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Abstract: - Dynamical systems of class C [1] are described by the 3rd-order autonomous differential equation 
with nonlinearity given as a three-segment piecewise linear (PWL) function. Argument of this function is a 
linear combination of state variables. These systems form an extensive group of nonlinear systems with PWL 
vector fields and may produce rich set of chaotic attractors. The paper shows how this group can be extended 
for Lorenz and Rössler systems. 
 
Key-Words: Dynamical systems, piecewise-linear, chaos, topological conjugacy 
 
1   Introduction 
Behavior of a dynamical system is determined by its 
vector field and initial conditions. We will discuss 
the linearization procedure of dimensionless Lorenz 
and Rössler systems. Our goal is to find a 
transformation between the linearized system and the 
1st canonical ODE equivalent of Chua´s equation [1] 
which represents a reference model. 

Systems of class C can be expressed in compact 
explicit form as 

 ( )xwbxAx Th⋅+⋅=&  , (1) 

where 33×∈RA , 3, R∈wb , and PWL function 

 ( ) ( )11
2
1

−−+= xwxwxw TTTh  . (2) 

To include Lorenz and Rössler systems into class C 
it is necessary to define a starting system. It can be 
chosen as the 1st canonical ODE equivalent in the 
form [1] 
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where pi and qi are coefficients of characteristic 
polynomials in respective segments of the state 
space. Any two systems having the same eigenvalues 
are qualitatively equivalent. The mapping of state 
trajectory of one element of this group onto another 
must be continuous but there is no requirement to be 
linear. We can use conditions of linear topological 
conjugacy (LTC) taken from [1]. The transformation 
matrix 

 KKT 1 ⋅= −~  (4) 

converts the original system (1) to an equivalent 
system 

xTx ⋅=~  ,    1TATA −⋅⋅=
~  ,    bTb ⋅=

~  . (5a, b, c) 

Partial transformation matrices K~  and K  are 
defined by the nonsingular forms 
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fulfilling the observability condition of matrix A and 
vector w. The simple form of partial transformation 
matrix and its inversion is the reason the 1st ODE 
equivalent is proposed as the reference system 
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Equations of Lorenz system were derived from 
Navier-Stokes partial differential equations in the 
form 

( )yxx −−= σ& , xzyrxy −−=& , xybzz +=& . (8a, b, c) 

A chaotic behavior can be observer for certain set of 
parameters. Standard values are 

 10=σ  ,  28=r  ,  667.2−=b  . (9) 

The Rössler system given as 

zyx −−=&  , ayxy +=&  , ( ) bzcxz +−=&  , (10a, b, c) 

exhibits a chaotic attractor for a wide set of 



parameters. The optimal values are 

 3.0== ba  ,  4=c  . (11) 

2  Linearization Procedure 
The linearization procedure can be divided into 
several steps which will be demonstrated for Lorenz 
and Rössler systems. First, equilibrium points of the 
studied system should be determined and denoted as 

nx , where ...,2,1,0=n . The second step consists 
in computing of the Jacobi matrix )( nxJ  which 
provides a linearized flow of studied system near all 
equilibria. We expect a solution which produces a 
single scroll attractor. Thus, there are two complex 
conjugate eigenvalues of J with positive real part and 
a negative real eigenvalue. 

It is known from linear algebra that the matrix J 
can be written as 1MRMJ −⋅⋅= , where R is a 
block diagonal matrix. The formula represents in fact 
a coordinate transformation that also transforms the 
equilibrium points as nn xMx ⋅= −1~ . In the last step it 
is necessary to determine a plane, which separates 
the state space into two regions. In each region the 
linear system produces a single scroll. Only one 
requirement is needed for successful linearization – a 
presence of at least one coordinate of two fixed 
points which could be expressed as adding and 
subtracting the same value from a constant. We can 
start with the linear system 

 ( ) ( )[ ]xFxxJx −⋅=&  , (12a) 

where 
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or in transformed Jordan form 

 ( )[ ]xFxλx ~
−⋅=&  ,  (13a) 

where 
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where λ  is block diagonal matrix and symbols i∆  in 
(13b) came from the Cramer rule and denote sub-
determinants of the matrix M. After the third step we 
obtain 
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Equations (14) can be rearranged into a system of 
class C 
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where individual elements of matrix R are 
determined by eigenvalues of the single scroll 

iωδλ ±=2,1 . 
The main problem of linearization procedure lies 

on choosing the vector q which defines a separatrix 
of the state space. The separatrix of two single 
scrolls is nonlinear ( ) 201 yxy −=⇒−= xww T  
and cannot be used for LTC. A numerical analysis 
shown the possibility of construction the double 
scroll attractor for ( )100=q . Some differences 
between these two variations of Rössler dynamical 
system are visible in Fig. 2 (yellow versus brown 
attractor). There is a substantial difference between 
(14) and (15) in the function which makes the middle 
region. Both PWL and signum functions can be 
approximated by a sigmoid function known from 
neural networks. This function allows us to expand 
or compress the middle region by varying a single 
parameter γ 

 ( ) ( )
( ) 1exp

1exp
+⋅
−⋅

=
xw
xwxw T

T
T

γ
γh  . (16) 

For 2≈γ  (16) approximates the PWL function (2) 
and for 10>γ  it converges towards the signum 
function. Any linearized dynamical system in Jordan 
form produces two horizontal single scrolls. Very 
interesting question is the existence of LTC 

RL RλR →→  where matrices RL and RR belongs 
to Lorenz and Rössler system, respectively. 
Accordingly to (4) the transformation can be 
decomposed into two steps represented by two 
transformation matrices L

1
λL KKT ⋅= −  and 

R
1

λ
1

R KKT ⋅= −− . The partial transformation matrix 

λK  of any linearized dynamical system in Jordan 
form can be obtained using (6b). The result is 



3  Analytical Results 
An analytical solution will be shown only for Lorenz 
and Rössler systems. The same principle can be used 
for other systems producing the double scroll 
attractor. The analytical expression for three fixed 
points, Jacobi matrix and vector q of Lorenz system 
is 

 ( ) ( )
( ) ( ) 
















−−−−−
−−−=

















111
111

000

rrbrb
rrbrb

2

1

0

x
x
x

 , 

 ( )
















−
−−

σσ−
=

bxy
x

11

111
0

1xJ  , 















=

0
0
1

q  . (18a, b, c) 

The Lorenz system is invariant under the 
coordinate transformation ( ) ( )zyxzyx ,,,, −−→ . 
So there is no sigmoid function for offset in the last 
component of the vector ( )xF . Single scrolls 
generated in both regions (near fixed points 1x  and 

2x ) have the same eigenvalues as the roots of the 
characteristic polynomial 

( ) ( ) ( ) 0121 23 =−++++++ rbrbb σλσλσλ . Note that 
equilibria exist only if 1>r . Vector b and partial 
transformation matrix K have a very simple form 
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Although the Rössler system is topologically simpler 

than Lorenz system, it seems to be much harder to 
analyze. The Rössler system has only two 
equilibrium points which exists if abc 42 >  
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Characteristic polynomials for both single scrolls are 
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There is one unpleasant factor in linearization of 
Rössler system. We will meet this problem in 
transformation process between formulas (14) and 
(15). It is clear that we may write a difference 
between fixed points (for example coordinate x) as 

sr ±  where cr 5.0=  and abcs 45.0 2 −= . Because 
of constant r there is another vector in (1). This is 
undesirable and it must be removed using temporary 
substitutions cxx 5.0~ −= , cayy 15.0~ −+= , 

cazz 15.0~ −−= . After that a partial transformation 
matrix is and the resultant transformation matrix 
between Lorenz and the 1st canonical ODE 
equivalent are 
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Similarly we can get the transformation matrix (23) 
for Rössler system 

Figures 1 to 5 show some examples of phase 
portraits of the original and linearized systems. 

4  Conclusion 
Lorenz and Rössler system can be used as prototypes 
of dissipative nonlinear dynamical systems for 
education purpose. These systems can be linearized 
near equilibrium points and considered as systems of 
class C. After that a LTC can be derived (in 
analytical form) and displayed in relation to the 1st or 
2nd ODE equivalent of Chua´s equation. The 
linearization procedure is applicable for such famous 

nonlinear systems as Duffing or Van der Pol 
oscillator. Realization as electronic circuit may be 
likely the biggest advantage of the linearization 
procedure. 
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Fig. 1 Position of two single scrolls (linearized, classical and canonical Lorenz system). 

 
 

 
Fig. 2 Single scroll (linearized, classical and modified Rössler system). 
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Fig. 3 LTC between 1st canonical ODE equivalent and linearized Lorenz system. 

 
 

 
Fig. 4 LTC between 1st canonical ODE equivalent and linearized Rössler system. 

 
 
 
 

 
Fig. 5 Transformation through a Jordan form: from Lorenz to Rössler system. 
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