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Abstract: - In the area of robust intelligent control one of the focus is on controllers development that can 
maintain good performance even if there exists a poor model of the plant and if there are some plant parameter 
variations. The aim of this paper is an efficient address to this question, more specifically to the indirect 
approach using neural networks with on-line training, in present a criterion to evaluate the control system 
robustness against perturbations caused by modelling errors and plant parameter variations, since convergence 
and stability of neural networks are assured. The robustness was tested using computer simulations applied to 
control a nonlinear system obtained on technical literature. 
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1 Introduction 
Control systems based on Artificial Neural Networks 
- ANN’s have been developed by several researchers 
in all the world, each one emphasizing an 
implementation aspect that make it very attractive 
under some practical viewpoint. However only a few 
of them are worried about fundamental problems 
related with robustness analysis. 
 To overcome these problems it is presented an 
indirect control method using ANN’s - the Indirect 
Neural Control system, in which the main purpose 
hereafter is achieving how much this methodology is 
robust with respect to neural networks learning 
errors and plant parameter variations. 
 The outline of this paper is: Section 2 is devoted 
to a brief presentation of the ANN’s. Section 3 
presents a structure for modelling both the plant and 
the controller. Section 4 details an indirect control 
scheme using ANN’s, called Indirect Neural Control. 
Section 5 presents some concepts related with 
robustness, critical perturbations and stability 
margin, which is the main contribution of this paper. 
To validate these concepts, Section 6 presents the 
computer simulation results of a nonlinear plant 
control, and finally, Section 7 presents the 
conclusions. 
 In this paper, the control system and learning 
algorithm are based on discrete-time approach. 
 
 
2 Artificial Neural Networks – ANN’s 
The ANN’s have the purpose of simulate the human 
nervous system behaviour through software and/or 
hardware, to benefit of the powerful intelligent 

systems that human life is endowed [1]. The great 
development occurred on microprocessor technology 
of late years has made propitious an efficient 
software development able to implement the ANN’s, 
i.e., to implement the mathematical elements [2], [3] 
which believes the human intelligence is based on. 
 The neural networks are composed of many 
processing elements connected each one to another 
of some manner, in such a fashion that making 
possible its parallel operation. These elements are 
based on nervous human system, and are called 
neurons. 

The manner how the neurons are connected 
defines the network architecture. This paper uses a 
multilayer arrangement depicted in Fig.1 as follows 
 

 
Fig.1: Artificial Neural Network (3-Layers) 

 
In forward direction, the first layer is the input 

layer only, the intermediary layers are the hidden 
layers, and the last layer is the output layer. 



According [4], the multilayer perceptrons are good to 
learning mathematical relationships from a set of 
input-output data, therefore being considered 
universal approximators. 
 
 
2.1 Error Backpropagation Algorithm 
Among the algorithms used to perform supervised 
learning, the backpropagation algorithm has emerged 
as the most widely and successfully algorithm for 
designing multilayer feedforward networks [4], 
where the learning process rests on synaptic weight 
adjustments so that the difference between the 
desired output and the current output is a minimum 
acceptable value performed on all training points. 
The adjustments of the synaptic weights are 
computed in backward direction, according the 
following equations: 
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where  c  is the training cycle (or epoch), η is the 
learning rate, α  is the momentum constant, E is the 
cost function (or learning global error), p = 1, 2, ..., P 
input-output learning data, k = 1, 2, ..., K neural 
network outputs, e  is the learning local error, o  and  
z  are the desired and current output for the output 
layer neuron, respectively. Note that  z  is computed 
in the forward direction. 

The equation used to adjust the  synaptic 
weights that connect the j-neurons of the hidden 
layer to the k-neurons of the output layer, such that  
E  is less than or equal to    a beforehand given 
tolerance, i.e., , is 
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with j = 1, 2,..., J+1   and   k = 1, 2,..., K, where  

  is the derivative of the output layer neurons 
activation function. The equation used to adjust the 

 synaptic weights from i-neurons of the input 
layer to the j-neurons of the hidden layer, is 
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with  i = 1, 2,..., I+1  and   j = 1, 2,..., J, where    
is the derivative of the hidden layer neurons 
activation function and  δ   is 

the error signal back propagated from k-neuron. The 
backpropagation algorithm can suffer convergence 
problems [5]. To overcome these problems, are used 
the -adaptive and the normalized momentum 
approaches [2], [3]. 
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3 Modelling Using Neural Networks 
In external plant model, the inputs and the plant 
outputs are represented by its derivatives, where the 
derivative orders will establish the plant dynamical 
behaviour. The symbols used to recognize the input 
and plant output orders are defined as follows: ny = 
output order, nu = input order, n = plant order  (= 
output order,  that is,  n = ny)  and  d = plant transport 
delay (d = ny - nu). 

Taking account the discrete-time nonlinear model 
(here  k  is a time domain) using ANN’s given by 
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where  g  is a mathematics function chosen by the 
designer to model the plant dynamic behaviour, ϕ   
is the regression vector, e  is the estimation error, 
i.e., , and W  is the 
matrix of neural network adjustable parameters 
(synaptic weights), from what we immediately 
deduce that the neural estimate of the plant output is 
given by the following equation 
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 The physical systems identification using ANN’s 
can be done employing one of the several model 
structures presented in [6]. In this paper, it will be 
adopted the model known as Neural Network 
Autoregressive with Exogeneous Inputs - NNARX 
explained as follows. 
 
 
3.1 Neural Network AutoRegressive with 
eXogeneous inputs - NNARX Model 
The extended nonlinear NNARX model is given by 
the equation (8), in which the regression vector  ϕ   
is defined as 
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where the -1 augmented component is the input to 
the additional weight that is made equal to the 
threshold. The NNARX architecture is depicted in 
Fig.2 below. 
 

 
Fig.2: NNARX architecture 

 
 This model is BIBO (Bounded Input Bounded 
Output) stable because it does not have feedback of 
the estimate output. The absence of stability related 
problems makes the NNARX model the preferred 
choice when the system is deterministic or the noise 
level is not too significant [6]. 
 
 
3.2 Estimate Jacobian Computing 
The computing of the plant estimate Jacobian is done 
after each neural identifier training, according to the 
chosen neural network architecture. In this work, we 
use only the followings: 
 
• Neural identifier without hidden layer (only input 
and output layers). The plant estimate Jacobian is 
given by 
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• Neural identifier with just one hidden layer. The 
plant estimate Jacobian is given by 
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where  J (without hat) is the number of neurons in 

the hidden layer,  ,  

and the indexes  i  and  j  refer to the input and 
hidden neurons, respectively. It is important to point 
out that the synaptic weights indicated by    
correspond to the connection of the input  u(k-1), 
that occupied the position  2n-d+1  enumerated from 
top to bottom, with the j-neurons of the hidden layer. 
The underwritten index  1  that appears in (10) and 
(11) is due to the neural identifier possessing only 
one neuron in the output layer. 
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4 Indirect Neural Control Scheme 
Up to this section, the purpose was to present some 
basic knowledge about multilayer neural networks 
and the used structure for nonlinear modelling 
applied to unknown plant dynamics identification, to 
assemble a theoretical underground for hereafter 
formulation of the indirect control scheme based on 
neural networks. 
 The term indirect arises because the controller 
parameters adjustment is based on estimate plant 
model instead on nominal plant model, probably due 
to the following reasons: I) the controller 
impossibility to direct attains the real plant 
parameters values, and/or II) the difficult to achieve 
acceptable plant parameters values, resulting from 
nonlinear unknown dynamics occurrence. 
 It is used an Indirect Neural Control Scheme that 
is basically formed with a neural controller (nc) and 
a neural identifier (ni) [2], [3], [7], [8], [9], both 
arranged as depicted in the following figure: 
 

 
Fig.3: Indirect Neural Control Scheme 

 
 Firstly the neural identifier is training, in such 
manner to minimize the error  eni  as shown in Fig.3. 
In sequence, it is performed the controller training 
coupled with the neural identifier, being used now 
the error  enc+ni*  instead, and getting the identifier 



synaptic weights with fixed values, what were 
attained after the last neural identifier training stage. 
The asterisk that appears in  ni*  means that the 
identifier remains with constant synaptic weights 
during all controller training steps. 
 
 
5 Robustness Analysis 
The robustness analysis developed hereafter is with 
respect to the modelling error that could happen in 
neural networks learning process, both the identifier 
and the controller in cascade with a fixed identifier, 
and a plant parameter variations. The robustness 
analysis is an important contribution of this paper, 
because it addresses a challenger question that 
becomes very attractive of late years. 
 
Theorem 5.1 (Control Error Robustness): “Consider 
the Indirect Neural Control of a plant, BIBO stable, 
given by its input-output data [u(k),y(k+d)]. If    
is the control errors set, i.e., , 
where  
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where {.} is a set, kc  is such that  ,  
M  is the settling horizon beginning from the instant  

  and    are the beforehand 
tolerances chosen for neural identifier and neural 
controller training, respectively.” 
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Proof: Turning back to (3), that gives the learning 
cost function, and conform it for neural controller 
(nc) coupled with a single output neural identifier 
(ni*), the latter being maintained with fixed synaptic 
weights during all controller training steps, we have 
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Using a conservative procedure in taking account 
only the most recent neural identifier training input-
output pair (p=1), we obtain 
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According to the scheme shown in Fig.3, we obtain  

, what gives )(ˆ)(Ref_)(* dkydkydke ninc +−+=++
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Since , from (12) we 
have 
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Assuming that the estimate error  e   is not 
available, because it just depends on unknown output  

, it is necessary to dispose the estimate error 
in recursive form, and so goes back if  . 
Without generalization loss, we can take  

. In this case, we 
have 
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Now applying the absolute value operator in (14), 
and knowing that the control error is given by  

)()(Ref_)( dkydkydkc +−+=+ω , it becomes 
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Next, taking the triangular inequality and reordering, 
we get 
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In (15), the term correspondent to estimate error 
change, , tends to be null as soon as the )( dkeni +∆



time rises from  instant, where  kdkc +
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c  is the time 
when the settled control signal becomes constant 
forever, i.e., , there exists a positive 
integer  M, such that 
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whose limit, as soon as  M  tends to infinity, is given 
by 
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Considering that the identifier is a single output 
neural network, from (3) it becomes 
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where  Eni  is the neural identifier cost function, and 
P  is the number of training input-output data. Now, 
using a conservative reasoning in taking account 
only the most recent neural identifier training input-
output pair (p=1), and knowing that the convergence 
condition is  , such that  

  is the beforehand tolerance chosen for neural 
identifier training, we obtain 
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Now taking account (17), and also considering that  
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Finally, using the supremum operator into control 
errors set given by (18), we obtain 
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where  M  is the settling horizon of the plant 
beginning from instant  +d  and  ε   
are the beforehand tolerances chosen for neural 
identifier and neural controller training, respectively. 
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Definition 5.2: “The Critical Perturbation – CP of 
the Indirect Neural Control system is the maximum 
deviation that can occur on plant output without loss 
of stability.” 
 
Theorem 5.3 (Critical Perturbation): “The Critical 
Perturbation – CP of the Indirect Neural Control 
system is given by 
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where  is the possible variation of the control 
signal according actuator range,  is the 
plant estimate Jacobian  and   are the 
beforehand tolerances chosen to neural identifier and 
neural controller training, respectively.” 
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Proof: The training of the neural controller is 
performed coupled with the neural identifier, the 
latter taken with fixed synaptic weights during all the 
controller training process. In this case, the plant 
estimate Jacobian can be given by [10], [11] 
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Manipulating the equation above, and taking account 
the Fig.3, in which it is immediately seen that 
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Now, we suppose that the plant output is settled on 
steady-state, yss, from instant k+d-1, and at a future 



instant the plant suffer a perturbation that cause an 
abrupt variation, , that is ssy∆
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Taking the absolute value of equation (22), and 
applying the triangular inequality, we give 
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Applying Theorem 5.1, and also knowing that 

nini dke ε≤−+ 2)1( , where    is a 

beforehand chosen tolerance for neural identifier 
convergence, we have 
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It means that the plant output variation can not 
exceed the value computed by equation (23), under 
the penalty to lose the stability. Using Definition 5.2, 
we finally conclude that 
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Definition 5.4: “The Stability Margin – SM of the 
Indirect Neural Control system is the factor that can 
be multiplied by the steady-state plant output without 
loss of stability.” 
 
Theorem 5.5 (Stability Margin): “The Stability 
Margin - SM of the Indirect Neural Control system is 
given by 
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Proof: Using Definition 5.4, it comes that 
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6 Computer Simulation Results 
To evaluate the robustness criteria presented in this 
work, it was performed the indirect neural control of 
a nonlinear plant through computer simulations. For 
this purpose, we used a neural identifier (4/1 – linear 
activation function) and a neural controller (4/8/1 – 
tangent hyperbolic and linear activation functions, in 
this order from input to output layer), whose learning 
rates were adjusted using the η-adaptive method, 
subject to the stability assurance [12]. 
 The system to be controlled was obtained from 
[11], and it is a second order nonlinear plant with 
unitary delay, whose equation is the following: 
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The set-point is  y_Ref = 0.8, for  0≤k≤250. In the 
instant  k=251, they were applied some perturbations 
in the plant, to evaluate the robustness of the Indirect 
Neural Control system. The simulations presented 
the following results: 
 
1st case: Perturbation of  ssss yy 5.0+=∆
Before perturbation be applied, the plant was 
stabilized at  yss = 0.8, when in the instant  k=251  it 
suffer a perturbation equivalent to 50% of the 
steady-state output value. The plant input signal can 
be settled from  umin = -0.5  to  umax = 0.2. One time 
instant before the occurrence of the perturbation, the 
value of the input signal was  u(250) = -0.23  and the 
estimate value of the plant Jacobian was  

. Using (20) and (24), we obtain 5456.1)250(ˆ =J
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Based on CP and SM values computed as above, it is 
seen to come that the system control has the property 
to return to the stable condition, once the applied 
perturbation (50%) was less than the critical 
perturbation (67.51%). The results are shown in the 
figure below: 
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Fig.4: Plant output (perturbation=0.5yss) 

 
The results shown in figure 4 confirmed the Indirect 
Neural Control robust behaviour, whose values are 
recorded in Table 1. 
 

Table 1: Error Limit versus Control Error 
k 

(instant) 
εni , εnc+ni* 
(tolerance) 

sup  Ωc 
(error limit) 

ωc(k) 
(control error) 

250 1.0E-03 89.44E-03 1.76E-03 
400 1.0E-03 89.44E-03 7.71E-03 

 
2nd case: Perturbation of  ssss yy 8.0+=∆
The basic difference with respect to the first case is 
that now it is applied a perturbation equivalent to 
80% of the steady-state output value. One time 
instant before occurrence of the perturbation, the 
value of the input signal was  u(250) = -0.23  and the 
estimate value of the plant Jacobian was  

. Using (20) and (24), we obtain 9402.1)250(ˆ =J
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Based on CP and SM values computed as above, it is 
seen to come that the system control has the property 

to return to the stable condition, once the applied 
perturbation (80%) was less than the critical 
perturbation (81.32%). The results are shown in the 
figure below: 
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Fig.5: Plant output (perturbation=0.8yss) 

 
The results shown in figure 5 confirmed the Indirect 
Neural Control robust behaviour, whose values are 
recorded in Table 2. 
 

Table 2: Error Limit versus Control Error 
k 

(instant) 
εni , εnc+ni* 
(tolerance) 

sup  Ωc 
(error limit) 

ωc(k) 
(control error) 

250 1.0E-03 89.44E-03   3.07E-03 
400 1.0E-03 89.44E-03 22.63E-03 

 
3rd case: Perturbation of  ssss yy 0.1+=∆
In this last case, the difference with respect to the 
formers is that now it is applied a perturbation 
equivalent to 100% of the steady-state output value. 
One time instant before occurrence of the 
perturbation, the value of the input signal was  
u(250) = -0.23  and the estimate value of the plant 
Jacobian was  . Using (20) and (24), 
we obtain 
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Based on CP and SM values computed as above, it is 
seen to come that the system control does not have 
the property to return to the stable condition, once 
the applied perturbation (100%) was greater than the 
critical perturbation (74.61%). 
 



The results are shown in the figure below: 
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Fig.6: Plant output (perturbation=1.0yss) 

 
The results shown in figure 6 confirmed the Indirect 
Neural Control lack of robustness, whose values are 
recorded in Table 3. 
 

Table 3: Error Limit versus Control Error 
k 

(instant) 
εni , εnc+ni* 
(tolerance) 

sup  Ωc 
(error limit) 

ωc(k) 
(control error) 

250 1.0E-03 89.44E-03 0.74E-03 
400 1.0E-03 89.44E-03 → ∞ 

 
 
7 Conclusions 
Through the analysis of the simulation results putting 
them on a parallel with the theoretical computed 
values, we can conclude that the values obtained for 
Critical Perturbation and the Stability Margin are 
conservatives, i.e., their values are less than the true 
values due to approximations made on deduce them. 
Consequently, the conclusion goes to meet a safety 
procedure. 
In spite of the conservative value computed for the 
Stability Margin, it was shown that the Indirect 
Neural system is very robust, because it can absorber 
relative high perturbations comparing to the steady-
state output values that existing immediately before 
their occurrence. This means that it is capable to 
support perturbations caused by modelling errors and 
plant parameter variations due, e.g., to the unknown 
dynamics and the aging of the physical components. 

Finally, we conclude that the new methods for 
evaluation of the neural robustness presented in this 
work produced good results, and could be used as a 
tool for Indirect Neural Control design. 
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