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Abstract: 

Modeling emotions has attracted much attention in recent years, both in cognitive 
psychology and design of artificial systems. Far from being a negative factor in decision-
making, emotions have shown to be a strong faculty for making fast satisfying decisions. 
In this paper, we have adapted a computational model based on the limbic system in the 
mammalian brain for control engineering applications. 

Learning in this model based on Temporal Difference Learning. We applied the 
proposed controller (termed BELBIC) for a simple model of a submarine. The model was 
supposed to reach the desired depth underwater. Our results demonstrate excellent control 
action, disturbance handling and system parameter robustness for TDBELBIC. 

The proposal method, regarding the present conditions, the system action in the 
part and the controlling aims, can control the system in a way that these objectives are 
attained in the least amount of time and the best way. 
 
MODELLING 

Motivated by the success in functional modeling of emotions in control 
engineering applications [15,29,30], the main purpose of this research is to use a 
structural model based on the limbic system of mammalian brain, for decision making 
and control engineering applications. We have adopted a network model developed by 
Moren and Balkenius [21], as a computational model that mimics amygdala, orbitofrontal 
cortex, thalamus, sensory input cortex and generally, those parts of the brain thought 
responsible for processing emotions. There are two approaches to intelligent and 
cognitive control. In the indirect approach, the intelligent system is utilized for tuning the 
parameters of the controller. We have adopted the second, so called direct approach, 
where the intelligent system, in our case the computational model termed TDBELBIC, is 
used as the controller block. The model is illustrated in figure 1. TDBELBIC is 
essentially an action generation mechanism based on sensory inputs and emotional cues. 
In general, these can be vector valued, although in the benchmarks discussed in this paper 
for the sake of illustration, one sensory input and one emotional signal (stress) have been 
considered. The emotional learning occurs mainly in amygdala. The learning rule of 
amygdala is given in formula (1).  

( )AECkGa −=∆ ,0max.1                                                  (1) 
where aG  is the gain in amygdala connection, 1k  is the learning step in amygdala and 
EC and A are  the values of emotional cue function and amygdala output at each time. The 
term max in the formula (1) is for making the learning changes monotonic, implying that 



the amygdala gain can never be decreased. This rule is for modeling the incapability of 
unlearning the emotion signal (and consequently, emotional action), previously learned in 
the amygdala [21,23]. Similarly, the learning rule in orbitofrontal cortex is shown in 
formula (2).  
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Figure 1- The abstract structure of TDBELBIC 
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where oG  is the gain in orbitofrontal connection, 2k is the learning step in orbitofrontal 
cortex and MO  is the output of the whole model, where it can be calculated as formula 
(3): 

OAMO −=                                                                 (3) 
in which, O  represents the output of orbitofrontal cortex. 
In fact, by receiving the sensory input S , the model calculates the internal signals of 
amygdala and orbitofrontal cortex by the relations in (4) and (5) and eventually yields the 
output. 

 
SGA a.=                                                                     (4) 
SGO o.=                                                                     (5) 

 
Since amygdala does not have the capability to unlearn any emotional response that it 
ever learned, inhibition of any inappropriate response is the duty of orbitofrontal cortex.  
  



IMPLEMENTAION 
Controllers based on emotional learning have shown very good robustness and 
uncertainty handling properties [29,30], while being simple and easily implementable. To 
utilize our version of the Moren-Balkenius model as a controller, we note that it 
essentially converts two sets of inputs into the decision signal as its output. We have 
implemented a closed loop configuration using this block (termed TDBELBIC) in the 
feed forward loop of the total system in an appropriate manner so that the input signals 
have the proper interpretations. The block implicitly implemented the critic, the learning 
algorithm and the action selection mechanism used in functional implementations of 
emotionally based (or generally reinforcement learning based) controllers, all at the same 
time [15,29,30]. The structure of the control circuit we implemented in our study is 
illustrated in figure 2. The functions we used in emotional cue and sensory input blocks 
are given in (6) and (7), 

COWeWEC .. 21 +=                                                      (6) 
.

43 .. POWPOWSI +=                                                    (7) 
where EC , CO , SI and PO  are emotional cue, controller output, sensory input and plant 
output and the 1W  through 4W are the gains must tuned for designing a satisfactory 
controller. 
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Figure 2 – Control system configuration using TDBELBIC 

 
SIMULATIONS 
We confirmed the capability of TDBELBIC by performing some simulations. It must be 
mentioned that in the all simulations outlined below, we implemented the set-point 
control strategy with the desired value of 1. The descriptions of simulations are given 
below: 
LINEAR SISO SYSTEM: SUBMARINE MODEL 
In this simulation, we considered a simple model of a submarine. The model was 
supposed to reach the desired depth underwater. The quantitative model is represented 
via (8). 
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We implemented the control circuits in MATLAB SIMULINK package. The output of 
the system with a simple feedback and the output of the system with a TDBELBIC 
controller are given in figure 3. 
 
 



 

 
figure 3: The response of TDBELBIC controller 

 
 

( )λTD  Learning 
 
 Most of new learning algorithms like reinforcement learning, Q-learning and the method 
of temporal differences are characterized by their fast computation and in some cases lower error 
in comparison with the classical learning methods. Fast training is a notable consideration in 
some control applications. However, in prediction applications, two more desired characteristics 
of a good predictor are accuracy and low computational complexity. 
 In reinforcement learning, there is no teacher available to give the correct output for each 
training example, which is called unsupervised Learning. The output produced by the learning 
agent is fed to the environment and a scalar reinforcement value (reward) is returned. The 
learning agent tries to adjust itself to maximize the reward. [1][2] 
 Often that the actions taken by the learning agent to produce an output will affect not 
only the immediate reward but also the subsequent ones. In this case, the immediate reward only 
reflects partial information about the action. It is called delayed-reward. [2][3] 
 Temporal difference (TD) learning is a type of reinforcement learning for solving 
delayed-reward prediction problems. Unlike supervised learning, which measures error between 
each prediction and target, TD uses the difference of two successive predictions to learn that is 
Multi Step Prediction. The advantage of TD learning is that it can update weights incrementally 
and converge to a solution faster. [4] 
 In a delay-reward prediction problem, the observation-outcome sequence has the form 

zxxxx m ,,...,,, 321 where each tx  is an observation vector available at time mtt ≤≤1,  and z  is 
the outcome of the sequence. For each observation, the learning agent makes a prediction of z , 
forming a sequence: mPPPP ,...,,, 321 . 
 Assuming the learning agent is an artificial neural network, update for a weight w  of the 
network with the classical gradient descent update rule for supervised learning is: 
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Where α  is the learning rate and Ew∇  is the gradient vector,
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 In [3], Sutton derived the incremental updating rule for equation (9): 
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 To emphasize more recent predictions, an exponential factor λ  is multiplied to the 
gradient term: 
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Where    10 ≤≤ λ  
 
 This results in a family of learning rules, ( )λTD , with constant values of λ . 
But there are 2 special cases: 
First, when 1=λ , Eq. (12) falls back to Eq. (11), which produces the same training result as the 
supervised learning in Eq. (9). Second, when 0=λ , since 100 = , Eq. (12) becomes  

kwttt PPPw ∇−=∆ + )( 1α                (13) 
 I can extended the Eq. (13) for BELBIC and made Eq. (14) for TDBELBIC. 

tOtOt PGPzG ∇−=∆ )(α       (14) 
 Which has a similar form as Eq. (9). So the same training algorithm for supervised 
learning can be used for ( )0TD . 
 
Conclusion: 

In figure (3), you can observe the results of simulating the diagram block figure 
(2). The results, based on temporal difference learning, are compared to Orbitofrontal 
Cortex learning in a shared TDBELBIC structure. The outcomes suggest that temporal 
difference based learning in faster than Orbitofrontal Cortex learning. But faster learning 
is increased for maximum overshoot. Both of the learning is incremental, however, their 
memory output signals are presented in figure (4), (5). The increase rates represent their 
learning speed. 
Paying attention to the achievements in the emotional controls founded a computational 
model, based on the Limbic system, for mammals’ brain via time series learning. The 
paper tried to develop this method for answering more complicated issues and achieving 
difficult goals. 

To do this, the ability of the learning module the emotional controller, was 
increased achieving based a brain computational model means of temporal difference 
learning for credit assignment. Temporal difference learning, has easier computations 
because of using it’s own experience. The methods resemble human behavioral learning. 
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Figure (4): Comparison of BELBIC and OFC Learning with BELBIC and TD Learning 

 
 
 

 
Figure (5): Comparison of BELBIC and with TDBELBIC Memory 
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