0, bij ≥ 0,
ζj(t1 + θ), if θ = 0, bij < 0,
−ξj(t1 + θ), if θ ∈ [−τ, 0), cij ≥ 0,
ζj(t1 + θ), if θ ∈ [−τ, 0), cij < 0.

From Eqs. (3), (10), (12) and (13), the ith component of the vector x(t1) satisfies

ẋi(t1) = −aixi(ti) + (B+
i −B−

i )f(x(t1)) + (C+
i − C−

i )g(x(t1 − τ)) + Ii(t1)

= aiξi(t1)xi(t1)) + B+
i f(−ξ(t1))−B−

i f(ζ(t1)) + C+
i g((−ξ(t1 − τ))

−C−
i g(ζ(t1 − τ)) + Ii(t1)

= aiξi(t1)xi(t1))−B+
i K1(ξ(t1)−B−

i K1(ζ(t1))− C+
i K2((ξ(t1 − τ))

−C−
i K2(ζ(t1 − τ)) + Ii(t1)

< −ξ̇i(t1).

By noting xi(t1) = −ξi(t1) as defined above, this implies xi(t1 + ∆) < −ξ(t1 + ∆) for sufficiently

small ∆ > 0,

if bii < 0

xi(t1 + θ) =





ζi(t1), if θ = 0,
ζi(t1 + θ), if θ ∈ [−τ, 0), cii ≥ 0,
−ξi(t1 + θ), if θ ∈ [−τ, 0), cii < 0,

and for j 6= i, j = 1, · · · , n

xj(t1 + θ) =





ζj(t1), if θ = 0, bij ≥ 0,
−ξj(t1 + θ), if θ = 0, bij < 0,
ζj(t1 + θ), if θ ∈ [−τ, 0), cij ≥ 0,
−ξj(t1 + θ), if θ ∈ [−τ, 0), cij < 0.
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From Eqs. (3), (11), (12) and (13), the ith component of the vector x(t1) satisfies

ẋi(t1) = −aixi(ti) + (B+
i −B−

i )f(x(t1)) + (C+
i − C−

i )g(x(t1 − τ)) + Ii(t1)

= −aiζi(t1)xi(t1)) + B+
i f(ζ(t1))−B−

i f(−ξ(t1)) + C+
i g((ζ(t1 − τ))

−C−
i g(−ξ(t1 − τ)) + Ii(t1)

= −aiζi(t1)xi(t1)) + B+
i K1(ζ(t1) + B−

i K1(ξ(t1))− C+
i K2((ζ(t1 − τ))

+C−
i K2(ξ(t1 − τ)) + Ii(t1)

> ζ̇i(t1).

By noting xi(t1) = −ζi(t1) as defined above, this implies xi(t1 + ∆) > ζi(t1 + ∆) for sufficiently

small ∆ > 0.

Hence, Ωξ,ζ(t1) could not be a guaranteed trapping region for system (1), showing the necessity of

condition (7). This completes the proof. 2

By taking ξ(t) and ζ(t) to be two constant vectors, we obtain a special guaranteed trapping

region.

Corollary 1. For two constant vectors α, β ∈ Rn with α > 0 and β > 0, the set Ωα,β = {x ∈ Rn :

−α ≤ x ≤ β} is a guaranteed trapping region for system (1) if and only if

(Λ− Π1Σ1 − Π2Σ2)η ≥ Ĩ(t), (14)

where η = [αT βT ]T .

Remark 1. The above results depend only on αi, βi(i = 1, · · · , n) and thus are applicable to the

whole set of z. For a neural network (1) with given f and g, one can similarly conclude that the

set Ωξ,ζ(t) is a trapping region if and only if

Γ̇(t) ≥ −ΛΓ(t) + Π1h1(Γ(t)) + Π2h2(Γ(t− τ)) + Ĩ(t), t ≥ 0, (15)

where h1(Γ(t)), h2(Γ(t)) and Γ(t) are specified as in Eqs.(6) and (7). Also for the set Ωα,β in

Corollary 1, condition (14) reads

Λη − Π1h1(η)− Π2h2(η) ≥ Ĩ(t).

If h1 and h2 are bounded, one can pick a constant vector η > 0 to fulfill this condition. This indi-

cates that a delay neural network with bounded activation function always has a trapping region.

(see also [15])

By further assuming restriction of the set Ωξ,ζ(t) in Theorem 1, we obtain the following com-

ponentwise convergence result. Particularly, inserting special ξ(t) and ζ(t) specified by Eq.(2) into

condition (7) leads the following necessary and sufficient condition.

Theorem 2. Model (1) is GCEC if and only if there are two constant vectors α, β ∈ Rn with

α, β > 0 and a scalar σ > 0 such that

(σI − Λ + Π1Σ1 + eστΠ2Σ2)η + e−σtĨ(t) ≤ 0, t ≥ 0, (16)
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where η = [αT βT ]T and I is an identity matrix with appropriate dimensions.

Corollary 2. Model (1) is GCEC if and only if there are two constant vectors α, β ∈ Rn with

α, β > 0 and a scalar σ > 0 such that

(σI − A + |B|K1 + eστ |C|K2)ρ ≤ 0, (17)

where ρ = α + β > 0, |B| = [ |bij| ] = B+ + B− and |C| = [ |cij| ] = C+ + C−. Proof. Rewrite

condition (16) as

(σI − A + B+K1 + eστC+K2)α + (B−K1 + eστC−K2)β − e−σtI(t) ≤ 0,

(σI − A + B+K1 + eστC+K2)β + (B−K1 + eστC−K2α + e−σtI(t) ≤ 0.

Adding them we have

(σI − A + |B|K1 + eστ |C|K2)ρ ≤ 0.

This completes the proof. 2

Next, we make some comments on the symmetrical case α = β. In this case, condition (17)

reduce to

(σI − A + |B|K1 + eστ |C|K2)α ≤ 0. (18)

Clearly, it is equivalent to the existence of a constant vector α > 0 such that

(A− |B|K1 − |C|K2)α > 0. (19)

Noticing the non-positivity of every off-diagonal entries of matrix A−|B|K1−|C|K2, condition (19)

is in turn tantamount to saying that the matrix A − |B|K1 − |C|K2 is an M matrix [9]. Further,

by the properties of M matrices, it is also equivalent to

∣∣∣∣∣∣∣

h11 · · · h1i
...

. . .
...

hi1 · · · hii

∣∣∣∣∣∣∣
> 0, i = 1, · · · , n, (20)

where

hij =

{
ai − αi|bii| − βi|cii|, for i = j,
−αj|bij| − βj|cij|, for i 6= j.

Remark 2. Observe that, although conditions (17),(18),(19) and (20) are all necessary and suffi-

cient for GCEC of the system, the trajectory behavior that they can yield for a network may be

quite different. The first two conditions can guarantee a network to be convergent with a prescribed

exponential decay rate and trajectory bounds, described respectively by σ and α, β, while the last

two only ensure exponential convergence in a network, saying nothing about nothing decay rate

explicitly (condition (18) also provides an estimate of the trajectory bound). On the other hand, it

should be noted that conditions (18) and (19) are delay independent. This is of practical significance

in the case where time delays exist but their magnitudes could not be evaluated accurately.
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3.2 The existence and exponential stability of periodic solution

Theorem 3. Under the assumption of (H1) and (H2), the system

dx

dt
= −Ax(t) + Bf(x(t)) + Cg(x(t− τ)) + I(t), (21)

where I(t+ω) = I(t), that is, I(t) is a periodic function, there exists exactly one ω-periodic solution

of (21) and all other solutions of Eq.(21) converge exponentially to it as t → +∞ if any one of the

following conditions holds:

(I) (σI − Λ + Π1Σ1 + eστΠ2Σ2)η + e−σtĨ(t) ≤ 0, t ≥ 0,

(II) (σI − A + |B|K1 + eστ |C|K2)ρ ≤ 0,

(III) there exists a positive vector α such that(A− |B|K1 − |C|K2)α > 0,

(IV) A− |B|K1 − |C|K2 is an M matrix,

where notations denote as above.

Proof. Let C = C([−τ, 0], Rn) be the Banach space of continuous functions which map [−τ, 0] into

Rn with the topology of uniform convergence. For any φ ∈ C, we define ‖φ‖ = supθ∈[−τ,0] |φ(θ)|
in which |φ(θ)| =

n∑
i=1

[φi(θ)]
2. For any φ, ϕ ∈ C, we denote the solutions of Eq.(21) by (0, φ) and

(0, ϕ) by x(t, φ) = [x1(t, φ)), · · · , xn(t, φ)]T , x(t, ϕ) = [x1(t, ϕ)), · · · , xn(t, ϕ)]T , respectively. Define

xt(φ) = x(t + θ, φ), θ ∈ [−τ, 0], t ≥ 0.

From Theorem 2, we have ‖xt(φ)‖ ≤ max{‖α‖, ‖β‖}e−σt and ‖xt(ϕ)‖ ≤ max{‖α‖, ‖β‖}e−σt. Let

M = 2max{‖α‖,‖β‖}
‖φ−ϕ‖ , clearly,

‖xt(φ)− xt(ϕ)‖ ≤ ‖xt(φ)‖+ ‖xt(ϕ)‖ ≤ M‖φ− ϕ‖e−σt. (22)

We can choose a positive integer m such that Me−σmω ≤ 1
9
.

Define a Poincare mapping P : C → C by Pφ = xω(φ), we can derive from (22) that ‖Pmφ−Pmϕ‖ ≤
1
9
‖φ− ϕ‖.

This implies that Pm is a contraction mapping, hence there exists a unique fixed point φ∗ ∈ C such

that Pmφ∗ = φ∗. Note that Pm(Pφ∗) = P (Pmφ∗) = Pφ∗.

This shows that Pφ∗ ∈ C is also a fixed point of Pm, so Pφ∗ = φ∗, ie, xω(φ∗) = φ∗.

Let x(t, φ∗) be the solution of (21) through (0, φ∗). Obviously, x(t+ω, φ∗) is also a solution of (21),

and xt+ω(φ∗) = xt(xω(φ∗)) = xt(φ
∗) for t ≥ 0, therefore x(t + ω, φ∗) = x(t, φ∗) for t ≥ 0, showing

that x(t, φ∗) is exactly an ω-periodic solution of (21), and it is easy to see that all other solutions

of (21) converge exponentially to it as t → +∞. This completes the proof. 2

4 An example

Consider the competitive-cooperative neural networks with delay




dx1

dt
= −2x1(t) + 1

2
f1(x1(t)) + 1

2
g1(x1(t− τ)) + sin t

dx2

dt
= −2x2(t) + 1

2
f2(x2(t)) + 1

2
g2(x2(t− τ)) + cos t,
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where τ = 1,

fi(xi) = gi(xi) =

{
xi, if xi ≥ 0,
x3

i , if xi < 0,

for i = 1, 2,

A =

[
2 0
0 2

]
, B =

[
1
2

0
0 1

2

]
, C =

[
1
2

0
0 1

2

]
.

Obviously,

K1 = K2 =

[
1 0
0 1

]
.

Take

α =

[
1
1

]
,

then (A−B|K1| − C|K2|)α > 0.

Therefore, all the solutions of the system are componentwise exponential convergence and the system

exists a unique exponential stability periodic solution.

Obviously, in this example the activation functions are not global Lipschitz continuous, therefore

the previous results are not plausible to it. Using our criteria given in this paper, we can deduce

the system exists an exponential stability periodic solution.

Let the system be supplemented with the four different constant initial values, we give the

following diagram to explain our example.

0 5 10 15 20 25 30 35 40 45 50
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
x1
x2

Fig.1 Transient response of state variables

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x1

x2

Fig.2 Phase plots of state variable (x1(t), x2(t))

5 Conclusions

We have developed a decomposition method in the more general competitive-cooperative delay

neural networks. Simple necessary and sufficient conditions have been established to guarantee

trapping region regions and guaranteed componentwise exponential convergence. Moreover, a set of

criteria have been derived ensuring the exponential stability and the existence of periodic solution

10



for the considered model. The criteria does not require the activation functions fi, gi to be differen-

tial, bounded and global Lipschitz continuous and not also require the weight-connected matrices

B, C to be symmetric and the external input vector to be constants. Therefore, the results are of

practical significance in designing a network with desired performance.
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