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Abstract: - This paper presents a new algorithm for robust speech classification in adverse conditions, using an
appropriate wavelet packet decomposition of the speech signal. The classification is achieved by generating a Sub-band
Crosscorrelation Analysis of different subbands signals derived from a tree structured filter banks. The performance of
the proposed technique is evaluated on speech signal with real world noise, added to it, at various SNR. Experimental
results show the accuracy of the proposed technique especially in low signal to noise circumstance <10 dB .
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1 Introduction

Speech Classification can be regarded as a procedure
that allows the end-pointing of segments of speech from
surrounding areas of speech and non speech. It plays an
important role on diverse applications dealing with
speech. Moreover, accurate speech classification is
required for the success of speaker recognition
algorithms and many speech enhancement systems.

Several established Algorithm's have been used in the
detection and classification of speech, they are
essentially based on waveform processing (energy, zero
crossing rate) [5], correlation processing [5] and spectral
estimation [4]. The parameters used in these algorithms
are based on time averages over a fixed length window.
Therefore, the time resolution of these algorithms
depends on the choice of the window length and can not
be matched to the time characteristics of the speech
signal. For example, the detection of transients needs
high time resolution. Whereas, during stationary and
periodic frames a longer analysis window, can be more
efficient to extract the important signal features. Further
disadvantage is the presence of background noise
especially under low SNR circumstance. So
improvement in noisy environment is still a remaining
subject.

Commonly, speech sound is considered to be a signal
whose component localization varies widely in time and
frequency, it contains both high/low frequency
components and short/large duration sounds. Therefore
it's important to decompose speech into waveforms

whose time frequency properties are adapted to its local
structures. Considering its mathematical property and the
capability to model speech sounds, the wavelet packet
[10] is well suited to this type of expansion. The wavelet
packet transform is an analysis method that offers more
flexibility in adapting time and frequency resolution to
the input signal. This flexibility is achieved by
correlating the input signal with basis functions that are
scaled and shifted versions of a so called mother wavelet
which itself is a band pass function.

This paper focuses on speech classification in noisy
environment. In section 2, we introduce a brief overview
on the wavelet transform and the subband wavelet packet
decomposition. In section 3, we describe a new voiced
unvoiced classification algorithm in noisy environment.
This technique based on time and frequency feature uses
a correlation model of different subbands speech signals
derived from a tree structured filter bank properly
choozed to extract the speech signal characteristics. In
section 4, we present the effectiveness of the proposed
method and discuss the simulation results. Finally, the
main conclusions of our work are summarized in section
5.

2 Speech Decomposition via Wavelet
Packet

Wavelet transform [8] was recently introduced as an
alternative technique for analyzing non stationary signal.



It provides a new way for representing signal into well-
behaved expression that yields useful properties.

The continuous wavelet transform of signal x(7) relative
to the basic wavelet is given by:

Wyx(ab) =L [xow'(2) O
where a, b (a,b UIR, a# 0) are respectively the

translation and scale parameters.

This transform is essentially employed to derive
properties; however, discrete forms are necessary for
practical applications. Discrete time implementation of
wavelet is based on a tree structure which uses a single
basic building block repeatedly until the desired
decomposition is accomplished. This basic unit uses
techniques of multi-rate signal processing [2] and
consists of a low and a high pass filter followed by a
down-sampling unit. This results in an octave-band filter
bank in which the sampling rate of a subband is
proportional to its bandwidth.

The wavelet analysis is sometimes inefficient because it
only partitions the frequency axis finely toward the low
frequency. The wavelet packet transform [10] constitutes
a solution that permits a finer and adjustable resolution
of frequencies at high frequencies and gives a rich
structure that allows adaptation to particular signals or
signals classes. Unlike the wavelet transform, the
wavelet packet transform divides the low and the high
frequency subband, resulting in tree structured filter
bank called a wavelet packet filter bank. This
transformation creates a division of the frequency
domain to represents the signal optimally.

2.1 Speech Decomposition

Speech can simply be classified as voiced, unvoiced and
silence. Voiced speech is quasi-periodic in the time
domain and harmonically structured in the frequency
domain while unvoiced speech is random like and
broadband. The voiced sound is frequency limited signal
which has most of the energy in the low frequency
range, less than 1Khz, whereas the energy of unvoiced
speech is usually concentrated at the high end of
frequency scale (=3Khz) [9]. If we want to get a
discrimination of the voiced and unvoiced sounds we
must derive benefit from the information contained in
those bands where the voiced sound or the unvoiced
sound is dominant compared with the other sounds.

It is known that most of the speech signal power is
contained around the first formant. The statistical results
for many vowels of adult males and females indicates
that the first formant frequency doesn't exceed 1Khz and

doesn't below 100Hz approximately. In addition, pitch
frequency lies in normal speech between 80 and 500Hz.
Based on these spectral behaviors, we suggest to
decompose the speech signal x[n] into 8 subband

wavelet packet tree:
8
x[n] =Y W, x(ix,[n] (2)
i=11
where i=1,2,.....8, W,x(i) and (i) represent
respectively the subband frequency index, the Wavelet

Packet (WP) Coefficients and the Wavelet Packet
function of the i'th subband.

Filter Frgggctaircy Band-pass (Hz)
(Hz)

1 125 0-250

2 375 250 — 500

3 750 500 — 1000

4 1500 1000 — 2000
5 2500 2000 — 3000
6 3500 3000 — 4000
7 5000 4000 — 6000
8 7000 6000 — 8000

Tab.1 8 subband wavelet packet tree covering 0 - 8Khz
and their parameters: Center frequency Bandpass
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Fig.1 Time frequency tiling of the proposed wavelet
packet tree.



The proposed tree assigns more subband in low
frequency which normally contain large portions of the
signal energy. The wavelet packet transform is computed
for the given wavelet tree, which result in a sequence of
subband signals or equivalently the wavelet packet
transform coefficients, at the leaves of the tree. In effect,
each of these subband signals contains only restricted
frequency information due to inherent band-pass
filtering. The filter bank that implements the wavelet
packet decomposition and the time frequency tilling are
given respectively in Figure 1 (a) and (b) (The depicted
decomposition scheme is for a sampling rate

£, =16Khz).

3 Subband Crosscorrelation Analysis

The speech signal is highly correlated in case of voiced
speech. This fact makes it possible to track the
uncorrelated portions and extract the pure speech
segments. This procedure is still effective to detect the
voice activity in speech signal both in noise and noise
free. In effect, any transition between a silence and
voiced sound or unvoiced sound can be identified by the
Subband Crosscorrelation Analysis [6] between different
subband signals obtained via wavelet packet subband
decomposition. This technique gives the maximum
reliable correlation representation between the subband
signals and gets the highest immunization to noise.
Moreover, the nature of the wavelet packet
decomposition makes it possible to control the signal
into many bands each has a portion of the noise power,
which is much less than the total noise power distributed
in all bands especially in the case of normal distribution
of noise.

The algorithm begins by splitting the speech signal x[7]
into windows x[n] = x[n —m]w[m]. Each window is
passed through an appropriated filter bank to extract the
wavelet  packets  parameters. The Subband
Crosscorrelation Analysis is performed using different
filters responses (figure 1): filters 1, 2 and 3 are selected
to detect the voiced segments and filters 6, 7 and 8 are
selected to locate the unvoiced segments. The selection
of the frequency bands is based on the speech behavior
which indicates that the most power of the voiced sound
and the unvoiced sound reside respectively in the low
frequency (<1Khz) and the high frequency bands
(2 3Khz).

After selecting the filters responses, the crosscorrelation
functions R ,[n], R5,[n], R;[n], R!,[n] and
R;(_S [7] between the filters outputs, are generated for
each frame k, where:

2N-1

REIT =D x, [ xi [l +1] (3)

and k, N define respectively the frame rank and the
length of the subband signal x! [n].

To generate any crosscorrelation function defined above,
a simple interpolation technique is used to insert points
between the wavelet packets parameters to expand them
in each frequency band to the window length. The
frames of the all crosscorrelation parameters are
concatenated, then the absolute value of the points is
taken and smoothed using low pass filter. Consequently,

we obtain 5 envelopes functions R,_,[n], R,;[n],

R, ;[n], Ry_,[n] and R, ¢[n], where:
L+

RIN=3REII-(k=DN]  (4)

L: total number of frames.
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Fig.2 The smoothed crosscorrelation functions (1)
R ,[n], 2) R,5(n], 3) R;[n], (4) Re,[n] and (5)
R, ¢[n] of the speech signal depicted in the first
subfigure.

The vocal signal described by figure 2, is constituted by
two voiced segments and two unvoiced segments, from
where the existence of five zones of transitions. The
application of the wavelet packet transform according to
the proposed tree [6] permits to get the decomposition
coefficients. As shown in figure 2, the energy changes
can easily be detected. Correlating the energy contents of



the same signal in two different frequency levels
generates the curves shown.
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Fig.3 The choosed crosscorrelation functions (1) R, [n]

and (2) R,[n] of the speech signal depicted in the first
subfigure

After applying subband crosscorrelation analysis, we
choose two envelope function R,[n] and R,[n].

R, [n] is selected as the maximum energy contribution
from R, ,[n], R, ;[n], R,;[n] and R, [n] is selected,
too, as the maximum energy contribution from R,_,[n],

R, ¢[n]. The discrimination of the speech segments

(voiced sound and unvoiced sound) from noise is
conducted using a comparison with an appropriate
threshold, which is generated exploiting the first frames

of the functions R, [n] and R, [n].

The research of every class (voiced, unvoiced and
silence) is completely carried out in independent manner.
Two types of location conflicts can appear: 1) Obtaining
disconnected segments and 2) Obtaining overlapped
segments.

To solve these conflicts and produce a coarse
segmentation of the signal it’s necessary to take into
account the locally results location of each stage. The
proposed solution is inspired from the works of Fohr [3]
and Haigh [4]:
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Fig.4 Case of overlapped segments. The distances

D, (p), D,(p) and D(p).

Case of disconnected segments: The portions of the
signal that are not classified in one of the two explicitly
classes (sought-after) are cataloged "another" and are
supposed to correspond to "intervals of silence". This
technique solves the disconnected segment problem and
all portions of the signal are thus cataloged by at least
one class. The remaining contradictory cases are cases of
overlap segments.

Case of overlapped segments: The algorithm tries to
get some limit between segments. The figure 4 shows a

typical case of overlapped segments S,(d,,m,, f;) and
S,(d,,m,, f,) where d,, f

respectively the beginning sample of the segment 4, the
ending sample of the segment i and the maximum

and m, mark

between the center ¢, and the border of the segment i

that presents a conflict (either d, or f,).
In order to solve the conflict of overlap, we propose to
determine a border between segments S, and S, in the

interval [m] , mz]. For each sample p brings in m, and

m, the distances (absolute middle value)
D, (p,m;) = |R1 (p) = R (m, )| and
D,(p,m,) = |R2 (p)—R,(m,)|, are calculated

respectively with the samples m, and m,, where R, (k)
and R, (k) define the chosen crosscorrelation functions
for located the voiced zone and unvoiced zones. The
D, (p,m;) and D,(p,m,) permit to
determine the function thereafter:

distances



D(p) = D, (p,m,) = D,(p,m,) (5)
D,(p.m,) +D,(p,m,)

The evolution of this function forms a curve of which an

example is represented in the figure 4. The curve D(p)

passes by a point M for which the distance is

D(M) =0 and the temporal abscissa is ?,, . This point

constitutes the border of segmentation between segments

S, and S, . Thus, one gets a sequence of two adjacent
segments.

4 Results and Discussion

In order to evaluate the performance of classifying the
speech sounds by crosscorrelation method, experiments
by computer simulation is carried out. The Speech
signals uttered by male and female speakers are obtained
from TIMIT corpus. The test set consists of a total of
2156 frames of data sampled at 16 Khz rate. 845 and 683
frames are manually labeled as voiced and unvoiced
segment. Experiments were conducted by adding real
world noise: Bursting noise, Factory noise, Volvo noise
and F16 jet engine noise, with different Signal to Noise
Ratio (15dB, 10dB, 5dB and 0dB). The other details in
the experiments are as follows: window size is 32ms, the
window shift is 16ms and the mother wavelet is
Daubechies 10.
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Fig.5 Performance of the proposed method. (a) error rate
in detecting voiced sound, (b) error rate in detecting
unvoiced sounds, (c) error rate in detecting silence and
(d) global error rate.

The results for noisy speech are depicted in figure 5,
which contains the detection error respectively for the
voiced segments, the unvoiced segments and silence.
Errors in the voiced and unvoiced columns indicate
missed detections, whereas errors in the silence column
indicate false alarms. The analysis of the figure 5-(a)
shows that an error rate less than 6% (Bursting noise) is
achieved for voiced sound detection in Bursting noise
even in the hard cases (SNR=0dB). Whereas, in
detecting both the unvoiced sound and silence (figure5
(b), (c)), we observe in the same noisy environment and
the same condition (0dB), an error rate detection of
unvoiced sound and silence less respectively than 20%
and 10%.

In the case where the speech signal is corrupted by
factory noise or volvo noise, the opposite phenomena is
observed. This noting indicates that the performances of
the proposed technique for detecting voiced sounds are
more sensitive to narrow band noise. We note also that
for the all SNR's, the technique generate more detection
error where speech signal is contaminated by F16 jet
engine noise which exhibits significant non stationary in
power and frequency content.

4 Conclusion

We propose a robust voiced/unvoiced classification
algorithm in noisy environment, using an appropriate
wavelet packet decomposition of the speech signal.
Classification is achieved by subband crosscorrelation
analysis generated using a correlation of different
subbands signals derived from a tree structured filter
banks. Based on experiment results it is shown that the
proposed method can detect accurately the voiced and
unvoiced sounds, even in low SNR (<10dB).
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