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Abstract-  In this paper, the idea of emotional critic based fuzzy controller is generalized in order 
to control of nonlinear, MIMO HVAC System. The proposed methodology is composed of a set 
of neurofuzzy controllers, the weights of which are adapted according to emotional signals 
created by a block called fuzzy critic. Our proposed solution, can achieve very robust and 
satisfactory performance even though there were only two controlled input processes to the plant 
which could be used to get the desired performance levels. The response time was also very fast 
despite the fact that the control strategy was based on bounded rationality. The proposed strategy 
is very flexible and alternative performance specifications can easily be enforced via defining 
proper emotional cues. 
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1 Introduction 
The HVAC (Heating, Ventilation, and Air 
Conditioning) problem is a difficult control 
problem receiving much attention in recent 
and past research. The present methods for 
control are satisfactory in most cases, but there 
is significant room for improvement, both in 
terms of human comfort and particularly 
energy savings. HVAC systems are highly 
nonlinear with widely varying dynamics at 
different operating points. It is difficult, if not 
impossible, to construct LTI models of the 
system which exhibit dynamics similar to the 
physical plant dynamics. Such systems also 
incur highly variable gains at different 
operating points. The different components of 
an HVAC system, (heating coils, fans, 
dampers, etc) are highly interactive and cannot 
be modeled as isolated units [1]. HVAC 
systems depend heavily on unpredictable 
scheduling; changes in weather conditions and 
unpredictable human activities contribute to 
the difficulty of the HVAC problem. 
Traditional adaptive control techniques are 

often ineffective, because these techniques 
make assumptions about the underlying 
dynamics of the system and the form of the 
system.  
The problem of HVAC control can be posed 
from two different points of view. In the 
first, one aims at reaching an optimum 
consumption of energy. In the second, that is 
more common in HVAC control, the goal is 
keeping moisture, temperature, pressure and 
other air conditions in an acceptable range. 
Several different control and intelligent 
strategies have been developed in recent 
years to achieve the stated goals fully or 
partially. Among them, PID controllers 
[2,3], DDC methods [4,5], optimal 
[11,12,13], nonlinear [13] and robust [14,15] 
control strategies, and neural and/or fuzzy 
[6,7,8,9,10,16] approaches are to be 
mentioned. We have also dealt with this 
problem and provided novel solutions in 
[18,19,20,21,22]. The purpose of this paper 
is to suggest another control approach, based 
on a modified version of Context Based 



 

 

Reinforcement Learning (CBRL) [23], to 
achieve faster response with reduced 
overshoot and rise time. A main motivation 
was to assess the extent of applicability of our 
non model-based and heuristic approach to 
more complex control tasks involving 
unknown plant delays or non-minimum-phase 
input-output relationships. In the subsequent 
sections, we discuss the HVAC system, our 
proposed controller, and its application in the 
closed loop control system, simulation and 
some concluding remarks. 
 
2 HVAC System 
In HVAC systems, a central air supply 
provides air at a controlled temperature and 
flow rate for use in heating (or cooling) a 
space. A heating (or cooling) coil is used in 
the central air supply for heating (or cooling) 
the discharged air. The temperature of the 
discharged air is controlled by regulating the 
rate at which hot (or chilled) water flows 
through its heating (or cooling) coil(s). The 
flow rate of the discharged air is regulated to 
maintain a predetermined static air pressure 
within the temperature controlled space. 
Typically, the space within a building is 
divided into smaller zones, allowing the 
temperature within each zone to be maintained 
independently of the others. Each zone 
contains a reheat (and/or cooling) coil which is 
used to moderate the final temperature of the 
air discharged into the zone. 
A characteristic of today's HVAC systems is 
the use of centralized hot (or chilled) water 
supplies in servicing multiple central air 
supplies. Such an HVAC interconnection 
(architecture) restricts the controller design 
and impacts the performance of the resulting 
system. A full MIMO controller requires 
control of the temperature and flow rates of 
both the air and water owing through the 
heating coil. Consequently, independent air 
and water supplies would be required for each 
coil. Such a system represents a major shift 
from current HVAC design paradigms. 
For simulation of HVAC systems, some 
different models have been proposed and 
considered. In [18,19] a linear first order 
model of the system with a time delay is put 

forward, while the nonlinearity of the 
HVAC systems is considered in [17]. In this 
paper, we used the model developed in [1], 
since it aims at controlling the temperature 
and humidity of the Variable Air Volume 
(VAV) HAVC system, however SISO 
bilinear model of the HVAC system for 
controlling the temperature has been given 
in [13]. Below, we describe the 
mathematical structure of a MIMO HVAC 
model used throughout this paper. The state 
space equations governing the model are as 
follows: 
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In which the parameters are: 
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And the numerical values are given in table 
1.  
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Table1: Numerical Values for system parameters 
 
Also, the actuator’s transfer function can be 
considered as: 

)S1/(k)S(Gact τ+=                                     
 In which k  and τ  are the actuator’s gain 
and time constant. The schematic structure 
of the HVAC system is given in figure 1. 



 

 

The system has delayed behavior which is 
represented via linearized, first order and time 
delay system. Furthermore, the model 
represents a MIMO system in which one of 
the I/O channels has a right half plane zero, 
meaning that it is non-minimum-phase. 
 

 

Figure1- Model of the HVAC system 
 
3  Neuro-Fuzzy Controiller 
A Block diagram representation of ECBFC is 
shown in Fig.2. As it can be seen, it is 
composed of two main parts: 

A: Neurofuzzy controller: which provides the 
control signal for the plant. 
B: Critic: which provides the emotional signal 
according to the control situation and updates 
the weights of the neurofuzzy controller. 
 
3.1. Design of the neurofuzzy 
controller 
The neurofuzzy controller applied is a 
standard Sugeno fuzzy controller composed of 
four layers. In the first layer, all inputs are 
mapped into the range of [-1, +1]. In the 
second layer, the fuzzification process is 
performed using gaussian membership 
functions with five labels for each input. In 
layer 3, decision-making is done using Max-
Product law and defuzzification is carried out 
in the fourth layer in order to calculate the 
proper control input using Takagi-Sugeno 
relationship: 
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Where x1 and x2 are inputs to the controller, 
ui, n, and y are the ith input of the fourth 
layer, number of rules in the third layer, and 
output of the control system, respectively 
and ai, bi, ci are parameters to be determined 
via learning. 
 

Fuzzifier

Fuzzy inference
engine

DeFuzzifier

Fuzzy rule base

X in u

Fuzzy sets in u Fuzzy sets in v

y in v

 
 

Figure 1.B- The Structure of Fuzzy Controller 
 

3.2. Design of the Critic 
The critic block applied here has the same 
structure of a fuzzy PD controller. Inputs of 

the critic are e and 
.
e (error and the rate of 

change of error). Fuzzification and 
defuzzification are performed by gaussian 
membership functions with 5 labels for each 
input and 7 labels for the output; deduction 
is performed by Max-Product law and for 
defuzzification the centroid law is used  
(Due to the important role of the critic, the 
number of the labels are increased to 
achieve a better performance). The rule base 
for fuzzy critic is shown in Fig.3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2- Block Diagram of Neuro-Fuzzy 
Controller 
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The aim of the control system is the 
minimization of the sum of squared emotional 
signals. Accordingly, first we describe the 
error function E as follows: 
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where rj ‘s are the output signals of each critic, 
Kj ‘s the corresponding output weights and m 
is the total number of outputs. 
For the adjustment of controllers’ weights the 
steepest descent method is used: 
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Where iη is the learning rate of the 
corresponding neurofuzzy controller and n is 
the total number of controllers. In order to 
calculate the RHS of (11), the chain rule is 
used: 
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From (10), we have, 
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where Jji is the element located at the ith 
column and jth row of the Jacobian matrix. 
Taking 
ej = yrefj -yj              j=1,2,…, m                  (15) 

where ej is the error produced in the tracking 
of jth output and yrefj is the reference input (in 
case number of outputs is greater than the 
number of inputs, some of  yrefj’s are taken as 
zero as it will be cleared by the inverted 
pendulum example). Now we have 
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Since with the incrimination of error, r will 
also be incremented and on the other hand, on-

line calculation of 
j

j

e
r
∂

∂
is accompanied with 

measurement errors, thus producing 
unreliable results, only the sign of it (+1) is 
used in our calculations. 

From (10) to (16), iω∆ will be calculated as 
follows: 
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Equation (17) is used for updating the 
learning parameters ail’s, bil’s and cil’s in (9), 
which is straightforward. 
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Figure 3- Rule and fuzzy sets of the critic 
 
4  Simulation Results 
In this section, we describe the circuits we 
have used for controlling the HVAC plant. 
We have, of course, assumed no prior 
knowledge of the plant delays and the time 
delays introduced in ECBFC has no special 
relationship with possible plant delays. The 



 

 

delays in ECBFC merely help distribute 
reward, dynamically without attempting to 
find the optimal credit assignment schema. 
The actual plant model involves four input and 
three output processes, of which two inputs 
can be manipulated for achieving desired 
performance levels. Our initial attempt to 
consider an SISO problem in which 
temperature set point tracking was the main 
goal proved futile, because the rest of the 
system could not be regarded as disturbances 
and unmodeled dynamics. The response speed 
caused the other outputs increase beyond 
acceptable levels. Next, we tried to achieve the 
design goals via two separate ECBFC agents 
(Fig. 4). We wished to track temperature and 
humidity to their respecting set point levels of 
73°F and 0.009, while maintaining the supply 
air temperature within the range of 40°F to 
100°F. This proved very satisfactory (Fig. 5). 
The performance levels achieved via the two 
alternative approaches are outlined in table 2. 
 

 
Figure4- Control circuit with two controllers 

 
We examined the robustness of these 
controllers with respect to external 
disturbances. To do that, we fed the plant with 
time-variable heat and moisture disturbance 
signals in the form given in figure 6. The 
response of the two ECBFC controllers is 
given in the figure 7. 
 

5. Conclusion 
In this paper, we showed the applicability 
ECBFC to the fulfillment of complex tasks of 
adaptive set point tracking and disturbance 
rejection of a HVAC system. The control of 
the non-minimum phase, multivariable, 
nonlinear and nonlinearizable plant with 
constraints on its supply air temperature is 
indeed a demanding task from control 

theoretic viewpoint. The controller 
presented in this paper possessed excellent 
tracking speed and robustness properties. 
The results presented in this paper are an 
important step toward showing the utility of 
ECBFC in carrying out real world and 
complex control tasks. 
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Figure 5- HVAC system responses with two controllers (Left: ECBFC, Right: PID) 
 
 
 

 S-SError(Temp-Humi) RiseTime(Temp-Humi) POS(Temp-Humi) 

Neuro-Fuzzy 
Controller 

0.01%-0.00% 
 

0.001-0.0002 
 

01.90- 0.00 
 

PID 0.00%-0.00% 0.009-0.002 49.96-43.33 
Table 2- Performance characteristics of HVAC system with two PID and CBRL controllers 
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 Figure 6- The heat and moisture disturbance signals for 

robustness consideration 
 

Figure 7- HVAC system responses of the two controllers  
with the presence of disturbance variations 

 
 
 

Nomenclature 
wh  Enthalpy of liquid water oW  Humidity ratio of outdoor air 

fgh  Enthalpy of water vapor heV  Volume of heat exchanger 

sW  Humidity ratio of supply air 3W  Humidity ratio of thermal space 

pC  Specific heat of air oT  Temperature of outdoor air 

oM  Moisture load oQ  Sensible heat load 

2T  Temperature of supply air 3T  Temperature of thermal space 

sV  Volume of thermal space ρ  Air mass density 
f  Volumetric flow rate of air gpm       Flow rate of chilled water 

 


