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Abstract: - The paper presents the optimal control problem of the heat transfer in the steady-regime, using
boundary commands, whose positions are known. In this paper we limit our discussion to the case of bounday
control of a high-voltage direct-current electrical cable. The necessary conditions for optimality are obtained by a
variational approach. The command variable is the temperature of the cooling fluid of the cable but in our software
we included the case with the fluid speed as a command.

In this paper the cooling-fluid temperature (environment temperature) is the command variable. The optimal
command is determined by a gradient technique. A numerical model is developed using the finite element method
for state and co-state equations.

We developed a CAD product in programming language C for 2D problems. Some examples illustrate the use of
our product in the heat transfer problems. A comparison of our product with similar software in this area is done
for analysis problems.
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1 Introduction
In electrical power transmission and distribution,

insulated power cables are widely used. The
performance on power carrying capacity is
determined by the heat dissipation towards the
ambient medium.

An elliptical equation (steady-state problem) or a
parabolic equation (unsteady-state problem) can
describe the heat transfer by conduction. In the heat
transfer in electrical devices two aspects of the
problem appear:
•  An analysis of the temperature distribution with

imposed boundary conditions (specified
temperature, convective and radiation flow).

•  Optimal control of the heat transfer, either
distributed or boundary commands.

The first aspect is treated in most works and
consists in determining of the temperature
distribution in the parts of the system when the
geometry of the system and the thermal load are
known (that is the internal heat sources and the
boundary conditions are given). The second aspect is
more complex because it requires controlling the heat
transfer that is to determine the values of certain
variables called the commands so that the system has
a desired evolution. More, we seek those commands,
called optimal commands, that lead to the best
evolution with respect a known criterion.

In this section we treat the elliptical systems,
practically the optimal control in the steady state, in

space 2D and in space 3D (only for axisymmetric
field). The boundary commands are easy
implemented because the boundary is an interface
between environment and the controlled system,
although the advanced technologies permit
implementation of the distributed commands. An
algorithm for this case was implemented in our
software package where the distributed command is
the heat source (the excitation current). Some
previous works were presented with this software
product.

2 Problem Formulation
The general class of the problems dealt with this

paper is governed by the following differential
equation:
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with specified boundary conditions. In (1) f is a
known function that represents internal heat sources-
the Joule-Lenz effect and eddy-current losses.

The boundary conditions are:
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where: u (x, y) is the temperature in the domain Ω C
R2 and C =C1 U C2 U C3 U C4 is the boundary of the
domain. In (2) u0 is a known function (Dirichlet's
condition) and in (3) we have a Neumann's condition
with q -the flux on the boundary. On the boundary C3
we have a convective condition (4) with α the
convection coefficient and w the ambient
temperature (a command variable). On the boundary
C4 we have a mixed-condition (as for example a
convection and radiation condition), with g a known
function. In (1)  kx, ky are the thermal conductivities
in the directions of the axes of the co-ordinates
system Oxy. In conditions (3)-(5), ∂/∂n is the
directional derivative normal to the boundary C.

The mathematical model of the heat equation in
space 2D, also is met in axisymmetric field, where
the equation (1) becomes [3,5]:
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In a convective control, w can be chosen as a
command variable [1]. We consider a functional cost
by the form:
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with: c0 - a given positive coefficient;  uD-an
imposed internal temperature distribution.

The functional cost has a practical significance: it
penalises the deviations of the temperature in the
domain from the imposed standard (uD). On the
boundary C3 U C4 we apply a command w ε L2 (C) -
the space of the integrable-squared functions, with g
a known function. The boundary command w can be
the temperature of the cooling medium that is we
have a convective control like in (3) where the
coefficient α is supposed constant or depends by the
boundary temperature. In another practical case, the
command w is the speed of the cooling medium (like
in the oil-immersed transformer), and g has the form

g(u, w)=α(w)(u-u∞)
where u∞ is the temperature of the cooling medium

(supposed a constant). The dependence of α by w
must be known but unfortunately this is a difficult
task. It is determined from experimental data and is
expressed using nondimensional parameters as
Nusselt and Reynolds numbers.

The problem of the optimal control consists in the
minimisation of the functional  (7), that is we seek a
command w* ε W (an admissible set) such that:

Ww   J(w))w*J( ∈∀≤              (8)
in the condition (1), with specified boundary

conditions (2)-(4).

Frequently, the set of admissible commands is by
the form
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3 Necessary conditions for ptimality
We transform the constrained optimal control

problem into an unconstrained problem through the
introduction of adjoint function Φ. We define the
augmented cost-functional by [1,2]:
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Necessary conditions for optimality are derived by
a variational approach. It is considered a variation δw
in the command w that introduces a variation δL.
From the first variation of L, results the adjoint
equation [5]:
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with boundary conditions:
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The gradient of the cost-functional is [5]:
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The gradient method can be employed to obtain the
optimal command w* (or the method of gradient
projection for the constrained problem).

4 A numerical model
For obtaining the optimal command w*, the

gradient method can be used with good results,
especially for the unconstrained commands. For this
case the gradient method proceeds as follows [4,5]:
[1]. make an initial guess of the command w0, and set

the iterations counter to zero;
[2]. solve the state equation (1) with conditions (2)-

(5);
[3]. solve the adjoint equation (11) with the

conditions (12);
[4]. compute the new command:

)w(Js.-w=w nn1+n ′            (14)
[5]. Repeat the steps 20-40 until subsequent changes

in J are less than a preset criterion.
The length of the step s is determined by a one-

dimensional search technique. Recent developments



allow replacing the step length rule by a trust region
method. In the application program developed by the
authors, it was used the following rule: an initial
value for s is chosen and the functional-cost is
calculated and if its value isn't less than the old value,
the length of the step is divided to two and this
procedure continues until the monotony of the
functional is satisfied. The disadvantage of this rule
is that requires an iterative method to determine s at
each iteration. The steps 20 and 30 of the algorithm
imply the solution of the state and adjoint equations.
The finite element method was used to obtain
approximate solutions in finite dimensional subspace.
Using Galerkin's method with linear triangular
elements, we obtain the element equation [3]:
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with: Ke - the thermal stiffness matrix by dimension
3 X3; Kh

e- the influence matrix for boundary heat
generation convection, by dimension 3 X 3; fe- the
column vector of internal heat generation; ve- the
influence vector for ambient temperature near
convecting boundaries; qe- the influence vector for
external heat flow; ge- the command vector for the
boundary commands.

Finally, by assembling the element equations,
results an algebraic equations system. The adjoint
equation (9) and cost-functional are discretized in the
same manner.

5 Applications
 We consider an infinitely long coaxial cable with a

stranded inner conductor carrying the direct current.
A step voltage is applied and a steady-state regime is
considered. This problem can be treated as a two-
dimensional problem. The current density is a
constant and this assumption is valid in the analysis
and synthesis of electrical devices where the current
density J is a specified constant in conductors and
zero elsewhere. This inherent approximation
becomes more and more valid as we use smaller and
smaller triangles. In the alternating current, the skin
effect appears but in the most practical systems the
conductor is stranded (that is made up several tightly
wound strands of conductor insulated from each
other) so as to force the currents to flow through the
entire cross section of the conductor and thereby
utilise the material better. Hence the validity of
assuming uniform density as in direct current
systems can simplify the computation. This
assumption can lead at some practical applications.
For such a system it has seen that the governing
equation is (1). With the origin of the co-ordinates
system in the center of the cable, only a part of the
entire domain is used. The convective command w is

applied on the shield of the cable. The functional cost
is by the form (7). We considered an averaged value
of the gradient so that we can obtain a sub-optimal
command.

Example 1. A coaxial cable with a non-uniform
current density and two insulation layers.

In the figure 1 the analysis domain is presented.
The geometrical dimensions are: conductor radius -
15 mm, the outer radius of the first layer - 30 mm,
and the outer radius of the second layer - 50 mm. The
resistivity of the copper was considered at the
temperature 75 0C and equal to 1.78.10-8 Ω/m.

Figure 1. Analysis domain for a large-power cable

The physical properties are: thermal conductivities
kx=ky=385 W/m.0C in the copper and equal to
k1=0.14 W/m.0C and k2=0.175 W/m.0C in the
insulation layers; α=12 W/m2.0C and the current
density is 5.0.10-5 A/mm2. The minimum value of
J(w) was found to be equal to 5.604 for c0=0.0001.
The iterations number is 181 with the initial value of
the command equal to 400C. The optimal command
is 63.95 0C for uD=75 0C. In numerical simulation it
is considered a medium value of the gradient on the
boundary, that is in the formula (11) the command w,
at each iteration step, is a constant (a frequent case in
industry where we consider an average value of the
command variable). Any case may be treated in the
same manner (for example, a piecewise command or
a local command).

 Example 2. A coaxial cable with a constant
temperature on conductor surface and two solid
insulators.

In the figure 2 the analysis domain is presented.
The physical properties are: thermal conductivities
for insulators k1=0.14 W/m.0C and k2=0.175
W/m.0C; the temperature on the conductor surface is
100 0C; the convective coefficient is α=12 W/m2 0C.
The minimum value of J (w) was found to be equal
to 0.1637 for c0=1.0.10-6. The iterations number is 93



with the initial command equal to 40 0C. The optimal
command is 54 0C for uD=75 0C.

Fig. 2. Analysis domain with convective command

Example 3. A coaxial cable with a uniform
temperature flux from conductor.

Another case involves a constant flux at conductor
surface. The analysis domain is presented in the figure
2 but at the boundary conductor-insulation we have a
heat flux with a constant value. The value of the flux
is computed using the heat quantity developed by
Joule-Lenz effect in conductor and the area of the
interface conductor-insulation.

The boundary conditions for the heat equation (6)
are the following:
•  A Neumann�s condition on the boundary inner

metal - insulation
•  A convective condition (command) on the

boundary cable- ambient medium
The Neumann condition can be computed by the

conductor losses in the case the cable was loaded
before switching of the step voltage, that is the
current in the cable has been raised long before and
the temperature distribution in the cable is stable.
In this case the value of the heat flux is computed
with the relation:

02 r
P

q cond

π
=

with Pcond - the ohmic losses per cable meter in the
inner conductor, and r0 � the external radius of the
conductor.

The temperature of the conductor can be
considered a constant (Dirichlet�s condition) if the
cable was loaded before switching of the step
voltage or the cable is not loaded (the current in
conductor is zero).

At the lead sheath we consider a convective
condition by the form:
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with w - the ambient temperature (command
variable.

6 Conclusions
Because the similarities between the axisymmetric

problem and the two-dimensional plane problem,
only slight program modifications are necessary to
handle one problem or the other. In industrial
applications the convection coefficient α is not a
constant but depends by a number of factors  (the
temperature, characteristics of the ambient medium
etc.). This influence can be included in the program
and we have applied this idea in our software. In
other applications, the boundary command is the
speed of the external fluid for cooling medium. The
complexity of the problem increases and in many
cases it is a non-linear problem.

A version of our software uses the database of the
problem exported from the software product
Quickfield [6].
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