

A multi-factor concept on guiding constraint relaxation in Distributed
Constraint Satisfaction

JINGXUAN MA SYLVAIN PIECHOWIAK RENE MANDIAU

LAMIH-UMR CNRS 8530
Université de Valenciennes et du Hainaut-Cambrésis

59313 Valenciennes Cedex 9 France

Abstract: - Over-constrained can usually be encountered when some real-life applications are described as
Distributed Constraint Satisfaction (DisCSP). When a solution is required in this case, one or more constraints
should be released. This paper focuses on the constraint relaxation for handling such an over-constrained situation.
Three types of influence factor, variable influence factor, constraint influence factor, agent influence factor, as
well as their relations are introduced to guide the cooperation between agents, and to guide the constraint
relaxation in case of over-constrained. Finally, the feasibility of proposed concept on the constraint relaxation
during problem solving in a hierarchical agent-structure is illustrated.

Key words: -CSP, Constraint relaxation, DisCSP, Agent, Influence factor

1. Introduction

A Constraint Satisfaction Problem (CSP) is a type of
problem in which the goal is to find the values for a set
of variables that will satisfy a given set of constraints
[1]. While a CSP is divided into a set of sub-CSP and
is resolved by the cooperation of a set of agents, each
of which is a CSP solver, this CSP is called Distributed
CSP (DisCSP). A solution of a DisCSP is an
assignment of values to variables which satisfies not
only the local constraints existing in each agent, but
also the global constraints existing between agents [2].
Many of application problems in multi-agent systems
can be formalized as DisCSP. Distributed Resource
Allocation [3] and distributed sensor networks [4] are
some examples of these types of applications.
However, when a real-life problem is described as a
DisCSP, it is usually over-constrained [5, 6]; it can
evolve to be over-constrained because of dynamic
environment [7], e.g. timetabling problems.
Most of existing algorithms give directly "no solution"
in case of over-constrained. In reality, an alternative
solution, even an optimal solution that is the closest to
a satisfying solution as well as some explanations
about no solution, are usually required by application
problems.

Several approaches have been proposed for solving
over-constrained problem in DisCSP. For example ,
Distributed Partial CSP is presented as a general model
for handling an over-constrained DisCSP and its two
sub-classes Distributed Maximal CSP and Distributed
hierarchical CSP are proposed to deal with different
type over-constraint problem solving [5, 6]; the
algorithm adopt (asynchronous distributed
optimisation) proposed recently by Modi et al [8], can
be used for constraint relaxation.

Above methods can always provide optimal solutions
according to different optimal functions . However, the
problem solving is untraceable, and the constraint
satisfaction sequence is usually predefined. They focus
on optimal solution searching, but not on the
explanation of inconsistence. The weaknesses of this
kind of algorithm are not to be able to dynamically and
truly reflect the real influence of each constraint and
variable and it’s not easy to reveal the direct reason of
conflict which leads to no solution.

On the other hand, explication-based algorithms have
the advantages for improving searching efficiency and
the purposes of finding the core raisons for
contradiction [9]. The typical explication-based
algorithms are dynamic backtracking [10], backjump-
based backtracking [11], etc. However, the problems
about explications saving as well as the searching
amongst explications have to be taken into account

with the increasing of problem scales and problem
complexity.

Inspired from existing algorithms, this paper presents a
multi-factor concept on guiding constraint relaxation.
It is organized as follows: firstly , a notion of influence
factor is defined. In the section 2, three types of
influence factor, variable influence factor, constraint
influence factor, agent influence factor and their
relations are introduced. The workspace and the roles
of different influence factors are presented. A case
study on proposed concept during problem solving in a
hierarchical agent-structure is illustrated in the 3
section. The last part gives the conclusion and some
perspectives.

2. Influence factor for constraint
relaxation

2.1. Influence factor context
The over-constrained problem is a kind of problem
that has no solution. A DisCSP can be defined as:
• V= {V1, V2 …Vn}, a finite set of variables, whose

values are taken from finite, discrete domains {D1,
D2 … Dn} respectively.

• C = {C1, C2 …Cm}, a finite set of constraints on
variables. Each of constraints is a restriction on the
values that can be taken simultaneously by the
variables.

• A = {A1, A2 …Ai} a set of agents.
After analyzing the existing methods for over-
constraints problems solving, a question comes to
mind: is it possible to define an or several attributes for
making different influences of the same type elements
(for example, constraints) on problem solving
comparable in a given time or space? We can use “net
income” in a certain period to evaluate different
companies; we can use weight to compare the hearth
state of the children in same age. The attribute as “net
income”, weight exist everywhere in the world. These
kinds of attributes are dynamic; they are evolving with
the propagation of the element they attached.
We try to define a dynamic attribute – influence factor
for evaluating different relations to conflicts (no
solution) during problem solving. The value of
influence factor is directly associative to conflicts.

Each person has weight. We can compare the weights
of three girls of ten years to find the heaviest, we can
define the attribute of influence factor, and we can
compare the components with the same type according
to the values of influence factor. For example , while a
combination of values to variables do not satisfy a
constraint (conflict), the value of influence factor of
the constraint violated evolves. Then, in case of over-
constrained, the values of influence factor of all
constraints can be compared to find the constraint
which leads the most conflicts.

Fig. 1: the principle structure of a DisCSP

Considering the essential components of DisCSP as
well as its mechanism (see figure 1 for the principle
process structure of DisCSP), three types of influence
factor are defined for DisCSP: variables influence
factor presented as Var_inf, constraint influence factor
presented as Cons_inf , and agent influence factor
presented as Agent_inf respectively. The domain of
each va riable is considered together with variable .
The three types of influence factor are taken in to
account synthetically to guide agent cooperation in
normal situation and to guide the constraint relaxation
in case of over-constrained.
To avoid unnecessary ambiguity, following idioms
meanings are highlighted.
• A local solution is a combination of the values of

agent local variables that satisfies all constraints
within this agent.

• A global solution is a value combination of all
variables that satisfies not only the intra-agent
constraint, but also the inter-agent constraints.

• Constraint relaxation means that the released
constraint will not be verified again in the following
process of problem solving. In other words, after a
constraint is released, solution will be realized
without verifying the relaxed one.

• A constraint is violated when all values of it relative
variables have been verified without finding an
assignment satisfying this constraint.

2.2. Definition of three types of influence
factor

In this part, we give the detail definitions of Var_inf,
Cons_inf and Agent_inf and a detail description of
their mechanisms as well as their role in DisCSP.

2.2.1 Variable influence factor

Variable influence factor (Var_inf) is defined as a
priority degree associated to each local variable within
an agent. The priority degree means, when there are
conflicts among local solutions, which variable will be
reassigned firstly within an agent. The Var_inf is used
to guide next local search in each agent. At the
beginning of global solution verification, every local
variable’s Var_inf is (re)set to null. Then, if the values
of same variable in different local solutions are not
identical, the Var_inf of this variable will be increased.
According to the value of Var_inf , the corresponding
agent modifies the sequence of variable's assignment
in next local search. It means, if a variable contributes
to the conflicts in last global verification, this variable
value will be changed firstly in next local search.
Bigger the Var_inf of a variable is, earlier the variable
is reassigned.

2.2.2 Constraint influence factor
Constraint influence factor (Cons_inf) is defined as a
priority degree associated to each local constraint
within an agent. The Cons_inf highlights different
constraints' influence on local solution. It is used to
guide constraint relaxation within an agent. In case that
an assignment of local variables can’t be a local
solution because of a constraint, the Cons_inf of this
constraint will be increased. More conflicts a
constraint leads to, bigger the Cons_inf it has. While
the problem is found to be over-constrained, the
constraint with the biggest Cons_inf should be
considered a priori. The Cons_inf works as follows: in
agent initialization , each Cons_inf is set to null; during

agent local solution searching , the value of Cons_inf of
each constraint is evolved along with constraint
verifications. This influence factor is used for an agent
to decide its constraint relaxation in case of no local
solution or no global solution.

2.2.3 Agent influence factor
Agent influence factor (Agent_inf) is defined as the
biggest Cons_inf amongst all of local releasable
constraints within an agent. Each agent has its own
Agent_inf. The value of an Agent_inf is modified
dynamically along with the change of local agent
releasable Cons_inf during agent local constraint
verifications. So long as an agent finds no further local
solution because of global interaction, the Agent_inf is
used to decide which agent should be taken into
account. The agent with the biggest Agent_inf will
release a constraint at first.

2.2.4 Workspace and roles of three types of
influence factor
The workspace of three types of influence factor and
their roles are summarized in table 1.

Type Workspace Role

Var_inf Global & local Guide to modify variable
assignment priority

Cons_inf local Guide to constraint relaxation
within an agent (local relaxation)

Agent_inf Global & local Decide which agent will release its
constraints(global relaxation)

Table 1: influence factors' roles and influence spaces

The values evolving of influence factor can be seen as
a dynamic learning. The measure of the value of an
influence factor provides the information of the
influences of corresponded DisCSP component (a
variable , a constraint or an agent) on inconsistence
during problem solving. Three influence factors may
guarantee that the biggest Agent_inf agent modifies its
local solution firstly once a global verification is fail;
the biggest Var_inf variable is re-assigned first its
value during each agent; and the biggest Cons_inf
constraint is always relaxed at first while over-
constrained happened.
To illustrate the feasibility of three influence factors,
they are embedded in a DisCSP with a simple
hierarchical agent-structure. The roles of each type
influence factor as well as their mechanisms are
illustrated.

3. Case study of influence factors in
DisCSP

3.1. A hierarchical agent-structure

As shown in the figure 2, two agent types are defined
in a hierarchical structure: supervisor and executor.
The relation between supervisor and its executors is
hierarchical. Executors can communicate with its
supervisor. There is no any communication between
the executors. The communications are always vertical.
Each executor handles a sub-CSP, and all executors
execute in parallel.

Fig. 2: a hierarchical agent-structure DisCSP

The roles of a supervisor are as follows:
• Dividing a CSP into a set of DisCSP, and then

distributing them to its executors;
• Coordinating its executors' activities by sending

messages in case of existing conflicts based on
global interest;

• Integrating executor’s local solutions to a global
solution;

• Suspending, activating and stopping its lower
supervisors or executor if necessary;

• Stopping system execution.
The roles of an executor are as follows:
• Assigning values to local variables, then verifying if

this assignment is satisfied its local constraints.
• Releasing its releasable constraints one by one until

finding a local solution or no local solution because
of its interior conflicts.

• Communicating actively with its supervisor if
necessary, e.g. finding a local solution, etc.

3.2. Influence factor evolving
According to the explications in table 1, it can be seen
that Var_inf and Agent_inf are evolved in supervisor
and executors, while Cons_inf is evolved in executors.
The process of Var_inf and Agent_inf evolving in
supervisor is illustrated in figure 3.

Fig. 3: process of influence factor evolving in supervisor
Var_inf and Agent_inf evolving in supervisor are
executed as following:
After dividing a CSP into a set of sub-CSPs, then
distributing them to executors, the supervisor come
into the step for communication as follows:

• If all executors find local solutions, supervisor
verifies if there is variation between same variable
values in different local solutions. If a conflic t is
encountered, the relative Var_inf is increased. After
verifying all variables, if no conflict, a global
solution is found; otherwise, "continue" message will
be sent to all executors.

• If an executor has no local solution because of itself
interior conflicts, the supervisor sends message to
stop all executors. Then the supervisor outputs actual
variables information, then system is stopped
without finding a solution.

• If an executor has no local solution because of global
conflicts, the supervisor suspends all its executors.
Then the supervisor compares all Agent_ inf. The
agent with the biggest Agent_inf will be sent to a
"release" message, which means this agent has to
release its biggest Cons_inf constraint; while all
others will be given a "re-assign" message. All
executors will be activated.

• By iterating above procedures, supervisor can finally
find a global solution or stop the system with all
agents after having verified all possibilities without
realizing a global solution

The process of Var_inf and Cons_inf evolving in
executor is illustrated in figure 4, and are executed as
following:
An executor begins to assign its local variables until
finding a complete value combination for its local
variables, and then it comes to the step of verifying
local constraints. In this step, all local constraints are
verified one by one. While a constraint is violates, its
Cons_inf is increased. If this combination violates any
constraint, it means this one is not a local solution, and
executor has to continue assigning its variables until
finding a local solution, or find no local solution.
• When a local solution is found, a finding a solution

message is sent to the supervisor. This message
consists of two parts: the local solution and
Agent_inf.

• When no local solution is confirmed and any local
solution was not found, this executor will release its
biggest Cons_inf constraint, and set its Agent_inf to
be 0, and re-assign its variables.

• When no local solution is confirmed, and a local
solution was found, it means the global inconsistence
leads to this no local solution, the executor sends a
no local solution message to its supervisor.

Then executor comes to the next step: waiting for
message.

Fig. 4: the process of influence factor evolving in executor

• When the executor receives a "continue" message, it
grades its variables from the biggest Var_inf to the
smallest one, sets all values of Var_inf to be 0, and
then continues to assign its local variables along with
the variables’ order.

• When the executor receives a "release" message, it
releases the constraint with the biggest Cons_inf , and
then re-assigns its local variables from their first
values.

• When a “re-assign” message is received, the
executor re -assigns its local variables from their first

values.

Constraint influence factor General information

B+D> F C+D<F E<F B+C+A<E A+B+C>D+F Total verifying
number

Number of global
communication

Number of
global solution

Hypo-1 96 248 39.9 139141 8 349762 0 0

Hypo-2 184 410 50 Released 10 350031 1 1

Hypo-3 49 5 31 Released 49
3631

47 1
B+D>F & B+C+A<E
C+D<F & E>F
A+B+C>D+F

22 165 0 Released 34 2886 18 1

B+D>F & C+D<F
B+C+A<E & A+B+C>D+F

Hypo-4

E<F
42 Released 24 Released 16 3047 12 1

Table 2: experimental results of 4 hypotheses

3.3. Experimental results

There are 6 variables named (A, B, C, D, E, F)
respectively. The domain of each variable of (A, B,
C, D, E, F) is [1, 2, 3, 4, 5, 6, 7, 8, 9]. There are 5
constraints: B+D>F, A+B+C<E, C+D<F, E<F,
A+B+C>D+F. It is an over-constrained problem
because of the conflicts among given constraints, e.g.
the conflicts between A+B+C<E, A+B+C>D+F and
E<F. The goal is to find assignments of the variables
that satisfy all given constraints.
Following hypotheses are proposed in order to verify
whether the three influence factors can guide for an
efficient constraint relaxation.
Hypothesis 1: all constraints are defined as hard
constraints and the problem is solved in centralized
way.
Hypothesis 2: All constraints are defined as soft
constraints. The problem is solved in centralized way
too.
Hypothesis 3: All constraints are defined as soft
constraints. The constraints are distributed to agents.
An agent is in charge of a constraint.
Hypothesis 4: All constraints are defined as soft
constraints. And all these constraints are distributed
to the agents randomly, an agent should be in charge
of 2 constraints at least.
Hypothesis 1 aims at presenting the different
influence of each constraint on problem solving,
while hypothesis 2, hypothesis 3 and hypothesis 4
aim at illustrating the guiding influence on constraint
relaxation of proposed influence factors. The

experimental result of these hypotheses is presented
in table 2.
The feasibility on the constraint relaxation with
influence factors is illustrated here by a simple
combination example . The results show that the
relaxation of the constraint having bigger Cons_inf is
more efficiency for finding an alternative solution.
The influence of var_inf and Agent_inf can’t be
shown directly in the table. The experimental results
indicate that the cooperation of three influence
factors permits to find the most important constraints
in case of different type of distributions.

4. Conclusion and perspectives

In this paper, three types of influence factor, var_inf
Cons_inf, Agent_inf are proposed for guiding
constraint relaxation in case of over-constrained in
DisCSP. The feasibility on the constraint relaxation
with these influences factors and the interactions
between them is then illustrated.
Influence factor reflects the different roles played by
each constraint and each variable during the problem
solving. The value of influence factor is evolved
dynamically and sequentially along with the problem
solving. Their cooperation and interaction are useful
for guiding an efficient constraint relaxation in case
of over-constrained.
In the future, the proposed influence factor concept
will be further applied to other contexts, and the
searching efficiency within each agent will be taken
into account.

References:

[1] E. Tsang, Foundation Constraint Satisfaction,
Academic Press, 1993.
[2] M. Yokoo, Distributed Constraint Satisfaction:
Foundations of Cooperation in Multi-agent System,
Springer, London, 2001.
[3] P. J. Modi, H. Jung, M. Tambe, W. Shen, S.
Kulkarni, Dynamic Distributed Resource Allocation,
A Distributed Constraint Satisfaction Approach,
Lecture Notes in Computer Science, 2001.
[4] W. Zhang, Z. Deng, and G. Wang, Distributed
Problem Solving in Sensor Network, AAMAS’02,
2002.
[5] K. Hirayama and M. Yokoo, Distributed Partial
Constraint Satisfaction Problem, Proceedings of the
Third International Conference on Principles and
Practice of Constraint Programming (CP-97), pp.
222-236, 1997.
[6] K. Hirayama and M. Yokoo, An Approach to
Over-constrained Distributed Constraint Satisfaction
Problems: Distributed Hierarchical Constraint
Satisfaction, Proceedings of the Fourth International
Conference on Multiagent Systems (ICMAS-2000),
2000.
[7] I. Miguel, The case for dynamic flexible
constraint satisfaction, Seventh International
Conference on Principles and Practice of Constraint
Programming, November 26 - December 1, Paphos,
Cyprus, 2001.
[8] P. J. Modi, W. Shen, M. Tambe, and M. Yokoo,
An Asynchronous Complete Method For General
Distributed Constraint Optimization, Proceedings of
Autonomous Agents and Multi-Agent Systems , 2003.
[9] N. Jussien, The versatility of using explanations
within constraint programming, École des Mines de
Nantes, technical report, no. 03-04-INFO, 2003 .
[10] M. L. Ginsberg, Dynamic Backtracking, Journal
of Artificial Intelligence Research 1 (1993) 25-46,
1993.
[11] R. Dechter and D. Frost, Backjump-based
backtracking for constraint satisfaction problem,
Artificial Intelligence 136(2002) 147-188, 2002.

