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Abstract - This paper deals with the heat generated by ohmic losses in High-Voltage (HV) solid imperfect
dielectrics. An algorithm is proposed for the solution of coupled electric and heat dissipation problems in solid
dielectrics of the HV electric cables

A lumped-parameter model is used for the electric field computation and a distributed-parameter model is
used for the thermal field distribution. The heat source and the conductivity of the solid dielectric (insulation)
accomplish the couplage between the two fields.
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1 Introduction
It is well known that in any engineering problem

we use mathematical models that must be solved.
An analytical solution is possible only in

particular cases. The numerical solution is a way to
obtain accurate results and to study in laboratory
conditions many operating regimes.

The aim of this paper is to describe a
computational model to the accurate computation
of the electric and thermal fields in co-axial cables.
Accurate calculation of these fields is a very
important aspect of transmission line design,
communication and other aspects.

In our paper we consider high-voltage coaxial
cable that is employed from relatively low
distribution voltages up to 500kV. Such cable
consists a metallic conductor and one or more
insulation layers. We consider a parallel-plane
model for the field analysis. The analysis domain is
a quarter of the cross section of the cable. We
propose a new algorithm and limit our presentation
to one stage: resistive distribution of the electric
field.

The problem is described by a coupled thermal-
electric set of equations [2]. The equations are
coupled because most of the heat sources are the
effects of the electric field and the material
properties are temperature-dependent. In our target
examples, the coupling between the two fields is a
material property as the electrical conductivity
and/or the heat sources. The scope of this paper is
to present some aspects of computational aspects in
simulation of coupled electric and heat dissipation
problems in insulation of the electric cables.

A coupled model for electrical current and its
thermal effect involves development of
mathematical models for the two distinct physical
fields but the solving of these models must be done
simultaneously. Our models are based on Maxwell
equations and heat conduction [1].

Our case refers to the fields taking into account
ohmic insulation losses, that is we consider the
leakage current in the insulation. Normally, the
power generated through the whole insulation per
meter of cable is small compared to the power
generated by conductor. However, the effect of the
ohmic insulation losses may be not neglected at
higher stresses and ambient temperatures.

The interaction of the electric and thermal fields
is obviously. Thus, the leakage current heats the
insulation due to the ohmic insulation losses so that
the temperature of insulation will rise. The higher
temperature of the insulation will increase the
electrical conductivity of the insulation. The higher
conductivity causes a higher leakage current and
this current will heat more the insulation.  This
process repeats until either equilibrium is reached
or an instable situation appears [4].

In other words, the electric field may be
influenced very much by this phenomenon. An
accurate computation of the electric field
distribution can be obtained taking into account the
effect of the ohmic insulation losses. Consequently,
the electric field distribution can be computed in an
iterative way.

More, the temperature drop of the insulation
generated by the leakage current must be added to



the well-known temperature drop which is the
result of the conductor losses.

2 Problem formulation
In our discussion we consider a co-axial cable

plotted in the figure 1. For a length more large than
the cross section we can use a parallel-plane model
(2D model) for the electric and thermal fields. A
DC cable can operate in different regimes so that
we limit our discussion at the case of application of
the step voltage.

Mathematical model for the thermal field in
insulation is the conduction equation [4]:
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with: T (x, y, t)  - temperature in the point with co-
ordinates (x, y) at the time t; λx, λy � thermal
conductivities; γ  - specific mass; c � specific
heating; q � heating source.

The equation (1) is solved with a known initial
condition T(x,y,t0)=T0(x, y) and with specified
boundary conditions.

It is obviously that there is a natural coupling
between electrical and thermal fields. A direct
couplage is obviously: the heat source q in (2)
depends on the current density J in insulation.
Another influence is the heat flux on the boundary
conductor-insulation due to the ohmic losses in
conductor.

For an imperfect insulation the electric field
distribution can be obtained using a model based
on Maxwell�s equations considering a finite
conductivity of the insulation of the cable.  In a
recent paper we presented this accurate approach
but in some assumptions we can use a simplified
model.  The electric field in insulation can be
computed using a lumped-parameter model. An
accurate computation of the thermal field is based
on the FEM using a distributed-parameter model
described by the equation (1).

Mathematical model for the thermal field is the
conduction equation (1) with the following
boundary conditions:
•  A Neumann�s condition or Dirichlet�s

condition on the boundary conductor-insulation
•  A convective condition on the boundary

medium- insulation
In insulation the resistivity depends on the

temperature by relation:
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ρ (T0) is the resistance at ambient temperature T0
(usually +20 0C) and ρ (T) is the resistivity at the
instantaneous temperature T.

Consequently, we have a non-linear problem so
that only a numerical solution can be obtained in an
iterative way.

A numerical model for the heat dissipation in
insulation can be obtained using the finite element
method (FEM).

We limit our study at the steady-state regime.

3 A computational model
There is a natural couplage between the two

fields so that only an iterative procedure must be
used for the numerical simulation of the
temperature distribution in insulation.

The algorithm in pseudo-code has the following
structure [1]:

1. Choose the initial value of the temperature
2. Repeat

•  {Computations for electrical field}
! Compute the resistivity ρ with (2)
! Compute the electric field with (4)
! Compute the insulation current Iins

•  {Computations for thermal field}
! Compute the heating source q by (3)
! Solve the numerical model for the heat

conduction using (1)
3. Until the convergence_test is TRUE

We have an iterative process because the electric
conductivity depends highly on temperature T so
that the heat source q depends on the temperature.
Consequently, the algorithm includes the loop
repeat-until. The convergence test is selected so
that the difference between two successive values
of the thermal field must be less than a prescribed
value imposed by the accuracy of the computation.

An accurate numerical model can be obtained
both for the electric field distribution and thermal
field using the finite element method (FEM).

Fig. 1. The case in discussion



4 A simplified model
Obviously the performance of any software

product is estimated on the run-time and the
memory of the host computer. Our goal is to reduce
at the minimum both the run-time and the memory
for the simulation program. An approach is to
consider a lumped-parameter model for the electric
field computation in the insulation.

In this assumption the heat source in insulation
can be considered as being the ohmic losses in
insulation, that is [4]:
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in which: q is the power generated per unit volume,
Iins is the leakage current  (insulation current) per
meter cable, and σ is the insulation conductivity.

The boundary conditions for the heat equation (1)
are the following:
•  A Neumann�s condition  on the boundary inner

metal - insulation
•  A convective condition on the boundary cable-

ambient medium

The Neumann's condition can be computed by
the conductor losses in the case the cable was
loaded before switching of the step voltage, that is
the current in the cable has been raised long before
and the temperature distribution in the cable is
stable. In this case the value of the heat flux is
computed with the relation:

02 r
Pp cond

π
=

with Pcond - the ohmic losses per cable meter in the
inner conductor as Joule-Lenz�s effect.

Thus, Neumann�s condition is:
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with C1 � the boundary of the cable conductor and
insulation.

The temperature of the conductor can be
considered a constant (Dirichlet�s condition) if the
cable was loaded before switching of the step
voltage or the cable is not loaded (the current in
conductor is zero).

At the lead sheath we consider a convective
condition by the form:
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with h � the convective coefficient, T∞ - the
ambient temperature and C2 � the boundary of the
cable and the external medium.

The spatial domain and the mesh are presented in
the Figure 2. An accurate computation can be
obtained if we include the inner conductor but the
run-time of the program increases.

5 Discussions
The field distribution is a hyperbolic function if

there is no temperature drop in insulation. With no
temperature drop in insulation, the maximum value
of the electric field strength is near the conductor
(the curve E1 in Fig.3).

For large loads that lead to high temperatures in
conductor, the field near the lead sheath may
become higher than the highest field strength near
the conductor. An analytical relation is proposed in
the work [4]:
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where: r0 is the inner insulation radius, r1 is the
outer insulation radius, ∆t is the temperature drop
of insulation, and k (t) is defined as:
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Fig.2 - Field domain (a quarter) and mesh



In Fig.3 the electric field is plotted for different
temperature drops in insulation. E1(r) represents
the electric field in the cable without temperature
drops in insulation, that is there is no load current.
The heat source in this case is the leakage current
in insulation. The temperature drop in insulation
modifies the electrical field distribution, that is a
load of cable (a load current) can influence the
resistive field distribution.

In our examples the computations were
performed on a 150 kV cable with r0=20 [mm],
r1=50 [mm] and the temperature coefficient
α=0.10C.

The second stage of the numerical algorithm is
the simulation of the thermal field. The heat source
is the thermal effect of the current in the dielectric
insulation and the load current of the cable (a heat
source very important). In our model we consider
that there is a constant heat flux on the interface
conductor-insulation. The source of this flux is the
Joule�s effect of the load in the cable. For this stage
we used a software product developed by the
authors. The results were compared with the results
obtained with Quickfield  [5].

6 Conclusions
In our work we presented a computational model

for a coupled problem in the solid dielectrics (a
component of the high voltage DC cables). Our
presentation was limited to steady-state regime
although our software product includes the
transient regime.

We considered an algorithm based on both
explicit and implicit couplage between the two
phenomena. The couplage is achieved both by the
right term of the conduction equation (heat source)
and electric conductivity of the material.

The non-linear mathematical model of the
problem is solved in an iterative mode. At each
iteration step, the physical properties of the
insulation are computed using the temperature
distribution computed by a distributed-parameter
model.

Another version of our software product imports
the database generated by Quickfield program [5].
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Fig. 3. Electric field for different
temperature drops
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