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Abstract

Wavelets by construction are able to show us “the forest as well as the trees”.
They are compactly supported functions that allow us to localise in frequency as
well as in time whereas traditional Fourier analysis focuses only on frequency. This
makes wavelets useful when examining time sequences that exhibit sharp spikes
and irregularities, such financial time series. In this paper we demonstrate how a
wavelet semi-parametric approach can provide useful insight on the structure and
behaviour of stock index prices, returns and volatility. By using wavelets we capture
salient features such as changes in trend and volatility and reveal dynamic patterns
at various scales.
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1 Introduction

Wavelets are becoming more popular as the academic community appreciates
their ability to detect localised events as well as periodic structures. Originally
introduced through financial and economic applications in the beginning of the
last decade, they have not yet enjoyed their deserved popularity. This is in co-
ntrast to their potentially wide applicability and great versatility. Their ability
to isolate breaks and shifts in dynamics, to manipulate intermittent sequences
and their usefulness in denoising and smoothing makes them an important tool
for univariate time series analysis, comparable to that of ARIMA and spectral
analysis. The difference is that wavelets can provide the exact locality of any
changes in the dynamical patterns of the sequence whereas the other two tech-
niques concentrate mainly on their frequency. 1 Moreover, Fourier transforms
assume infinite-length signals, whereas wavelet transforms can be applied to
any kind and size of time series, even when these sequences are not homogene-
ously sampled in time. In general, wavelet transforms can be used to explore,
denoise and smoothen financial time series, aid in forecasting, contribute to
other empirical analysis frameworks (efficiency tests, event studies etc. etc.)
and to calibrate or improve trading models. In this paper we aim to reintro-
duce wavelet transforms with a more “digestible” demonstration. We show
how wavelet transforms can be applied and their results interpreted through a
very simple exploratory framework. This approach can be of great interest to
practitioners as it is avoids the pitfalls of a parametric model and statistical
hypothesis testing approach, while being fast and accurate. It also provides
results in various scales and frequencies, delivering a decomposition of great
detail and information.

In the following sections we provide a brief outline of existing research in the
area of wavelet applications in finance and economics. Following this review,
we present in section 2.1 a simple and brief introduction to the internals of
wavelet transforms and describe our database. We then explain in section 3
how results of “time-scale” analysis can be interpreted and finally in section
4 how wavelet transforms could be used in a discrete framework to provide
rudimentary data smoothing and noise filtering.

2 Past research

Strang (1989) and Graps (1995) provide an interesting introduction to the ge-
neral subject (see also Ramsey, 2002). A more recent introduction, focused on
economics, is Schleicher (2002). A very insightful and early paper is also Jensen

1 This excludes the case of Short Time Fourier Transforms.
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(1997) who discusses the general potential of wavelets in financial empirical
research. One of the first applications were by Greenblatt (1996) who used
wavelets for outlier detection and Ramsey and Zaslavsky (1995) who influe-
nce this paper. Jensen (1994) uses wavelets to estimate fractionally integrated
processes. He shows an alternative way to estimate the fractional differencing
parameter and shows the advantages of wavelets over the existing method of
Geweke and Porter-Hudak (1983). Continuing, Jensen (1999a) and (1999b)
explores more deeply the applicability of wavelet transforms in long memory
models. Olmeda and Fernandez (2000) provide a criticism of the theory by
drawing our attention to the pitfalls of using wavelet filtering for denoising
and forecasting purposes. Capobianco (2001), uses wavelets for describing fi-
nancial returns processes. He studies the Nikkei stock index in high frequency
and shows results about modelling with GARCH when the data have been
preprocessed by wavelets transforms. He demonstrates that one can obtain
better volatility prediction power for one-step-ahead forecasts, implying that
latent volatility features can be detected more efficiently. Capobianco (2002)
uses multiresolution analysis to approximate volatility processes. He focuses
on intra-day dynamics and again shows how wavelet transforms can improve
our view of volatility dynamics provided by a GARCH specification on wave-
let pre-processed sequences (see also Capobianco, 1999). Antoniou and Volrow
(2003), in a similar approach to that of Chen (1996), use wavelets to denoise
index returns from various countries and obtain evidence of deterministic non-
linearities. Los and Karuppiah (2000) apply wavelet multiresolution analysis
on high-frequency Asian FX rates, in support to the Fractal Market Hypothe-
sis of Mandelbrot (1966) and Peters (1994). Recently, Jamdee and Los (2003)
examine the risk profile of the US term structure by the use of wavelet sca-
lograms and multiresolution analysis, suggesting that the term structure of
interest rate is segmented and that the basic assumptions of the “traditional”
models are violated. In a recent extensive work, Los (2003) focuses in financial
markets even more. In this extensive work wavelets and multiresolution analy-
sis are used to measure persistence and to provide explanations on financial
crises, turbulence and volatility.

In this paper we use wavelets in a continuous and discrete multiresolution fra-
mework to show their usefulness in the empirical investigation of asset price
dynamics. Our work follows the research of Ramsey and Zhifeng (1994), Ram-
sey and Zhifeng (1995) and Ramsey and Lampart (1998). The necessary th-
eoretical background for our approach is discussed in depth in Gencay et al.
(2001) and Percival and Walden (2000). A very gentle introduction is Hub-
bard (1998) and Ogden (1997) is more focused on the statistical aspect of
the theory. A thorough treatment of wavelet theory is Strang and Nguyen
(1996) and interesting on-line starting point and resource is the Wavelet Di-
gest: http://www.wavelet.org.
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2.1 Data description & methodology

The data set consists of 8192 daily observations of the FTSE ALL SHARE in-
dex closing prices. Furthermore, we investigate the continuously compounded
returns of the FTSE and the realised volatility of these returns. All daily se-
quences start form the 10th of July 1970 and end the 30th of November 2001.
In table 1 we display the descriptive statistics for the FTSE index, its logari-
thmic returns and the realised volatility. From this table and the inspection of
the relevant distribution histograms 2 we can deduce that the distribution of
the closing prices of the FTSE index is positively skewed whereas the corre-
sponding returns are leptokurtic and the realised volatility positively skewed
as well. The Jarque-Bera test (see Bera and Jarque, 1981) for normality cle-
arly rejects the null for all sequences, as expected. In general, the sequences
analysed here follow closely the stylised facts as these are described in Cont
(2001).

[insert table 1 about here]

Our aim in this section is not to provide a rigourous treatment of the mathe-
matical background of wavelet transforms but to communicate in brief of the
way wavelet transforms operate. Wavelets are compactly supported functions
(usually orthogonal), i.e. defined over a compact subset of R (see figure 1).
The positioning of wavelets on R can vary and using a scaling function, we
can “stretch” or compress wavelets, i.e. change their length. This variability
in their shape, allows us to use them for pin-pointing singularities in any se-
quence. Because of this property, wavelets can localise in time as well as in
frequency, whereas the traditional Fourier transforms concentrate solely on
the latter. The way a wavelet transform functions is similar to that of the
Fourier transform. We have the continuous wavelet transforms (CWT) and
their discrete counterparts (DWT). Wavelet analysis of time series originally
required the sequences to be of length 2n, where n is discrete. A modification
though (see Percival and Walden, 2000) allows us to work with signals of any
length. The transform involves convolutions of the stretched or compressed
wavelets with the signals at various frequency levels. The obtained result is
a set of wavelet coefficients. Their value is high at the point where the wa-
velet function approximates locally the signal’s structure. In that sense, high
wavelet coefficient values imply that the function mimics the local structure
well or that the correlation of the wavelet with the signal at that point is
high. Time-scale analysis through wavelet transforms can provide us with the
“scalograms”. These indicate in time (space) and frequency (scale) the way
the dynamics of the sequence involve.

2 Results available from the authors upon request.
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Representing a time-series as a function f(t), the CWT of this function is
defined as:

Wψ(a, b) =
1√
a

∞∫

−∞
f(t)ψ(

t− b

a
)dt (1)

and the inverse transform is defined as:

f(t) =
1

Cψ

∞∫

−∞
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1
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1√
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a
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where ψ(t) is the “mother” wavelet and a, b ∈ R continuous variables with
a 6= 0. The parameter a is called the “scale” or “dilation” parameter which
determines the level of stretch (expansion) or compression of the wavelet.
Parameter “b” is called the “shift” or “translation” parameter. For low scales
i.e. when |a| ¿ 1, the wavelet function is highly concentrated (shrunken-
compressed) with frequency contents mostly in the higher frequency bands.
Inversely when |a| À 1, the wavelet is stretched and contains mostly low
frequencies (for example: a time trend). For small scales we obtain thus a more
detailed view of the signal (known also as a “higher resolution”) whereas for
larger scales we obtain a more general view of the signal structure.

Continuous transforms provide us with a large amounts of redundant informa-
tion. For this reason, there is a discrete version (DWT), generated by critically
subsampling the coefficients of the CWT. This is conducted in such a way that
the energy of the signal is preserved. DWT is faster and useful for denoising
and providing smoothed versions of the sequences at various discrete levels
of analysis. In the following sections we will demonstrate how one can obtain
interesting qualitative information on the structure of financial time series by
using both continuous and discrete wavelet transforms.

3 Scalograms and time-scale analysis

For the time-scale analysis that follows, we utilise two wavelet functions: the
Haar and the symmlet 8 (or s8 for short). These two “mother” wavelet fu-
nctions are depicted in the two top subfigures of figure 1, together with their
corresponding “father” or scaling functions. These wavelets were chosen after
careful experimentation. There is no general rule on how to select mother wa-
velets. Usually a mother wavelet should exhibit a similar structure to that
of the analysed signal. Often this choice is not such a crucial issue. Any re-
latively small (short) wavelet should be a suitable starting point (the Haar
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usually excluded). Given that a wavelet should resemble the time series, the
discontinuous and blocky Haar is not really appropriate for our data. It is
though a very simple and economical function, with fast transforms. Moreo-
ver, as we shall demonstrate, the qualitative information we obtain from the
time-scale analysis is not that different from that of the s8 wavelet. The s8
mother function seems a more appropriate candidate and produces slightly
more detailed scalograms as opposed to the “chunky” Haar ones.

[insert figure 1 about here]

In figures 2 (a-c) we have produced the Haar and s8 scalograms for the first
8000 observations of the FTSE closing prices, the corresponding logarithmic
returns and realised volatility. Darker regions in these scalograms correspond
to higher wavelet transform coefficients. From an initial inspection, we can
easily discern that the s8 wavelet provides a finer decomposition (“thinner”)
than the Haar for the returns (figure 2 (b)) and the realised volatility seque-
nce (figure 2 (c)) due the discontinuous nature of the latter wavelet depicted
in figure (1). Because of the smoothness of the s8 mother wavelet, the scalo-
grams for that transform exhibit smoother transitions between low, medium
and high-valued wavelet coefficients, and produce clearer bifurcations. An inte-
resting point here from the comparison of the Haar and s8 scalograms is that
for both the levels and the transformations of the FTSE series, the message
they deliver is the same.

By careful examination of the index closing prices scalograms in figure 2 (a),
we can see that both the Haar and s8 CWT coefficients change patterns after
the 3000th (mainly 4000th i.e. roughly the 1st half of the history of the series)
observation onwards and especially from the short “booming” period before
the 1987 crash. Until that point, the prices of the wavelet transform coefficients
are lower, indicative of the relative smoothness or lack of excessive volatility
and of very weak positive trend. Both Haar and s8 scalograms are quite simi-
lar. For the larger scales of between 150 and 250 days though, the Haar based
scalogram reports wider and fewer periods of smaller coefficients than that
of the s8 wavelet. We attribute this to the structure of the mother wavelet
function itself. Through both scalograms though, we are able to discern that
for the lower scales there is a relative absence of trend (i.e. of a low frequency
component) whereas for larger scales and larger time “windows”, a very weak
trend is more obvious for the first half of the index series. One may recognise
those as the darker areas (“tree trunk” like formations) i.e. collections of high
coefficients on the top of both scalograms in figure 2. It is obvious form the
two scalograms that the wavelet coefficients are able to capture the change
of the pattern after the 4000th observation. They also reveal the increase in
volatility and trend of the series. The difference between the Haar and the s8
based scalogram is more evident on the right bottom half of the graphs where
for the s8 wavelet, one can identify more easily the bifurcations formed by the
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coefficients (see also details of scalograms in figure 3). This shows mainly how
small and large sequences of coefficients interchange and may imply a mul-
tifractal structure or some kind of non-periodic seasonality (see also Ramsey
and Zaslavsky, 1995). See Wornel (1993 and 1995) for an extensive treatment
of the relevant theoretical background and framework regarding this issue.

The patterns discussed so far, clearly change for the last half of the series. It is
obvious from the time series plot of figure 2 (a), that there is a increase of the
steepness and the variance of the index sequence. This follows up historically
the occurrence of the 1987 stock market crash. The crash occurs in the vicinity
on the 4500th x-axis coordinate, where both Haar and s8 scalograms show a
concentration of high coefficients on all scales (shown as an inverted dark
peak). We see that regardless of the choice of the mother wavelet, the actual
timing of the crash of 1987 is detected successfully. Following that point, the
volatility of the series seems to increase considerably with finer bifurcations
of wavelet coefficients occurring in low, medium and large scales. It is obvious
that the frequency and the intensity of the aperiodic cycle structures has
changed for the last half of the series. The keen eye can also identify the rest
of the famous crises as they occur after observation 7000 such as the Asian
crisis, the NASDAQ and others. These and the effect of the incident of the
11th of September 2001 can be seen in figure 3 (a) where we have produced
the s8 based scalogram of the whole 8192 FTSE ALL SHARE observations.
In our analysis so far we choose to limit to the first 8000 observations in
order to exclude the intensive fluctuations of the last part of the history of the
series. Although our discrete and continuous analysis has included all 8192
observations, we choose to truncate the sample in order to avoid depicting
the large valued coefficients at the end of the scalograms by excluding 192
points. We do this as we are mainly interested in the 1987 crash which seems
more isolated and clear to interpret (we can examine though the scalogram
of this last cluster of observations at the end of figure 3 (a)). We can thus
concentrate on the oil crisis, the 1987 and Asian markets crashes and avoid the
“blurring” of the results at the right edge of the series because of the increased
concentration of high valued coefficients due to the clustering of well known
recent events (mainly September the 11th). It would be interesting though to
see in a couple of years how these scalograms would have “evolved” with the
inclusion of the recent and future history of the series.

In figure 3 (a), we can clearly detect after the vertical barrier line, the change
in the scalogram’s pattern. We can also locate the intense oscillations following
the Asian crisis, the NASDAQ crash and the September the 11th events at
the darker regions of the right edge of the scalogram. An interesting point is
that the oil crisis of the 70s is not that evident from the levels of the index
as in the scalograms of the returns and realised volatility. This is more clearly
shown in figure 2 (d), where we show the s8 scalograms from figures 2 (a-c),
side by side for comparison purposes.
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For further analysis purposes we chose three sub-samples from the history of
the FTSE ALL SHARE index series. We generated only the s8 scalograms
in order to obtain smoother and clearer graphs. The first period covers 500
sample points, starting from the 1000th one and ending on the 1500th one.
It covers the daily observations ranging from 09/05/1974 to 08/04/1976. The
second and the third have both length of 1000 observations. The second starts
on the 4000th one and ends on the 5000th observation. It covers the time-
span 07/11/1985 - 07/09/1989. The third and last sub-sample refers to the
period between the 7000th and 8000th observation i.e. the dates 08/05/1997
and 07/03/2001. The analysis of the first, second and third sub-samples is di-
splayed in figures 3 (a), (b) and (c) respectively. In table 3 we have listed the
19 largest shocks or oscillations encountered in the history of the whole sample
by date of occurrence and position in the sample for reference reasons. These
have been isolated on the basis of the 19 highest wavelet trabform coefficie-
nts. In all the above mentioned figures, we display on top the corresponding
realised volatility sequences which provides an adequate representation of the
magnitude of the oscillations.

[insert table 2 about here]

[insert figure 2 about here]

[insert figure 3 about here]

[insert table 3 about here]

4 The DWT of the FTSE

In the previous section we used scalograms to reveal information on the stru-
cture of the FTSE prices, returns and volatility. In this section we concentrate
on the application of the discrete wavelet transform (DWT) for the analysis
and smoothing of the sequences used in the preceding section. We concentrate
on the examination of the index and the logarithmic returns.

In the analysis that follows, we have applied the Maximum Overlap Discrete
Wavelet Transform (MODWT) (see Percival and Walden, 2000). We examined
the series using the Haar, daubechies 6 and 20 (d6, d20), symmlet 20 (s20)
and coiflet 30 (c30) based MODWT ( wavelet functions are depicted in figure
1). We found that the results qualitatively similar for the d20, s20 and c30
wavelets so we concentrate in this paper on the report of the Haar and d20
DWT and multiresolution analysis (MRA) results.
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4.1 Multiresolution Analysis

In figure 4 we display the multiresolution approximations and decompositions
of the FTSE ALL SHARE index closing prices (a) and its returns respectively
(b). The MRA in those sub-figures was conducted with a Haar wavelet. We
used 8 levels of approximation which we found that provide adequate analysis.
For each of those figures, the right part contains the detail coefficients seque-
nces which when added to the “smooth” series S8, generate the reconstruction
sequences for each of the 8 levels. For example, in order to obtain the smoo-
thed sequence S6 of the FTSE index in figure 4 (a), one just needs to add to
S8 the detail coefficient sequences D8, and D7 i.e. S6 is simply:

S6 = S8 + D8 + D7 (3)

[insert figure 4 about here]

In figure 5 (a) we show how the FTSE ALL SHARE index closing prices are
approximated (smoothed) by the S6 smooth level. In figure 5 (b) we show the
original series overlapped by the S6 sequence for the period 1985-1988 and the
level 6 residuals ε6 which are computed as:

εi = DATA−
j∑

i=1

Di (4)

for j=6. The arbitrarily chosen MRA S6 level of smoothing follows the FTSE
very close, especially during the 1987 crash. As a rule of thumb, we choose the
decomposition level which delivers a relatively noise-free approximation of the
original sequence. We can see in figure 4 (c) that the level 1-4 approximations
for the returns, contain a strong noise signature. 3 So levels 5 or 6 may be
the most likely candidates for reconstruction. The Haar DWT transform co-
efficients for the first 6 levels, the S6 smooth and the inverse discrete wavelet
transform of the FTSE series is depicted in figure 5 (c). The DWT of the
FTSE logarithmic returns sequence, computed for a maximum of 13 levels,
is represented in figure 5 (d). Again we applied here a Haar wavelet. In this
attempt we have accounted for all the possible discrete wavelet decomposition
levels to demonstrate the 2j order of the DWT algorithm. We should recall
here that 8192 = 213 which allows for 13 levels of discrete decomposition. In
practice, one may choose to concentrate on the first 5 to 7 levels as higher
decompositions provide no further information on the variability of the series.

[insert figure 5 about here]

3 We should not oversee the fact the differencing is a high-pass filter and returns
are expected to contain more noise than the corresponding level prices.
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In the same figure we may see how the oil crisis and the crash of 1987 have
been picked up by the d1 to d4 coefficients series, seen as negative and positive
spikes on those levels (see figure 5 (c)).

Apart from the MRA, the DWT is also useful in denoising. The most popu-
lar technique is called “Waveshrink” (e.g. (see Bruce and Gao, 1996)) and is
based on the elimination (“shrinking”) of the small (below some threshold)
wavelet transform coefficients to 0. The denoised sequence is then obtained
from the inverse discrete wavelet transform. Antoniou and Volrow (2003) de-
monstrate how this can be applied on stock index returns and reveal evidence
of deterministic nonlinearities in the denoised series.

5 Conclusions

Wavelets transforms can be used on data in order obtain information on va-
rious frequencies as well as in time. This is a clear advantage over spectral
analysis which can only focus on frequencies. Financial time series exhibit
volatility and sharp localised fluctuations. This makes them ideal candidates
for wavelet analysis. Through continuous and discrete wavelet transforms, we
can conduct outlier detection and smoothen and denoise time-series without
resorting to a theoretical model.

In this paper we showed how continuous and discrete wavelet transforms can
be applied on financial time series. We also showed how the results from these
transforms can be used to gain an insight on the dynamics and the structure of
these time series. Initially, we conducted time-scale analysis through wavelet
scalograms. We revealed a wealth of structures in various scales and showed
how these graphs can identify significant events that altered the structure or
volatility of the sequences. More precisely, using the FTSE ALL SHARE daily
time series, we were able to identify the timing of shocks such as the oil crisis
of the ‘70s or the 1987 stock market crash. We were also able to find how
these events translate in various scales. It is obvious from our brief analysis
here that the ability of wavelets to localise in time as well as in frequency,
makes them a very useful tool that should find its way into the mainstream
time series analysis econometric toolkits.
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Table 1
Descriptive statistics. Jarque-Bera p-values within parenthesis.

Statistic index returns realised volatility

minimum 61.92 -0.1191000 0.000e+000

Q1 221.60 -0.0048350 5.287e-006

median 768.90 0.0003343 2.859e-005

mean 1001.00 0.0003669 9.995e-005

Q3 1514.00 0.0058370 9.368e-005

maximum 3266.00 0.0894300 1.419e-002

st.deviation 899.0817 0.009992 0.000335

skewness 0.941687 -0.332639 19.48220

kurtosis 2.741635 12.32305 608.4498

Jarque-Berra 1233.378 (0.0) 29815.85 (0.0) 1.26e+08 (0.0)



Table 2
The 3 subsamples used in figures 3, subfigures (b)-(c)

Subsample Dates Range Size

1 09/05/1974-08/04/1976 1000-1500 500

2 07/11/1985-07/09/1989 4000-5000 1500

3 08/05/1997-07/03/2001 7000-8000 1500



Table 3
Dates and positions of th 19th largest oscillations in the FTSE series as these are
identified by the 19 largest DWT wavelet coefficients.

Dates Observation

06/12/1973 890

14/12/1973 896

01/03/1974 951

02/01/1975 1170

24/01/1975 1186

27/01/1975 1187

29/01/1975 1189

30/01/1975 1190

07/02/1975 1196

10/02/1975 1197

11/03/1975 1218

17/04/1975 1245

19/10/1987 4507

20/10/1987 4508

21/10/1987 4509

22/10/1987 4510

26/10/1987 4512

10/04/1992 5676

11/09/2001 8134
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