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Abstract

This article aims to show that one can link imperfections of compe-
tition to the occurrence of endogenous fluctuations. We consider a two
sector model in which a perfectly competitive final good sector uses in-
puts that are produced in a Cournot monopolistic competition market.
We show that when inputs are not perfect substitutes, and the depre-
ciation rate of capital is sufficiently small, Neimark bifurcations are
susceptible to emerge. This is a consequence of additional variability
in the dynamical system generated by the dependence of the markup
on the number of firms. This number changes over time because firms
can enter and exit the market without costs. Moreover, a fixed cost in
the technology ensures that the number of active firms at a given date
is finite provided that the elasticity of substitution between inputs is
bounded from above.
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1 Introduction

The goal of this paper is to emphasize on the role of nonlinearities in-
duced by imperfect competition in the goods market on equilibrium dy-
namics. Cournot competition has been analyzed by d’Aspremont et al.
[d’Aspremont et al., 1995] who detected two channels through which im-
perfect competition can contribute to explaining endogenous fluctuations:
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increasing returns and the variability of market power. This second charac-
teristic of imperfect competition is the one we focus on in this paper. Indeed,
we wish to show that market power variability is a factor that can favor
the emergence of equilibrium trajectories not reduced to the steady state.
Several sources of variability of the markups can be put forward. In Gali
[Gali, 1994] it results from modifications in the composition of the aggregate
demand. Rotemberg and Woodford [Rotemberg and Woodford, 1991] pro-
pose several scenarios (standard monopolistic competition, customer market
and implicit collusion) that lead them to link the markups variations with
variations in the level of sales and in the present value of expected profits.

The key ingredient in this paper is the variation of the number of firms
that results from free entry and exit together with fixed costs in the pro-
duction function. We study a model la Woodford characterized by Cournot
monopolistic competition on the inputs market. More precisely, we suppose
that inputs are produced by a continuum of sectors, each sector being com-
posed of a finite number of firms. This number is supposed to vary and
is determined by the zero profit condition under the free entry hypothesis.
The technology is characterized by a fixed cost, implying that the number
of active firm is always finite provided that firms have a positive market
power. Unlike Cazzavillan et al.’s model [Cazzavillan et al., 1997], which is
characterized by a constant markup and focuses on the effects of increasing
returns, market power is here variable because of the free entry hypothesis.
We show that this variability induces larger possibilities of dynamic behav-
ior compared to the perfect competition case. Indeed, if the depreciation
rate of capital is weak enough (but remains strictly positive) Neimark bifur-
cations emerge when the imperfection of competition (given in this model
by the ratio between fixed costs and the elasticity of substitution) varies
between zero and an upper bound beyond which the system does not admit
any steady state. On the contrary, the perfect competition case is charac-
terized by local determinacy of the steady state, regardless of the parameter
values3.

The structural assumptions of the model are presented in the following
section. Then, dynamics in the neighborhood of steady states are studied
in section 3.

2 The Model

We consider a two sector economy. The first sector is perfectly competitive
and produces a final good that will be used for consumption and invest-
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ment. The intermediate sector contains a continuum of factor markets, the
factors being imperfect substitutes. The elasticity of substitution between
two goods is the same regardless of the goods considered.

In the first two subsections we derive the behavior of the two categories
of consumers, workers and capitalists. The last subsection is devoted to the
analysis of producers’ behavior.

2.1 Workers

The present model is based upon Grandmont et al [Grandmont et al., 1998]
which is a variant of Woodford’s model [Woodford, 1986] allowing for factor
substitutability. Three kinds of agents are considered: workers, firms and
capitalists.

There is a continuum of workers represented by the [0,1] segment. They
are strictly identical, so we can restrict the study to a representative worker.
In Woodford’s model workers and capitalists are both infinitely lived agents.
Both hold capital but only workers supply labor. Hence, they have an ad-
ditional liquidity constraint in the sense that they can’t spend their wage
during the period where it is earned. Woodford shows that capital stock
is entirely held by capitalists at the equilibrium and that the level of con-
sumption and labor chosen by workers is the same as in an OLG framework
where old agents don’t work. Here, we impose the OLG structure as a
starting point in order to simplify the presentation. But it should be kept
in mind that the initial structure is one of infinite lived agents4, although
we shall mention young and old agents to simplify the exposure.

Money is the only asset that the representative worker uses to transfer
his earnings between periods. We assume that the quantity of money is
held constant and equal to M > 0. The agent’s goal will be to determine
his optimal labor supply Lt (and the associated consumption level Ct+1) by
trading off between the utilility he derives from his consumption and the one
procured by his leisure time, or, equivalently the disutility of working. Ex-
pected prices Pt+1 and nominal wages wt are taken as given. The consumer’s
program is the following:

max
Ca

t+1

a
−

Lb
t

b

s.t.

{

M ≤ wtLt

Pt+1Ct+1 ≤ M

(1)

with 0 < a < 1 and b > 1.
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The first order condition is given by the equalization of the marginal rate
of substitution to the price ratio:

Lb−1
t

Ca−1
t+1

=
wt

Pt+1

Together with the intertemporal budget constraint, this gives:

Ct+1 = (Lt)
θ (2)

with θ = b/a > 1.

2.2 Capitalists

We consider the limit case of Woodford’s model [Woodford, 1986] where
capitalists hold the whole capital stock and do not consume5.

Denoting δ the rate of capital depreciation and ρt the real interest rate
at date t, we have the following capital accumulation equation:

Kt = (1 − δ + ρt)Kt−1 (3)

where it should be reminded that capital good is the same composite
good as the consumption good6.

Investment decisions, in this very simplified context, provide the second
source of dynamics in this model. We see easily from (3) that a non autarkic
steady state exists only if the depreciation rate is strictly positive. The study
of entrepreneurs decisions and the definitions of equilibria will allow us to
rewrite equations (2) and (3) in terms of the sole variables K and L.

2.3 Firms

The composite good used for consumption and investment is produced on a
perfectly competitive sector using a continuum of intermediate goods. Each
of these intermediate goods is produced according to a technology using cap-
ital and labor on an imperfectly competitive market. More precisely, this
market is characterized by a small number (greater or equal to 1) of pro-
ductive firms who behave strategically by conjecturing the residual demand
from the final sector enterprises. Hence, we speak about Cournotian mo-
nopolistic competition7 to describe the two main features of this model: the
great number (continuum) of intermediate goods (which relates to the Dixit
Stiglitz model of monopolistic competition) and the Cournotian aspect of
strategic behaviors on each market of intermediate good.

We first derive the production factors demands by studying final sector
firm’s behavior, then we solve the intermediate sector profit maximization.
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2.3.1 Final Good Sector

The final sector firms use all inputs8 xjt, j ∈ [0, 1] produced by the interme-
diate sector in order to produce an amount yt of composite good that will be
sold to the capitalists and the consumers at price py

t . This good is produced
according to a C.E.S. technology on a perfectly competitive market, that is:

yt = F (xjt)j∈[0,1] =

(
∫ 1

0
x

σ−1
σ

jt dj

)

σ
σ−1

(4)

A representative final sector firm’s program is given by:

max
(yt,xt)∈R+×R

[0,1]
+

py
t yt −

∫ 1

0
pjtxjtdj

In a first step, the entrepreneur seeks to minimize his total expenditure
for a given output level. We have therefore:

E (yt) ≡ min
xjt∈R

[0,1]
+

(

∫ 1
0 pjtxjtdj

)

s.t.

(

∫ 1
0 x

σ−1
σ

jt dj

)
σ

σ−1

≥ yt

From this, we deduce the input demand as a function of the desired output
level:

x∗
jt =

[

pjt

Pt

]−σ

yt (5)

with:

Pt =

(
∫ 1

0

(

p∗jt
)1−σ

dj

)

1
1−σ

the associated expenditure level is then:

E (yt) ≡

∫ 1

0
pjtx

∗
jtdj = Ptyt

Therefore, the optimal level of production, for each firm of the final sector,
is given by:

y∗t ∈ arg max
yt

py
t yt − Ptyt

This program only has a positive solution if py
t = Pt. In that case, the

global level of production

Yt ≡

∫ 1

0
yitdi

is determined by the final good market equilibrium.
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2.3.2 Intermediate sector

Inputs are produced on a market consisting of a continuum of sectors in-
dexed by j ∈ [0, 1], each sector containing a finite number nj of enterprises
who behave as Cournot competitors. This situation has already been re-
ferred to as monopolistic Cournot competition (see d’Aspremont and al
[d’Aspremont et al., 1995] ). Thus, firms take into account, in their pro-
gram, the effect of the price of the good they produce on the residual demand
they’re facing, other firms being supposed to produce the same amount xjt.
This variation is included in their objective function by replacing in the total
revenue, prices by the following inverse demand function9:

pjt (xjt) = Pt

(

xjt

yt

)− 1
σ

= Pt

(

xh
jt + (nj − 1) xjt

yt

)− 1
σ

(6)

Production of a given enterprise h in sector j is carried out using amounts
of labor Lh

jt and of capital Kh
j(t−1)

10 according to a Cobb Douglas technology
with a fixed cost φ expressed in terms of input units:

xh
jt = G

(

Kh
j(t−1), L

h
jt

)

=
(

Kh
j(t−1)

)α (

Lh
jt

)1−α
− φ

Each firm seeks to maximize its own profits taking as given other firms
prices, i.e. the general level price since each sector has a zero statistical
weight. Moreover, each entrepreneur suppose that all his production will be
sold, so we have the following program:

Max
“

Kh
j(t−1)

,Lh
jt

”

∈R+×R+

pjt

(

xh
jt + (nj − 1) xjt

)

G
(

Kh
j(t−1), L

h
jt

)

−wtL
h
jt−rtK

h
j(t−1)

As we did for the final sector, we split resolution of this program in two
steps. In the first step, firms minimize their total expenditure under a given
production level constraint:

CT (xt) = Min
xt

wtL
h
jt + rtK

h
j(t−1)

s.c. G
(

Kh
j(t−1), L

h
jt

)

=
(

Kh
j(t−1)

)α (

Lh
jt

)1−α
− φ ≥ xt

The first order conditions, in connection with the production constraint,
allow us to compute the labor and capital demands:
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(

Kh
j(t−1)

)∗

=
(

1−α
α

rt

wt

)α−1
(xt + φ)

(

Lh
jt

)∗

=
(

1−α
α

rt

wt

)α
(xt + φ)

(7)

as well as the total expenditure:

CT (xt) =
wt

1 − α

(

1 − α

α

rt

wt

)α

(xt + φ)

the second step then consists to determine the optimal level of produc-
tion, which is defined as follows:

(

xh
jt

)∗

∈ Arg Max
xt∈R+

{pjt (xt + (nj − 1) xjt) xt − CT (xt)}

The first order condition gives:

pjt

[

1 +
∂pjt

∂xt

xt

pjt

]

= Cm (xt) =
wt

1 − α

(

1 − α

α

rt

wt

)α

(8)

Combining (7) and (8) and restricting our attention to the symmetrical
equilibria, where njt = Nt, Kh

j(t−1) = Kt−1/Nt, Lh
jt = Lt/Nt and pht = Pt,

we obtain the two conditions:

ρt ≡
rt

Pt
= α

[

1 −
1

Ntσ

]

kα−1
t−1

ωt ≡
wt

Pt
= (1 − α)

[

1 −
1

Ntσ

]

kα
t−1

(9)

where kt−1 denote the capital-labor ratio in period t.
In the sequel of this paper, the symbol λ will denote the inverse of the

margin factor:

λ = 1 −
1

σNt

Under the free entry assumption, the number of firms will adjust until
there are no more profit opportunities. Ignoring integer constraints, we can
therefore determine the number of enterprises in period t using the zero
profit condition of the intermediate sector:

Πt

Pt
=

Kα
t−1L

1−α
t

Nt

{

1 − α

[

1 −
1

Ntσ

]

− (1 − α)

[

1 −
1

Ntσ

]}

− φ = 0
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yielding a number of firms equal to:

Nt =

√

Kα
t−1L

1−α
t

Φσ

and eventually, the margin factor inverse that is given by:

λ (Kt−1, Lt) = 1 −

√

Φ

σKα
t−1L

1−α
t

(10)

3 Equilibria and Dynamics of the model

3.1 Money Market Equilibrium

At each date, the money market is cleared if the real balance is equal, on
the one hand, to the level that young agents wish to save ωtLt and, on the
other hand, to the consumption expenditure of the older agents. Since we
assume that the quantity of money is constant over time, the equilibrium
condition on the money market can be written, in real terms as follows:

ω (Kt−1, Lt)Lt =
M

Pt
= Ct = (Lt−1)

θ (11)

The equilibrium of the goods market is then ensured through Walras’
law.

3.2 Intertemporal Equilibrium and Local Dynamics

Denote Zt the aggregate gross production function:

Zt = Kα
t−1L

1−α
t (12)

Including the money market equilibrium condition in the first dynamical
equation of our system, (2), we obtain a homogeneous dynamical system
in terms of Kt−1 and Zt. We then define a perfect foresight intertemporal
equilibrium as a sequence {Kt−1, Zt}t=1...+∞ such that in each period, there
is a general temporary equilibrium that is, a sequence that verifies:







Kt = (1 − δ + ρt)Kt−1 = (1 − δ) Kt−1 + αλ(Zt)Zt

(1 − α) λ(Zt+1)Zt+1 =

(

(

Kα
t−1

Zt

)
1

α−1

)θ (13)
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where the notation λ(.) has been abusively kept for the degree of competition
index, despite of the change of coordinates.

We will restrict the study of the dynamics to the neighborhood of the
steady states. Formally, a pair {K,Z} is a steady state for the system (13)
if it is a solution of the system of equations:



















K =

(

1 − δ + αλ (Z)
Z

K

)

K ⇐⇒ λ (Z)Z =
δ

α
K

(1 − α) λ (Z)Z =

(

(

Kα

Z

)
1

α−1

)θ

Conditions that ensure that the existence of at least one steady state are
given in appendix and can be summarized as follows:

Proposition 1 Denote ζ = φ/σ a measure of the imperfection of competi-
tion.

• There is a strictly positive value ζ∗, given by

ζ∗ = (B (1 − 2A))
1
A

(

2A

2A − 1

)2A

with

A =
(1 − α) (1 − θ)

1 − α(1 − θ)
and B =

δ

α

(

α

δ(1 − α)

)

1 − α

1 − α(1 − εχ)

such that

– there is no steady state for ζ > ζ∗.

– there is exactly one steady state (K (ζ∗) , Z (ζ∗)) for ζ = ζ∗

– there are two steady states for 0 ≤ ζ < ζ∗, (K1 (ζ∗) , Z1 (ζ∗)) and
(K2 (ζ∗) , Z2 (ζ∗)) with:

K1 (ζ) < K2 (ζ) , and
Z1 (ζ) < Z2 (ζ)

for all ζ in [0, ζ∗[.

In particular, when ζ goes to zero, the lower steady state converges to-
wards the autarkic steady state.
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As shown in the proof of the proposition, the steady states are deter-

mined by the equation S (Z) ≡
(

1 −
√

ζ/Z
)

ZA = B, where B is a positive

constant. The graph of the function S(Z) for different possible values of ζ
is given by figure 1.

ζ = ζ∗

ζ = ζ∗

ζ = 0

Z

S(Z)

B

Z(ζ∗)Z1 Z2 B1/A

Figure 1: Determination of The Steady State

Corollary 1 The high steady state Pareto dominates the low one.

Proving this statement is quite straightforward. Indeed, since firms make
zero-profits, entrepreneurs are indifferent between the two steady states.
Capitalists prefer the high steady state since it is associated with a higher
capital stock. It remains to show that the higher steady state is also pre-
ferred by workers. To see this, note that utility increases along the workers’
offer curve, so we just have to check that, for a given degree of competition
ζ, L2(ζ) > L1(ζ). From the equations defining the steady states, we have
the relation:

L =

[

δ
1 − α

α
K

]

1

θ (14)

so the steady state level of labor is an increasing function of capital and the
desired property follows.

10



Once the existence of steady states is established, the question of the be-
havior of the system in their vicinity arises. Using Hartman and Grobman’s
theorem, this problem can be reduced to the study of the linearized version
of the system. Linearization around a non degenerate steady state provides
the following result:

[

dKt

dZt+1

]

=







1 − δ δ
(

1 + ελ
) K

Z
α

α − 1

Z

K

θ

1 + ελ

θ

(1 − α) (1 + ελ)







[

dKt−1

dZt

]

(15)

where

ελ =
∂λ

∂Z

Z

λ
.

The local stability properties of the system are then determined by study-
ing the eigenvalues associated to the Jacobian matrix. Two cases can be
considered: the case where firms have no market power (corresponding to
zero fixed costs or perfect substitutability) and the case where markup is
strictly positive and varies over time because of entries and exits of firms.

The figure 2, the construction of which does not depend of the specific
dynamical system under study, indicates, for the different possible values of
the trace and the determinant, the corresponding nature of the steady state
in terms of stability properties11.

Trace

1

2−2

−1

Determinant

SADDLE SADDLE

SOURCE

SINK

SOURCE

Figure 2: The Trace-Determinant Diagram
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Using equations (10), (12) and the notation ζ = φ/σ , we have:

ελ =
1

2

√

ζ

Z

1 −

√

ζ

Z

(16)

Trace and Determinant of the transition matrix in (15) are given by:

Tr = 1 − δ +
θ

(ελ + 1) (1 − α)

Det =
θ

(ελ + 1) (1 − α)

[

1 − δ + δα
(

ελ + 1
)]

The expression
(

ελ + 1
)

being the only one that depends upon the pa-
rameters φ and σ, we can consider that, for a given level of the other pa-
rameters, these last two equations define a parameterized curve depending
on the parameter ζ = φ/σ. In fact, by operating the substitution of ζ in the
determinant equation by its expression in terms of the trace, we see that
this curve is more precisely a line the equation of which is:

Det = (1 − δ)Tr + δ

(

αθ

1 − α
+ 2 − δ

)

− 1 (17)

When ζ goes to zero, we converge towards the perfect competition case,
that is a saddle point equilibrium.

According to proposition 1, for ζ sufficiently close to zero, the dynamical
system admits two stationary equilibria. Focusing on the variable Z, we have
Z1 (ζ) < Z2 (ζ) for all ζ in [0, ζ∗[.

A problem arises in that the steady states can’t be computed explicitly12.
In order to provide a local analysis, we have to compute the limits of the
solutions Z1 and Z2 when ζ respectively goes to zero and ζ∗, defining in this
way bounds between which the steady states may vary.

The tables 1 and 2 on the last page (the construction of which is detailed
in appendix) summarize the evolutions of trace and determinant as ζ varies
between 0 and ζ∗. The subscripts 1 and 2 refer respectively to the low and
high steady state.

We can deduce the following proposition:
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ζ 0 ζ∗

Z1 0 ↗ (B (1 − 2A))
1
A

ελ (Z1) +∞ ↘ −A

Tr (Z1) 1 − δ ↗ 1 − δ +
θ

(1 − A) (1 − α)

Det (Z1)
αδεχ

1 − α
↗

θ

(1 − A) (1 − α)
[1 − δ + δα (1 − A)]

Table 1: Behavior of trace and determinant for the low steady state

ζ 0 ζ∗

Z2 B
1
A ↘ (B (1 − 2A))

1
A

ελ (Z2) 0 ↗ −A

Tr (Z2) 1 − δ +
θ

1 − α
↘ 1 − δ +

θ

(1 − A) (1 − α)

Det (Z2)
θ

1 − α
[1 + δ (α − 1)] ↘

θ

(1 − A) (1 − α)
[1 − δ + δα (1 − A)]

Table 2: Behavior of trace and determinant for the high steady state

Proposition 2 The dynamical system (13) undergoes a Neimark bifurca-
tion as the market power, as measured by ζ, is increased from 0 to ζ ∗ under
the condition:

0 < δ < min

{

1 − α

αθ
,

αθ

1 − α

}

Moreover, when ζ goes through ζ∗, a saddle-node bifurcation emerges, mean-
ing that the two steady states coalesce in ζ∗ and that the system has no
ζ > ζ∗.

Proof. The idea of the proof is to compute the trace and determinant
in both limit cases where ζ = 0 (perfect competition) and ζ = ζ ∗. Then, we
use the fact that they move continuously on a line when ζ is made to vary,
to show that a Neimark bifurcation must unfold13.

First, we give conditions for the low steady state to be locally indeter-
minate in the perfectly competitive situation:

lim
ζ→0

D1 > lim
ζ→0

T1 − 1

lim
ζ→0

D1 < 1
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Expressed in terms of the parameters, these conditions can be rewritten as:

αθ

1 − α
> −1

1 − α

αθ
> δ

The second condition will be satisfied provided that the capital rate of
depreciation is small enough and the first one is verified for all admissible
values of the parameters.

Secondly, in the perfect competition case the high steady state is a sad-
dle. Indeed Det(Z2) < Tr(Z2) − 1 iff:

θ

1 − α
[1 − δ (α + 1)] <

θ

1 − α
− δ

or equivalently,
α + 1

1 − α
θ > 1

which is always verified.
Traces and determinant associated to both steady states move on a line

with slope (1 − δ) as ζ is increased and coalesce when ζ = ζ ∗.
We can then define a segment in the trace-determinant coordinates, for

which one end is associated to a saddle equilibrium, the other to a sink, and
such that all points correspond to feasible equilibria. A sufficient condition
for a Neimark bifurcation to emerge as ζ goes from zero to ζ ∗ is then that
the determinant associated with a trace of 2 is higher than 1 (see figure 3 on
the following page).

Using equation (17), we see that this condition is verified if and only if:

δ2 −
αθ

1 − α
δ < 0

which is ensured for:

δ <
αθ

1 − α

The second claim, that a saddle-node bifurcation occurs in ζ = ζ ∗, is
just a reformulation of proposition 1 in terms of bifurcation theory.

A saddle-node bifurcation corresponding to an eigenvalue of modulus 1,
we must have the relationship14:

Det (ζ∗) = Tr (ζ∗) − 1.
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Trace

Determinant

(T1(0), D1(0))

(T2(0), D2(0))

(T (zeta∗), D(zeta∗))

1

1 2

Figure 3: Evolution of the Steady States with ζ

This is indeed verified, when we replace A by its expression, in the ex-
pressions of Det (ζ∗) and Tr (ζ∗).

As a result of bifurcation theory, we know that, when a Neimark bi-
furcation emerges, an invariant closed curve appears around the steady
state, for all values of the bifurcation parameter in a sufficiently close left
or right neighborhood of the bifurcation value. Studies of the dynam-
ics restricted to this closed curve revealed that there were a countable
infinity of periodic orbits and an uncountable infinity of aperiodic orbits
(see [de Vilder et al., 1999] for an overview of dynamics associated with a
Neimark bifurcation). Two cases, the supercritical and the subcritical ones,
are distinguished according to whereas the invariant closed curve is an at-
tractive or repulsive one, and are illustrated in the figure 4 on the next
page. Discriminating between these two cases would necessitate to inves-
tigate the second order approximation of the system, and this task isn’t
achieved here. Economic interpretations of the Neimark bifurcation can be
found in [Kind, 1999].

As shown in the proof, the non autarkic steady state, in the perfect
competition case, is always a saddle. Thus, under the perfect foresight as-
sumption, trajectories in the neighborhood of the steady state will eventually
converge and no fluctuations are to be expected15.
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Subcritical Supercritical

ζ ζ

Figure 4: The Hopf Bifurcation

4 Conclusion

This paper sought to demonstrate that the introduction of imperfect compe-
tition in a general dynamic equilibrium model is not neutral. Indeed, when
firms have no market power in this model, the nondegenerate steady state is
of saddle type, i.e. there is a unique local trajectory eventually converging
towards the steady state. On the contrary, when the imperfect competition
index is strictly positive, both steady states are non autarkic and the low
one (which correspond to the autarkic steady state in the perfect compe-
tition case) is indeterminate. As the market power is raised, if the rate of
depreciation of capital is sufficiently small, the system undergoes a Neimark
bifurcation followed by a saddle-node bifurcation, where both steady states
coalesce and then vanish. The Neimark bifurcation implies that an invari-
ant closed curve exists for parameter values close to the bifurcation value.
Therefore, we have shown that dynamical behavior of the economy is more
complicated in an imperfect competition framework than in its perfect com-
petition counterpart. Fluctuations that are not explained by external shocks
are possible in the long term. The source of variations of the economic ac-
tivity is to be found in the free entry and exit of intermediate sector firms
implying zero profits at the equilibrium. Imperfect substitutability and a
fixed cost in the technology ensure that the number of active firms remains
bounded. Moreover, this number varies procyclicaly while the markup evo-
lution is countercyclical, in accordance with former empirical results (see e.g.
[Portier, 1995]). The interpretation of that fact is that, in growth phases,
the production of the final sector raise, increasing the demand of inputs to
the intermediate sector. This implies that new firms will enter in each in-
put market. In this Cournot framework, coordination between firms will be
weaker so the markup will go down until it won’t be any more profitable for
some firms to stay on the market. The number of productive firm will then
lower increasing coordination between the remaining ones and so on.

One appreciable feature of this model is to emphasize the dynamical ef-
fects of introducing imperfections in competition in a very standard frame-
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work, i. e. Cournot competition. Indeed, the recent literature concern-
ing imperfect competition is characterized by a wide variety of hypotheses,
with more complicated market structures, and more specific strategic deci-
sions (e.g R&D investment decisions etc...). Such approaches have not been
widely exploited in the dynamic general equilibrium framework and con-
stitute therefore a possible track for future research concerning dynamical
aspects of imperfect competition.
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Appendix

A Second Order Conditions of the Intermediate

Sector

In the two-steps procedure of maximization, first order conditions can be
written, dropping the time subscripts for notational convenience, as follows:

MR(x̄) − MC(x̄) = 0

where MC(x̄) has been shown to be constant and

MR(x̄) = pj

[

1 +
∂pj

∂x̄

x̄

pj

]

with

pj = P

(

x̄ + (nj − 1)x̄j

y

)−
1

σ

So, the only thing to be done is to show that the marginal revenue
function MR(x̄) is decreasing.

∂MR(x̄)

∂x̄
=

∂pj

∂x̄

[

1 +
∂pj

∂x̄

x̄

pj

]

+ pj

[

1 +
∂2pj

∂x̄2

x̄

pj
+

∂pj

∂x̄

1̄

pj

]

which gives, at the symmetrical equilibrium, where x̄ = x̄j :

∂MR(x̄)

∂x̄
=

∂pj

∂x̄

[

1 −
1

σnj

]

− pj
1

σ

nj − 1

n2
j x̄

So the marginal revenue is a decreasing function provided that the num-
ber of firms is at least higher or equal to one16.
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B Existence of the Steady State:

The steady state associated to the dynamical system (13), if it exists, is
given by the solution of:































(

1 −

√

ζ

Z

)

Z = δ
αK

(

1 −

√

ζ

Z

)

Z = 1
1−αLθ

Z = KαL1−α

(18)

Expressed in terms of capital stock and of production, (18) becomes:

(

1 −

√

ζ

Z

)

Z = δ
αK

(

1 −

√

ζ

Z

)

Z = 1
1−αK

θα
α−1 Z

θ
1−α

from which we deduce:

K =

(

α

δ (1 − α)

)
1−α

1−α(1−θ)

Z
θ

1−α(1−θ) (19)

which we substitute in the first equation to obtain:

(

1 −

√

ζ

Z

)

Z
(1−α)(1−θ)
1−α(1−θ) =

δ

α

(

α

δ (1 − α)

)
1−α

1−α(1−θ)

We will use the following notations:

A ≡
(1 − α) (1 − θ)

1 − α (1 − θ)
(< 0)

B ≡
δ

α

(

α

δ (1 − α)

)
1−α

1−α(1−θ)

(> 0)

Knowing the production level, the capital stock is uniquely determined
by the equation (19). So we have to determine under which conditions the
equation:

S (Z) ≡

(

1 −

√

ζ

Z

)

ZA = B (20)
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has one or more solutions.
S(.) is a function that has limits:

lim
Z→0

S (Z) = −∞

lim
Z→+∞

S (Z) = 0

Moreover, we have:

S′ (Z) = ZA−1

(

A

(

1 −

√

ζ

Z

)

+
1

2

√

ζ

Z

){

> 0 if
√

ζ
Z < 2A

2A−1

≤ 0 otherwise

The function S (Z) has then a maximum for Zmax = ζ ((2A − 1) /2A)2,
which is given by:

S (Zmax) =
ζA

1 − 2A

(

2A − 1

2A

)2A

> 0

There is consequently a level Z such that condition (20) is fulfilled, if and
only if:

ζ ≤ (B (1 − 2A))
1
A

(

2A

2A − 1

)2

The system defining steady states then admits generically two solutions (the
uniqueness case being destroyed under slight perturbations).

C Construction of the tables 1 and 2

We wish to study the evolution of the trace and the determinant as ζ is
varied between 0 and ζ∗..For this purpose, we have to distinguish the cases
corresponding to each stationary solution of the dynamical system, i.e. Z1

and Z2 (Z1 < Z2). We can compute the expressions of the trace and the
determinant in terms of the parameter ζ, by replacing ελ by its value:

ελ =
1

2

√

ζ

Z

1 −

√

ζ

Z

We will only specify the construction of the first table, the other one
being straightforward. We have:

lim
ζ→0

Z1 = 0
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The equation (20) can be rewritten:
√

ζ

Z
= 1 −

B

ZA

from which we deduce (A < 0):

lim
ζ→0

√

ζ

Z1 (ζ)
= 1

thus, the trace and determinant limits are:

limζ→0 Tr(Z1(ζ)) = 1 − δ

limζ→0 Det(Z1(ζ)) = δαεχ

1−α

Limits of the trace and the determinant as ζ goes to ζ ∗ can be obtained by
a direct computation, using the fact that

Z (ζ∗) = ζ∗
(

2A − 1

2A

)2

.

In order to conclude the description of the tables, it remains to study their
variations according to the parameter ζ.

We obtain by a direct differentiation of the equation defining the steady
state (20):

∂Z

∂ρ
=

Z

2Aρ

1
√

Z
ρ − 2A−1

2A

which is positive if Z > ρ
(

2A−1
2A

)2
, and negative otherwise.We have:

∂Tr

∂

(

√

ζ
Z

) < 0 and
∂Det

∂

(

√

ζ
Z

) < 0

The sign of the derivative of ζ/Z with respect to ζ is obtained using the
rules of elasticity computations:

ε“

Z
ζ

”

/ζ
≡

∂
(

Z
ζ

)

∂ζ

ζ
(

Z
ζ

) =
1

2A
(√

Z
ζ + 1−2A

2A

) − 1

thus

∂
(
√

ζ
Z1

)

∂ζ
< 0 and

∂
(
√

ζ
Z2

)

∂ζ
> 0

The arrows in the first table follow directly. The second table is con-
structed by direct computation and will not be detailed here.
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