
Indirect Neural Control:
A Robustness Analysis Against Perturbations

 ANDRÉ LAURINDO MAITELLI OSCAR GABRIEL FILHO

Federal University of Rio Grande do Norte Potiguar University
Natal/RN, BRAZIL, ZIP Code 59072-970 Natal/RN, BRAZIL, ZIP Code 59056-000

Abstract: - In the area of robust intelligent control one of the focus is on controllers development that can
maintain good performance even if there exists a poor model of the plant and if there are some plant parameter
variations. The aim of this paper is an efficient address to this question, more specifically to the indirect
approach using neural networks with on-line training, in present a criterion to evaluate the control system
robustness against perturbations caused by modelling errors and plant parameter variations, since convergence
and stability of neural networks are assured. The robustness was tested using computer simulations applied to
control a nonlinear system obtained on technical literature.

Key-Words: - Robust Intelligent Control, Neural Control, Artificial Neural Networks, Robustness

1 Introduction
Control systems based on Artificial Neural Networks
- ANN’s have been developed by several researchers
in all the world, each one emphasizing an
implementation aspect that make it very attractive
under some practical viewpoint. However only a few
of them are worried about fundamental problems
related with robustness analysis.
 To overcome these problems it is presented an
indirect control method using ANN’s - the Indirect
Neural Control system, in which the main purpose
hereafter is achieving how much this methodology is
robust with respect to neural networks learning
errors and plant parameter variations.
 The outline of this paper is: Section 2 is devoted
to a brief presentation of the ANN’s. Section 3
presents a structure for modelling both the plant and
the controller. Section 4 details an indirect control
scheme using ANN’s, called Indirect Neural Control.
Section 5 presents some concepts related with
robustness, critical perturbations and stability
margin, which is the main contribution of this paper.
To validate these concepts, Section 6 presents the
computer simulation results of a nonlinear plant
control, and finally, Section 7 presents the
conclusions.
 In this paper, the control system and learning
algorithm are based on discrete-time approach.

2 Artificial Neural Networks – ANN’s
The ANN’s have the purpose of simulate the human
nervous system behaviour through software and/or
hardware, to benefit of the powerful intelligent

systems that human life is endowed [1]. The great
development occurred on microprocessor technology
of late years has made propitious an efficient
software development able to implement the ANN’s,
i.e., to implement the mathematical elements [2], [3]
which believes the human intelligence is based on.
 The neural networks are composed of many
processing elements connected each one to another
of some manner, in such a fashion that making
possible its parallel operation. These elements are
based on nervous human system, and are called
neurons.

The manner how the neurons are connected
defines the network architecture. This paper uses a
multilayer arrangement depicted in Fig.1 as follows

Fig.1: Artificial Neural Network (3-Layers)

In forward direction, the first layer is the input

layer only, the intermediary layers are the hidden
layers, and the last layer is the output layer.

According [4], the multilayer perceptrons are good to
learning mathematical relationships from a set of
input-output data, therefore being considered
universal approximators.

2.1 Error Backpropagation Algorithm
Among the algorithms used to perform supervised
learning, the backpropagation algorithm has emerged
as the most widely and successfully algorithm for
designing multilayer feedforward networks [4],
where the learning process rests on synaptic weight
adjustments so that the difference between the
desired output and the current output is a minimum
acceptable value performed on all training points.
The adjustments of the synaptic weights are
computed in backward direction, according the
following equations:

()w w w wc c c[] [] [] []+ = + − +1 1 α α∆∆ c−1 (1)

∆w E
w

= −η
∂
∂

 (2)

[]∑∑
= =

=
P

p

K

k
kpeE

1 1

2
,2

1 (3)

kpkpkp zoe ,,, −= (4)

where c is the training cycle (or epoch), η is the
learning rate, α is the momentum constant, E is the
cost function (or learning global error), p = 1, 2, ..., P
input-output learning data, k = 1, 2, ..., K neural
network outputs, e is the learning local error, o and
z are the desired and current output for the output
layer neuron, respectively. Note that z is computed
in the forward direction.

The equation used to adjust the synaptic
weights that connect the j-neurons of the hidden
layer to the k-neurons of the output layer, such that
E is less than or equal to a beforehand given
tolerance, i.e., , is

wk j,

0≥ε
ε≤E

[] ()
[]c

j
j

okk
c

jk yWYfzow

′−η=∆ ∑, (5)

with j = 1, 2,..., J+1 and k = 1, 2,..., K, where

 is the derivative of the output layer neurons
activation function. The equation used to adjust the

 synaptic weights from i-neurons of the input
layer to the j-neurons of the hidden layer, is

′f o ().

w j i,

[]
][

,,

c

k
jkki

i
h

c
ij wxWXfw

δ

′η=∆ ∑∑ (6)

with i = 1, 2,..., I+1 and j = 1, 2,..., J, where
is the derivative of the hidden layer neurons
activation function and δ is

the error signal back propagated from k-neuron. The
backpropagation algorithm can suffer convergence
problems [5]. To overcome these problems, are used
the -adaptive and the normalized momentum
approaches [2], [3].

′f h ().

)() (∑′−=
j

okkk WYfzo

η

)

3 Modelling Using Neural Networks
In external plant model, the inputs and the plant
outputs are represented by its derivatives, where the
derivative orders will establish the plant dynamical
behaviour. The symbols used to recognize the input
and plant output orders are defined as follows: ny =
output order, nu = input order, n = plant order (=
output order, that is, n = ny) and d = plant transport
delay (d = ny - nu).

Taking account the discrete-time nonlinear model
(here k is a time domain) using ANN’s given by

y k d g k d n W e k d() [(, ,),] (+ = + +ϕ (7)

where g is a mathematics function chosen by the
designer to model the plant dynamic behaviour, ϕ
is the regression vector, e is the estimation error,
i.e., , and W is the
matrix of neural network adjustable parameters
(synaptic weights), from what we immediately
deduce that the neural estimate of the plant output is
given by the following equation

e k d y k d y k d() () $(+ = + − +)

]

$() [(, ,),y k d g k d n W+ = ϕ (8)

 The physical systems identification using ANN’s
can be done employing one of the several model
structures presented in [6]. In this paper, it will be
adopted the model known as Neural Network
Autoregressive with Exogeneous Inputs - NNARX
explained as follows.

3.1 Neural Network AutoRegressive with
eXogeneous inputs - NNARX Model
The extended nonlinear NNARX model is given by
the equation (8), in which the regression vector ϕ
is defined as

ϕ(, ,) [() , ... , ()
() , () , ... , () ,]

k d n y k d y k d n
u k u k u k d n

= + − + −
− + −

1
1 1−

(9)

where the -1 augmented component is the input to
the additional weight that is made equal to the
threshold. The NNARX architecture is depicted in
Fig.2 below.

Fig.2: NNARX architecture

 This model is BIBO (Bounded Input Bounded
Output) stable because it does not have feedback of
the estimate output. The absence of stability related
problems makes the NNARX model the preferred
choice when the system is deterministic or the noise
level is not too significant [6].

3.2 Estimate Jacobian Computing
The computing of the plant estimate Jacobian is done
after each neural identifier training, according to the
chosen neural network architecture. In this work, we
use only the followings:

• Neural identifier without hidden layer (only input
and output layers). The plant estimate Jacobian is
given by

12,11
').()1(ˆ

+−=−+ dnoo wNETfdkJ (10)

where and i is the input layer

index, being w

∑
+−

=

=
22

1
1

dn

i
o WXNET

$()y k d+ −1

(ˆ),1(− yku

1, 2n-d+1 the synaptic weight that
connects the input u(k-1) to the plant estimate
output . It is important to point out that
we are using the most recent known input-estimate
output pair, [, to compute the
plant estimate Jacobian.

)]1−+ dk

• Neural identifier with just one hidden layer. The
plant estimate Jacobian is given by

∑
=

+−=−+
J

j
jodnjhhjhoo wwNETfNETfdkJ

1
,1,12,,

'
1

' .).().()1(ˆ

(11)

where J (without hat) is the number of neurons in

the hidden layer, ,

and the indexes i and j refer to the input and
hidden neurons, respectively. It is important to point
out that the synaptic weights indicated by
correspond to the connection of the input u(k-1),
that occupied the position 2n-d+1 enumerated from
top to bottom, with the j-neurons of the hidden layer.
The underwritten index 1 that appears in (10) and
(11) is due to the neural identifier possessing only
one neuron in the output layer.

∑
+

=

=
1

1
1

J

j
o WYNET ∑

+−

=

=
22

1

dn

i
hj WXNET

wh j n d, ,2 1− +

4 Indirect Neural Control Scheme
Up to this section, the purpose was to present some
basic knowledge about multilayer neural networks
and the used structure for nonlinear modelling
applied to unknown plant dynamics identification, to
assemble a theoretical underground for hereafter
formulation of the indirect control scheme based on
neural networks.
 The term indirect arises because the controller
parameters adjustment is based on estimate plant
model instead on nominal plant model, probably due
to the following reasons: I) the controller
impossibility to direct attains the real plant
parameters values, and/or II) the difficult to achieve
acceptable plant parameters values, resulting from
nonlinear unknown dynamics occurrence.
 It is used an Indirect Neural Control Scheme that
is basically formed with a neural controller (nc) and
a neural identifier (ni) [2], [3], [7], [8], [9], both
arranged as depicted in the following figure:

Fig.3: Indirect Neural Control Scheme

 Firstly the neural identifier is training, in such
manner to minimize the error eni as shown in Fig.3.
In sequence, it is performed the controller training
coupled with the neural identifier, being used now
the error enc+ni* instead, and getting the identifier

synaptic weights with fixed values, what were
attained after the last neural identifier training stage.
The asterisk that appears in ni* means that the
identifier remains with constant synaptic weights
during all controller training steps.

5 Robustness Analysis
The robustness analysis developed hereafter is with
respect to the modelling error that could happen in
neural networks learning process, both the identifier
and the controller in cascade with a fixed identifier,
and a plant parameter variations. The robustness
analysis is an important contribution of this paper,
because it addresses a challenger question that
becomes very attractive of late years.

Theorem 5.1 (Control Error Robustness): “Consider
the Indirect Neural Control of a plant, BIBO stable,
given by its input-output data [u(k),y(k+d)]. If
is the control errors set, i.e., ,
where

Ω c

)}d({)(kdk cc +ω=+Ω

)(ˆ) dkyd +−+(Ref_)(kydkc =+ω , then we
can affirm that

sup
M

u k k k

c ni

c

k d M
→∞
= ∀ >

++ + = +
∆

Ω
() ,

*()
0

2 2ε ε nc ni

where {.} is a set, kc is such that ,
M is the settling horizon beginning from the instant

 and are the beforehand
tolerances chosen for neural identifier and neural
controller training, respectively.”

ckkku >∀=∆ ,0)(

k dc + 0, * ≥εε +nincni

Proof: Turning back to (3), that gives the learning
cost function, and conform it for neural controller
(nc) coupled with a single output neural identifier
(ni*), the latter being maintained with fixed synaptic
weights during all controller training steps, we have

() []∑
=

++ +−+=+
P

p
nincninc pdkedkE

1

2
**)1(

2
1

whose development gives

[]

[
[] }(

...1(

({
2
1)(

2
*

2
*

2
**

Pdke

dke

dkedkE

ninc

ninc

nincninc

−++

+−++

+=+

+

+

++

]

Using a conservative procedure in taking account
only the most recent neural identifier training input-
output pair (p=1), we obtain

)(2)(** dkEdke nincninc +≤+ ++

According to the scheme shown in Fig.3, we obtain

, what gives)(ˆ)(Ref_)(* dkydkydke ninc +−+=++

)(2)(ˆ)(Ref_ * dkEdkydky ninc +≤+−+ + (12)

Since , from (12) we
have

)()()(ˆ dkedkydky ni +−+=+

)(2

)()()(Ref_

* dkE

dkedkydky

ninc

ni

+≤

+++−+

+

)()(2

)()(Ref_

* dkedkE

dkydky

nininc +−+≤

+−+

+

 (13)

Assuming that the estimate error e is not
available, because it just depends on unknown output

, it is necessary to dispose the estimate error
in recursive form, and so goes back if .
Without generalization loss, we can take

. In this case, we
have

)(dkni +

)(dky +

(dkeni +

1≥d

)()1() dkedke nini +∆+−+=

[])()1()(2

)()(Ref_

* dkedkedkE

dkydky

ninininc +∆+−+−+

=+−+

+

 (14)

Now applying the absolute value operator in (14),
and knowing that the control error is given by

)()(Ref_)(dkydkydkc +−+=+ω , it becomes

[])()1()(2

)()(Ref_

* dkedkedkE

dkydky

ninininc +∆+−+−+

=+−+

+

[])()1()(2

)(

* dkedkedkE

dk

ninininc

c

+∆+−+−+

=+ω

+

Next, taking the triangular inequality and reordering,
we get

[]
)(2

)()1()(

* dkE

dkedkedk

ninc

ninic

++

+∆+−+≤+ω

+

 (15)

In (15), the term correspondent to estimate error
change, , tends to be null as soon as the)(dkeni +∆

time rises from instant, where kdkc +

k = ,0)(

c is the time
when the settled control signal becomes constant
forever, i.e., , there exists a positive
integer M, such that

ckku >∀∆

)(2

)(
)1(

(

* MdkE

Mdke
Mdk

dk

ninc

ni

ni
c

++

++∆
−++

++ω

+

)
e

M

+

+

≤

whose limit, as soon as M tends to infinity, is given
by

)(2

)1()(

*

,0)(

MdkE

MdkeMdkiml

ninc

nic

kkku
M

c

+++

−++≤++ω

+

>∀=∆
∞→

(16)

Considering that the identifier is a single output
neural network, from (3) it becomes

() []∑
=

−++=−++
P

p
nini pMdkeMdkE

1

2)(
2
11

[]

[
[}(

...2(

1({
2
1

2

2

2

PMdke

Mdke

Mdke

ni

ni

ni

−+++

+−+++

−++=

]
]

where Eni is the neural identifier cost function, and
P is the number of training input-output data. Now,
using a conservative reasoning in taking account
only the most recent neural identifier training input-
output pair (p=1), and knowing that the convergence
condition is , such that

 is the beforehand tolerance chosen for neural
identifier training, we obtain

nini MdkE ε≤−++)1(
0≥ε ni

ni

nini MdkEMdke

ε≤

−++≤−++

2

1(2)1(
 (17)

Now taking account (17), and also considering that

, with , it comes
from (16) that
E k d Mnc ni nc ni+ ++ + ≤* *() ε 0* ≥ε +ninc

*

,0)(

22)(nincnic

kkku
M

Mdkiml
c

+

>∀=∆
∞→

ε+ε≤++ω (18)

Finally, using the supremum operator into control
errors set given by (18), we obtain

*

,0)(

22)(nincnic

kkku
M

Mdksup
c

+

>∀=∆
∞→

ε+ε=++Ω

(19)

where M is the settling horizon of the plant
beginning from instant +d and ε
are the beforehand tolerances chosen for neural
identifier and neural controller training, respectively.

kc 0, * ≥ε +nincni

Definition 5.2: “The Critical Perturbation – CP of
the Indirect Neural Control system is the maximum
deviation that can occur on plant output without loss
of stability.”

Theorem 5.3 (Critical Perturbation): “The Critical
Perturbation – CP of the Indirect Neural Control
system is given by

*222)1(ˆ).(nincnidkJkuCP +ε+ε+−+∆= (20)

where is the possible variation of the control
signal according actuator range, is the
plant estimate Jacobian and are the
beforehand tolerances chosen to neural identifier and
neural controller training, respectively.”

)(ku∆

)1(ˆ −+ dkJ
0, * ≥ε +nincε ni

Proof: The training of the neural controller is
performed coupled with the neural identifier, the
latter taken with fixed synaptic weights during all the
controller training process. In this case, the plant
estimate Jacobian can be given by [10], [11]

)1()(
)1(ˆ)(Ref_)1(ˆ

−−
−+−+

=−+
kuku

dkydkydkJ (21)

Manipulating the equation above, and taking account
the Fig.3, in which it is immediately seen that

, then we give)1()1()1(ˆ −+−−+=−+ dkedkydky ni

[]

[])1()1()(Ref_
)1(ˆ.)1()(

−+−−+−+
=−+−−

dkedkydky
dkJkuku

ni

)1()1()(Ref_
)1(ˆ).(

−++−+−+
=−+∆

dkedkydky
dkJku

ni

Now, we suppose that the plant output is settled on
steady-state, yss, from instant k+d-1, and at a future

instant the plant suffer a perturbation that cause an
abrupt variation, , that is ssy∆

)1()()(Ref_
)1(ˆ).(

−++∆+−+
=−+∆

dkeyydky
dkJku

nissss

[
)1(

)(Ref_
)1(ˆ).(

−++
−++
−+∆−=∆

dke
ydky

dkJkuy

ni

ss

ss

] (22)

Taking the absolute value of equation (22), and
applying the triangular inequality, we give

[]
)1(

)(Ref_

)1(ˆ).(

−++

−++

−+∆≤∆

dke

ydky

dkJkuy

ni

ss

ss

Applying Theorem 5.1, and also knowing that

nini dke ε≤−+ 2)1(, where is a

beforehand chosen tolerance for neural identifier
convergence, we have

0≥ε ni

ninincni

ss dkJkuy

ε+ε+ε+

−+∆≤∆

+ 222

)1(ˆ).(

*

*222

)1(ˆ).(

nincni

ss dkJkuy

+ε+ε+

−+∆≤∆
 (23)

It means that the plant output variation can not
exceed the value computed by equation (23), under
the penalty to lose the stability. Using Definition 5.2,
we finally conclude that

*222)1(ˆ).(nincnidkJkuCP +ε+ε+−+∆= .

Definition 5.4: “The Stability Margin – SM of the
Indirect Neural Control system is the factor that can
be multiplied by the steady-state plant output without
loss of stability.”

Theorem 5.5 (Stability Margin): “The Stability
Margin - SM of the Indirect Neural Control system is
given by

ssy
CPSM +=1 .” (24)

Proof: Using Definition 5.4, it comes that

CPyySM ssss +=. (25)

Manipulating (25), finally we obtain

ss

ss

ss

y
CP
y

CPy
SM

+=

+
=

1

6 Computer Simulation Results
To evaluate the robustness criteria presented in this
work, it was performed the indirect neural control of
a nonlinear plant through computer simulations. For
this purpose, we used a neural identifier (4/1 – linear
activation function) and a neural controller (4/8/1 –
tangent hyperbolic and linear activation functions, in
this order from input to output layer), whose learning
rates were adjusted using the η-adaptive method,
subject to the stability assurance [12].
 The system to be controlled was obtained from
[11], and it is a second order nonlinear plant with
unitary delay, whose equation is the following:

+

−+
+−+++

−++−++
+++=+

))(cos(1
))1()((2

)]1()(9[1.0

)]1()(2))1()((8.0[sin4.0
))]1()((8.0cos[2.0)1(

ky
kuku

kyky

kukukyky
kykyky

The set-point is y_Ref = 0.8, for 0≤k≤250. In the
instant k=251, they were applied some perturbations
in the plant, to evaluate the robustness of the Indirect
Neural Control system. The simulations presented
the following results:

1st case: Perturbation of ssss yy 5.0+=∆
Before perturbation be applied, the plant was
stabilized at yss = 0.8, when in the instant k=251 it
suffer a perturbation equivalent to 50% of the
steady-state output value. The plant input signal can
be settled from umin = -0.5 to umax = 0.2. One time
instant before the occurrence of the perturbation, the
value of the input signal was u(250) = -0.23 and the
estimate value of the plant Jacobian was

. Using (20) and (24), we obtain 5456.1)250(ˆ =J

[]{ }
%51.676751.0

0447.0)0447.0(25456.12/)2.0()5.0(
==

++−−=CP

8439.1
)8.0/()6751.0(1

=
+=SM

Based on CP and SM values computed as above, it is
seen to come that the system control has the property
to return to the stable condition, once the applied
perturbation (50%) was less than the critical
perturbation (67.51%). The results are shown in the
figure below:

0 50 100 150 200 250 300 350 400
K

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

P
la

n
t

O
u
tp

u
t

Set-Point
Plant Output

Perturbation

Fig.4: Plant output (perturbation=0.5yss)

The results shown in figure 4 confirmed the Indirect
Neural Control robust behaviour, whose values are
recorded in Table 1.

Table 1: Error Limit versus Control Error
k

(instant)
εni , εnc+ni*
(tolerance)

sup Ωc
(error limit)

ωc(k)
(control error)

250 1.0E-03 89.44E-03 1.76E-03
400 1.0E-03 89.44E-03 7.71E-03

2nd case: Perturbation of ssss yy 8.0+=∆
The basic difference with respect to the first case is
that now it is applied a perturbation equivalent to
80% of the steady-state output value. One time
instant before occurrence of the perturbation, the
value of the input signal was u(250) = -0.23 and the
estimate value of the plant Jacobian was

. Using (20) and (24), we obtain 9402.1)250(ˆ =J

[]{ }
%32.818132.0

0447.0)0447.0(29402.12/)2.0()5.0(
==

++−−=CP

0165.2
)8.0/()8132.0(1

=
+=SM

Based on CP and SM values computed as above, it is
seen to come that the system control has the property

to return to the stable condition, once the applied
perturbation (80%) was less than the critical
perturbation (81.32%). The results are shown in the
figure below:

0 50 100 150 200 250 300 350 400
K

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

P
la

n
t

O
u
tp

u
t

Perturbation

Set-Point
Plant Output

Fig.5: Plant output (perturbation=0.8yss)

The results shown in figure 5 confirmed the Indirect
Neural Control robust behaviour, whose values are
recorded in Table 2.

Table 2: Error Limit versus Control Error
k

(instant)
εni , εnc+ni*
(tolerance)

sup Ωc
(error limit)

ωc(k)
(control error)

250 1.0E-03 89.44E-03 3.07E-03
400 1.0E-03 89.44E-03 22.63E-03

3rd case: Perturbation of ssss yy 0.1+=∆
In this last case, the difference with respect to the
formers is that now it is applied a perturbation
equivalent to 100% of the steady-state output value.
One time instant before occurrence of the
perturbation, the value of the input signal was
u(250) = -0.23 and the estimate value of the plant
Jacobian was . Using (20) and (24),
we obtain

7485.1)250(ˆ =J

[]{ }

%61.747461.0
0447.0)0447.0(27485.12/)2.0()5.0(

==

++−−=CP

8439.1
)8.0/()6751.0(1

=
+=SM

Based on CP and SM values computed as above, it is
seen to come that the system control does not have
the property to return to the stable condition, once
the applied perturbation (100%) was greater than the
critical perturbation (74.61%).

The results are shown in the figure below:

0 50 100 150 200 250 300
K

-11.00

-10.00

-9.00

-8.00

-7.00

-6.00

-5.00

-4.00

-3.00

-2.00

-1.00

0.00

1.00

2.00

3.00

P
la

n
t

O
u
tp

u
t

Perturbation

Set-Point
Plant Output

Fig.6: Plant output (perturbation=1.0yss)

The results shown in figure 6 confirmed the Indirect
Neural Control lack of robustness, whose values are
recorded in Table 3.

Table 3: Error Limit versus Control Error
k

(instant)
εni , εnc+ni*
(tolerance)

sup Ωc
(error limit)

ωc(k)
(control error)

250 1.0E-03 89.44E-03 0.74E-03
400 1.0E-03 89.44E-03 → ∞

7 Conclusions
Through the analysis of the simulation results putting
them on a parallel with the theoretical computed
values, we can conclude that the values obtained for
Critical Perturbation and the Stability Margin are
conservatives, i.e., their values are less than the true
values due to approximations made on deduce them.
Consequently, the conclusion goes to meet a safety
procedure.
In spite of the conservative value computed for the
Stability Margin, it was shown that the Indirect
Neural system is very robust, because it can absorber
relative high perturbations comparing to the steady-
state output values that existing immediately before
their occurrence. This means that it is capable to
support perturbations caused by modelling errors and
plant parameter variations due, e.g., to the unknown
dynamics and the aging of the physical components.

Finally, we conclude that the new methods for
evaluation of the neural robustness presented in this
work produced good results, and could be used as a
tool for Indirect Neural Control design.

References:
[1] Rumelhart, D.E., McClelland, J.L. e The PDP

Group. Parallel Distributed Processing:
Explorations in the Microstruture of Cognition,
Vols. 1 e 2.The MIT Press. Cambridge,
Massachusetts. USA. 1986.

[2] Gabriel, O. Fo. A Neural Adaptive Control
Scheme with On-Line Training. Master
Dissertation. Federal University of Rio Grande
do Norte. Natal/RN. Brazil. 1996.

[3] Maitelli, A.L. e Gabriel Fo, O. A Neural
Adaptive Control Scheme with On-Line
Training. In: Proc. of the 7o Latin-American
Congress of Automatic Control - LACC - IFAC,
Volumen 2, pp. 887-892. Buenos Aires.
Argentina. 1996.

[4] Haykin, S. Neural Networks. Artmed Editora
Ltda. Porto Alegre/RS. Brazil. 1999.

[5] Pansalkar, V.V. e Sastry, P.S. Analysis of the
Back-Propagation Algorithm with Momentum.
IEEE Transactions on Neural Networks, Vol. 5,
No. 3, pp. 505-506. USA. 1994.

[6] Nφrgaard, M., Rvn, O., Poulse, N.K. e Hansen,
L.K. Neural Networks for Modelling and
Control of Dynamic Systems. Springer-Verlag
London Limited. London. England. 2001.

[7] Tanomaru, J. e Omatu, S. Process Control by On-
Line Trained Neural Controllers. IEEE
Transactions on Industrial Electronics, Vol. 39,
No. 6. USA. 1992.

[8] Maitelli, A.L. e Gabriel, O. Fo. A Neural
Adaptive Controller Applied to a Nonlinear
Plant. In: Proc. of the III Brazilian Congress of
Neural Networks, pp. 466-471.
Florianópolis/SC. Brazil. 1997.

[9] Maitelli, A.L. e Gabriel, O. Fo. Stability and
Robustness Analysis Applied to a Indirect
Neural Control System. Controle&Automação
Journal (still being reviewed). Brazil. 2003.

[10] Maitelli, A.L. e Gabriel, O. Fo. Indirect Hybrid
Controller Based on Neural Networks – Part I:
Development and Implementation. In: Proc. of
the 6o Intelligent Automation Brazilian
Symposium, pp. 183-188. Bauru, Brazil. 2003.

[11] Adetona, O., Sathananthan, S. e Keel, L. H.
Robust Nonlinear Adaptive Control Using
Neural Networks. In: Proc of the American
Control Conference, pp. 3884-3889. Arlington,
VA. USA. 2001.

[12] Ng, G.W. Application of Neural Networks to
Adaptive Control of Nonlinear Systems.
Research Studies Press Ltd. London. England.
1997.

