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Abstract: Correlating event streams or development paths of observed behavior that involves disparate types

of data is a common problem in many applications including biomedical and clinical diagnosis systems. We

present a new problem formulation of specifying feature space with heterogeneous dissimilarity measures, and

trying to find similar time series given these (expert) user-specified heterogeneities, both within the same

feature and as combinations across multiple features. By allowing domain experts to describe their feature

spaces more accurately in this fashion, query matches are better suited to the domain experts’ needs. The

presented work augments the existing research of finding local similarity areas and overall patterns in time

series data.
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1   Introduction
We consider the problem of similarity searches over

sequences of observations, rather than the more

usual problem of measuring the similarity between

individual observations. This problem arises

naturally in medicine, where there is considerable

interest in tracking and monitoring all possible

physical signs that might be indicative of disease or

other disorders, especially when assessing

treatments or monitoring degenerative disorders.

The subject scan data are collected at somewhat

regular intervals, yielding a rich and diverse set of

event streams encompassing very heterogeneous

data types: for example, colleting subject data for

tracking brain diseases may involve data from PET,

MRI, and spectroscopy in addition to clinical

evaluation data. Rather than comparing individial

states of the disease, the clinician is more interested

in patterns and trends, allowing for some variation in

certain data points based on previous knowledge; in

other words, we want to specify some already

existing correlations or similarities within a set of

subspaces of the feature space that the collected

event streams inhabit, and then apply existing

techniques for finding new correlations or

similarities given the model specified by the domain

expert.

This approach augments previous work in

similarity search in that it creates a more specific

model of the query problem, in that (a) additional

information can be given by the domain expert that

the existing techniques can and should incorporate,

and (b) the feature space is represented with area-

specific dissimilarity measures that are independent

of the actually collected data. Furthermore, this

approach expands on the idea of constraint-based

specification of prior knowledge by providing a

more general, area-based formulation of known or

assumed correlations between data points.

As an example, a clinician may want to ignore

the exact location of objects found in a particular

brain region while still distinguishing objects

outside that region by their location, but only if a

certain condition holds. One option would be to

remap the objects that fulfull both the spatial and

Fig. 1: Examples of paths in a feature space with two

features and previously defined similarity areas (shaded).

Points inside each shaded area are considered to be

similar regardless of distance between them. As a result,

paths p1 and p2 are similar to each other, but path p3 is

dissimilar from the first two.



conditional requirements, but that may not be

desirable or possible. The alternative proposed in

this work is to define a local dissimilarity measure

for the subspace of the feature space that reflects the

desired exception.

1.1 Related Work
Previous work on high dimensional similarity

searches has taken into account that practical

applications of high-dimensional feature spaces can

have local heterogeneities. The primary solution to

this problem has been to split up the feature space

into locally manageable areas, or to find subspaces

where local rules can apply.

Chakrabarti and Mehrotra [1] developed a

technique for applying existing local dimensionality

reduction methods that takes into account local

correlations in the data, noting that global

dimensionality reductions can have problems using

local correlations, by either yielding wrong results

or not using the local correlations to their full

advantage (for example, data is correlated along two

independent axes); and an indexing structure using

the local correlations to support range and nearest-

neighbor queries.

Puuronen et al. [2] use strategic splitting of the

feature space to identify the best feature subset for

each instance, using decision trees with local feature

selections.

Atkeson et al. [3] survey methods for

optimizing queries to take only local data into

account, within the context of machine learning.

Apte et al. [4] measure the degree of

dissimilarity in order to split the feature space into

regions with distinct characteristics.

Other works for similarity searches for time-

series data in multidimensional feature spaces

include:

Vlachos et al. [5] describe non-metric similarity

functions based on Longest Common Subsequence

matching techniques for object trajectories in two-

and three-dimensional space.

Gionis et al. [6] reduce dimensionality by

applying “locally-sensitive” hashing functions to

points in feature space, grouping those points that

are close within the feature space.

Keough et al. [7] similarly create an

approximation of the original data by replacing

actual time series data with simpler series of mean

point and end point tuples that can then be used for

indexing.

Previous works on applying prior knowledge to

data sets in order to improve results include:

Gordon [8] surveys methods to specify prior

knowledge in the form of constrained classification

where class membership of objects is based on

similarity.

Klein et al. [9] aim to take spatial clusters into

account when adding constraints, noting that

specification of spatial constraints outperforms

instance-based constraint clustering.

2   Problem Formulation
In the abstract representation of the problem

described above, we have a high-dimensional

feature space in which each dimension (or set of

dimensions) represents a different feature (such as

physical signs or clinical data in a medical

application). These features may be very

heterogeneous in nature as far as their interpretation

by the domain expert/data owner is concerned.

Existing/Known correlations between features are

represented as locally defined dissimilarity measures

specified by the domain expert, and can apply to

single features as well as multiple features in linear

or non-linear combinations. For measuring the

general dissimilarity of two points in feature space,

we need to define a useful and effective means of

combining the applicable local dissimilarity

measures.

2.1 Local Dissimilarity Measures
Existing work has focussed on finding parts of

feature spaces which behave differently than the

rest, but there are applications in which such

behavior is known in advance (e.g. in a medical

application, it may be sufficient to know that tumors

or lesions appear in particular brain regions, the

exact location is irrelevant). To pass this information

on to existing techniques, we propose to encode the

different behavior as a local dissimilarity measure,

which defines similarity for points in a subspace of

the feature space. The goal is to provide users (e.g.

clinicians) with a simple interface to specify these

encodings either ahead of time or interactively

during queries, reflecting both prior knowledge and

insights gained during application on the actual data.

2.2 Global Dissimilarity Measure
Finding similar paths within our feature space is

based on two steps: we compute the similarity

between two individual points (point-wise

dissimilarity) and between two time-series of points,

or paths in feature space (path-wise dissimiliarity).



Point-wise dissimiliarity needs to take into account

all applicable local dissimilarities, i.e. we need to

modify existing techniques (for calculating

similarity, e.g. Euclidian distance) with a lookup to

check if a given pair of points is within an area for

which a local dissimilarity measure is defined.

Path-wise dissimilarity is computed by finding

the smallest dissimililarity between the points; the

problem with existing techniques is that they assume

a uniform global dissimilarity measure, which is

lacking in our model: we need to compensate for the

fact that some point combinations may have a local

dissimilarity.

3   Problem Solution
The observed data are quantized as features fi that

form a feature space F = (f1, f 2, …, fn). For each

subject s, the time series of observed data translate

into a path Ps = (p 1, p 2, …, pk) with each point pj

from F representing the observed data at a time tj.

Interpretation of values of each feature is domain-

specific; for each feature, we define df(x, y) as the

feature-specific dissimilarity measure (for two

values x  and y  from feature f ). The global

dissimilarity measure d(x, y) gives the distance for

two points x and y from the feature space F.

We define local dissimilarity measures dA(x, y

 F) on an area A  F, where 1  dim(A)  n =

dim(F). For each local dissimilarity measure, we

store a mapping from the area A to the function dA.

We stipulate that there is an ordering,

represented as a directed acyclic graph, of these

mappings (in case of conflict).

We want to (a) quickly find applicable mapping

(allow for overlap: mapping A for region R,

mapping B for subregion of R), hence use some sort

of spatial indexing (e.g. R-tree); but also (b) store

mapping only once, and be able to update it

effectively (only one update). A simple solution is to

keep a list of the maps and only store references to

them in a spatial (R-)tree.

3.1 Representation of Local Dissimilarity

Measures
The simplest type of heterogeneous dissimilarity

measure is to define a distance for point pairs from a

range of values (given by the interval [a, b]) in one

feature:

ˆ d (x, y) =
h(x, y) if x,  y in a,  b[ ]
d(x, y) otherwise

 
 
 

(1)

where d is the standard dissimilarity measure for the

feature and h is the local dissimilarity measure.

For features with discrete values (e.g. location

of voxels) we can also use sets of values for which

local function applies, e.g. in form of a bitmap. This

is also true when extending the area to multiple

features: e.g. the definition for the interior of a 3D

object (e.g. a brain region of interest) can be given

as bitmap B (which can be the result of a

segmentation, or taken from a defined standard):

ˆ d (x, y) =
h(x, y) if Bx,y = 1

d(x, y) otherwise

 
 
 

(2)

(Here, x, y are multi-dimensional points.)

The above definitions yield mappings that are

easily located in the feature space via their bounding

boxes. More complicated definitions are possible by

specifying conditions for point pairs as functions,

however for such definitions the bounding box will

need to be computed and stored separately.

3.2 Combining Local Dissimilarity

Measures for Measuring Global

Dissimilarity
For the combination of dissimilarity measures for

different features, we can apply a simple solution by

taking a linear combination of individual distances,

with weights/parameters again specified by the

domain expert to represent his or her interpretation

of the data features. However, this has the potential

of making paths dissimilar if there is a single outlier,

which may not be accurate depending on the

location of the outlier. One way to circumvent this is

to use a combination function that de-emphasizes

single large differences in the presence of numerous

minor differences (e.g. through normalizing or by

considering only k most similar features, where

k<n).

3.3 Sample Application
Our work is motivated by applications in the

medical field, where we want to analyze the

behavior of objects obtained from image scans over

semi-regular time intervals. Each object has a

diverse set of features and associated data; we are

interested in both the development of each object

and the existence of objects with similar behavior.

In particular, the observed features include

multiple locations, sizes, principal axes, basic shape

descriptors (i.e. elongated vs. spherical), and



imaging properties (e.g. average intensity). One

particular analysis tries to determine if there is a

common development from (small) spherical shapes

to (larger) elongated shapes in a particular area, and

where this development correlates with associated

data (such as drug treatment). In this problem, we

can define local dissimilarity measures to group all

objects in the area of interest, and to distinguish

spherical from elongated objects. We would then

query for object sequences that are located in the

area of interest and progress from the spherical

feature to the elongated feature.

In another (medical) application, researchers

have found a strong correlation between the

condition of interest (chance of development of

heart tumors) and peaks in spectorscopy maps for

particular variables that are relative to other

variables. Using our approach, data points showing

the target peaks are defined to be “close”, regardless

of actual peak values since we are interested only in

the presence of these peaks.

4   Conclusion and Future Work
We have formulated a new approach to problem of

searching for similarities in a feature space that

describes multiple event streams and includes

heterogeneous dissimilarity measures based on

feature values and property combinations of some of

the features within specified areas. The advantage of

this approach is that domain experts can represent

their understanding of the data independently from

the collected data, in the form of subspaces of the

feature space and the desired dissimilarity measures

defined for each subspace. This representation is

more flexible than previous approaches in that it

offers more control over the exact type of similarity

between different points. However, for more

complex definitions, it may be more difficult to

efficiently determine whether a given pair of objects

is affected by a local dissimilarity.

One possible application we see for the

described approach is denoising or detangling

feature spaces by replacing noisy intervals (path

segments) with similar data that has been either pre-

set by the domain expert or chosen from a particular

sample. Path segments located in previously

identified, “noisy” areas are considered similar, and

replaced with the pre-set or sample similar data.

For future work, we are looking at effective

methods to create user interfaces for specifying

standard and complex arrangements of mappings

from subspaces or areas to dissimilarity measures;

create optimal data structures for efficient query

service (priority graph to deal with overlaps, spatial

data structure for quickly finding appropriate

dissimilarity measure); and allow for more

complicated encoding of expert knowledge. Finally,

we are looking into adopting existing indexing

methods that can be modified to work with the

heterogeneous feature space.
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