A Parallel Distributed Arithmetic Implementation of the Discrete Wavelet Transform

ALI M. AL-HAJ
Department of Electronics & Computer Engineering,
Princess Sumaya University for Technology,
Al-Jubeiha P.O.Box 1438, Amman 11941,
JORDAN

Abstract — The fine grained parallelism inherent in Field Programmable Gate Arrays (FPGAs) may be well exploited to implement the computation-intensive discrete wavelet transform. In this paper, we describe a parallel implementation of the discrete wavelet transform and its inverse using Virtex FPGAs. We make maximal utilization of the look-up table architecture of Virtex FPGAs by reformulating the wavelet computation in accordance with the parallel distributed arithmetic algorithm. The single chip implementation may be used effectively in the construction of low-power, wavelet-based MPEG-4 and JPEG 2000 decoders.

Key words: — Discrete wavelet transform, Parallel distributed arithmetic, Implementation, Virtex FPGAs.

1 Introduction

Digital signal processing algorithms are increasingly employed in modern wireless communications and multimedia consumer electronics, such as cellular telephones and digital cameras. Traditionally, such algorithms are implemented using programmable DSP chips for low-rate applications [1], or VLSI application specific integrated circuits (ASICs) for higher rates [2]. However, advancements in Field Programmable Gate Arrays (FPGAs) provide a new vital option for the efficient implementation of DSP algorithms [3]. FPGAs are bit-programmable computing devices which offer ample quantities of logic and register resources that can easily be adapted to support the fine-grained parallelism of many pipelined digital signal processing algorithms [4,5,6].

An emerging arithmetic-intensive digital signal processing algorithm is the discrete wavelet transform [7]. The perfect reconstruction and lack of blocking artifacts properties of this transform have proven to be extremely useful for image and video coding applications [8]. In this paper, we describe a parallel, single-chip implementation of the discrete wavelet transform and its inverse using Virtex FPGAs [9]. We make maximal utilization of the look-up table architecture of Virtex FPGAs by reformulating the wavelet transform in accordance with the parallel distributed arithmetic algorithm [10,11]. Unlike most papers in literature which report on single-chip VLSI architectures of the forward discrete wavelet transform only [12,13,14,15], this paper describes an actual implementation of both the forward and inverse transforms. Therefore, the implementation may be used in the construction of effective MPEG-4 [16] and JPEG 2000 decoders [17].

The paper is organized as follows. Section 2 gives an overview of the discrete wavelet transform and Virtex FPGAs. Section 3 describes principles of parallel distributed arithmetic, and section 4 describes our implementation. Performance results are presented in section 5, and discussed in section 6. Finally, concluding remarks are presented in section 7.
2 Background

2.1 Discrete Wavelet Transform (DWT)

Wavelets are special functions which, in a form analogous to sines and cosines in Fourier analysis, are used as basal functions for representing signals. The coefficients of the discrete wavelet transform can be calculated recursively and in a straightforward manner using the well-known Mallat’s pyramid algorithm [18]. Based on Mallat’s algorithm, the discrete wavelet coefficients of any stage can be computed from the coefficients of the previous stage using the following iterative equations:

\[W_L(n, j) = \sum_{m} W_L(m, j-1)h_0(m-2n) \]
\[W_H(n, j) = \sum_{m} W_L(m, j-1)h_1(m-2n) \]

Where \(W_L(n, j) \) is the \(n^{th} \) scaling coefficient at the \(j^{th} \) stage, \(W_H(n, j) \) is the \(n^{th} \) wavelet coefficient at the \(j^{th} \) stage, and \(h_0(n) \) and \(h_1(n) \) are the dilation coefficients corresponding to the scaling and wavelet functions, respectively. In order to reconstruct the original data, the DWT coefficients are upsampled and passed through another set of low pass and high pass filters, which is expressed as

\[W_L(n, j) = \sum_{k} W_L(k, j+1)g_0(n-2k) + \sum_{l} W_H(l, j+1)g_1(n-2l) \]

where \(g_0(n) \) and \(g_1(n) \) are respectively the low-pass and high-pass synthesis filters corresponding to the mother wavelet. It is observed from Equation (3) that the \(j^{th} \) level coefficients can be obtained from the \((j+1)^{th} \) level coefficients.

Daubechies 8-tap wavelet has been chosen for this implementation. This wavelet type is known for its excellent special and spectral localities which are useful properties in image compression [19]. The filters coefficients corresponding to this wavelet type are shown in Table 1. \(H_0 \) and \(H_1 \) are the input decomposition filters and \(G_0 \) and \(G_1 \) are the output reconstruction filters.

<table>
<thead>
<tr>
<th>(H_0)</th>
<th>(H_1)</th>
<th>(G_0)</th>
<th>(G_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.0106</td>
<td>0.2304</td>
<td>-0.2304</td>
<td>-0.0106</td>
</tr>
<tr>
<td>-0.0329</td>
<td>0.7148</td>
<td>0.7148</td>
<td>0.0329</td>
</tr>
<tr>
<td>0.0308</td>
<td>0.6309</td>
<td>-0.6309</td>
<td>0.0308</td>
</tr>
<tr>
<td>0.1870</td>
<td>-0.0280</td>
<td>-0.0280</td>
<td>-0.1870</td>
</tr>
<tr>
<td>-0.0280</td>
<td>-0.1870</td>
<td>0.1870</td>
<td>-0.0280</td>
</tr>
<tr>
<td>-0.6309</td>
<td>0.0308</td>
<td>0.0329</td>
<td>0.6309</td>
</tr>
<tr>
<td>0.7148</td>
<td>0.0329</td>
<td>-0.0329</td>
<td>0.7148</td>
</tr>
<tr>
<td>-0.2304</td>
<td>-0.0106</td>
<td>-0.0106</td>
<td>0.2304</td>
</tr>
</tbody>
</table>

2.2 Virtex FPGAs

One of the most advanced FPGA families in industry is the FPGA series produced by Xilinx [20]. The Virtex user-programmable gate array comprises two major configurable elements: configurable logic blocks (CLBs) and input/output blocks (IOBs). Each CLB is composed of two slices where a slice contains 4-input, 1-output LUTs and two registers. Interconnections between these elements are configured by multiplexers controlled by SRAM cells programmed by a user’s bitstream. The LUTs allow any function of five inputs, and two functions of four inputs, or some functions of up to nine inputs to be created within a CLB slice. This structure allows a very powerful method of implementing arbitrary, complex digital logic. Virtex FPGAs are programmed using the popular hardware description language Verilog HDL [21].

3 Parallel Distributed Arithmetic

Distributed arithmetic (DA) is an efficient method for computing the inner product operation which constitutes the core of the discrete wavelet transform. Mathematical derivation of distributed arithmetic is extremely simple; a mix of Boolean and ordinary algebra [22]. Let the variable \(Y \) hold the result of an inner product operation between a data vector \(x \) and a coefficient vector \(a \). The distributed arithmetic representation the inner product operation is given as follows:

\[Y = \sum_{j=1}^{B-1} \left(\sum_{i=1}^{N} x_{ij}a_{i} \right) 2^{-j} + \sum_{i=1}^{N} a_{i}(-x_{0i}) \]

\[= \sum_{j=1}^{B-1} F_{j} 2^{-j} - F \]

\[= \sum_{j=1}^{B-1} F_{j} 2^{-j} - F \]
Where the input data words \(x_i \) have been represented by the 2’s complement number presentation in order to bound number growth under multiplication. The variable \(x_{ij} \) is the \(j^{th} \) bit of the \(x_i \) word which is Boolean, \(B \) is the number of bits of each input data word and \(x_{0i} \) is the sign bit. Distributed arithmetic is based on the observation that the function \(F_j \) can only take \(2^N \) different values that can be pre-computed offline and stored in a look-up table. Bit \(j \) of each data \(x_{ij} \) is then used to address this look-up table. Equation (4) clearly shows that the only three different operations required for calculating the inner product. First, a look-up to obtain the value of \(F_j \), then addition or subtraction, and finally a division by two that can be realized by a shift.

3.1 Parallel Realization

In its most obvious and direct form, distributed arithmetic computations are bit-serial in nature, i.e., each bit of the input samples must be indexed in turn before a new output sample becomes available. When the input samples are represented with \(B \) bits of precision, \(B \) clock cycles are required to complete an inner-product calculation. A parallel realization of distributed arithmetic corresponds to allowing multiple bits to be processed in one clock cycle by duplicating the LUT and adder tree. In a 2-bit at a time parallel implementation, the odd bits are fed to one LUT and adder tree, while the even bits are simultaneously fed to an identical tree. The bits partials are left shifted to properly weight the result and added to the even partials before accumulating the aggregate. In the extreme case, all input bits can be computed in parallel and then combined in a shifting adder tree.

3.2 Virtex Implementation

The Xilinx Virtex slices have the ability to implement distributed memory instead of logic. Each 4-input LUT in a slice may be used to implement a 16x1 ROM or RAM, or the two LUTs may be combined together to create a 32x1 ROM or RAM or a 16x1 dual-port RAM. This allows each slice to trade logic resources for memory in order to maximize the resources available for a particular application. Distributed arithmetic for inner product generation can be easily implemented in the LUT-based Xilinx Virtex FPGAs. The inner product production basically consists of table-lookup operations and additions. Thus RAM or ROM can be employed holding table values, and table lookup operations can be performed, and then a parallel adder usually follows to sum up LUT values provided by ROM or RAMs.

4 The Parallel DA Implementation

The discrete wavelet transform equations can be efficiently computed using the pyramid filter bank tree shown in Figure 1. In this section we describe a parallel distributed arithmetic implementation of the filter banks shown. We start by deriving a parallel distributed arithmetic structure of a single FIR filter. We then describe the implementation of the decimator and interpolator; the basic building blocks of the forward and discrete wavelet transforms, respectively.

![Fig. 1. Mallat's quadratic mirror filter tree (a). forward DWT tree; (b). inverse DWT tree.](image)

4.1 Parallel DA FIR Filter Structure

All filters in the pyramid tree structure shown in Figure 1 are constructed using FIR filters because of their inherent stability. Most discrete wavelet transform implementations reported in literature employ the direct FIR structure, in which each filter tap consists of a delay element, an adder, and a multiplier [23]. However, a major drawback of this implementation is that filter throughput is inversely proportional to the number of filter taps. That is, as filter length is increased, the filter throughput is proportionately decreased. In contrast, throughput of an FIR filter constructed using distributed arithmetic is maintained...
regardless of the length of the filter. This feature is particularly attractive for flexible implementations of different wavelet types since each type has a different set of filter coefficients.

Distributed arithmetic implementation of the Daubechies 8-tap wavelet filter consists of an LUT, a cascade of shift registers and a scaling accumulator, as shown in Figure 2. The LUT stores all possible sums of the Daubechies 8-tap wavelet coefficients given in Table 1. As the input sample is serialized, the bit-wide output is presented to the bit-serial shift register cascade, 1-bit at a time. The cascade stores the input sample history in a bit-serial format and is used in forming the required inner-product computation. The bit outputs of the shift register cascade are used as address inputs to the LUT. Partial results from the LUT are summed by the scaling accumulator to form a final result at the filter output port.

Since the LUT size in a distributed arithmetic implementation increases exponentially with the number of coefficients, the LUT access time can be a bottleneck for the speed of the whole system when the LUT size becomes large. Hence we decomposed the 8-bit LUT shown in Figure 2 into two 4-bit LUTs, and added their outputs using a two-input accumulator. The 4-bit LUT partitioning is optimum in terms of logic resources utilization, since this matches naturally the Virtex slice architecture which uses 4-input LUTs. The modified partitioned-LUT architecture is shown in Figure 3. The total size of storage is now reduced since the accumulator occupies less logic resources than the larger 8-bit LUT. Furthermore, partitioning the larger LUT into two smaller LUTs accessed in parallel reduces access time.

A parallel implementation of the inherently serial distributed arithmetic (SDA) FIR filter, shown in Figure 4, corresponds to partitioning the input sample into \(M \) sub-samples and processing these sub-samples in parallel. Such a parallel implementation requires \(M \)-times as many memory look-up tables and so comes at a cost of increased logic requirements. We describe below the implementation of our PDA FIR filter at two different degrees of parallelism; a 2-bit PDA FIR filter and a fully parallel 8-bit PDA FIR filter.

A 2-bit parallel distributed arithmetic (PDA) FIR filter implementation is shown in Figure 4. It corresponds to feeding the odd bits of the input sample to an SDA LUT adder tree, while feeding the even bits, simultaneously, to an identical tree. Compared to the serial DA filter, shown is Figure 4, the shift registers are each replaced with two similar shift registers at half the bit size. The odd bit partials are left shifted to properly weight the result and added to the even partials before accumulating the aggregate by a 1-bit scaling adder. Finally, since two bits are taken at a time, the scaling accumulator is changed from 1-to-2-bit shift (1/4) for scaling.

As for the fully parallel 8-bit PDA FIR filter implementation, the 8-bit input sample is partitioned into eight 1-bit sub-samples so as to achieve maximum speed. Figure 5 shows the ultimate fully parallel PDA FIR filter, where all 8 input bits are computed in parallel and then summed by a binary-tree like adder network. The lower input to each adder is scaled down by a factor of 2. No scaling accumulator is needed in this case, since the output from the adder tree is the entire sum of products.
4.2 Decimator Implementation
Wavelets are the basic building block of the parallel DA forward discrete wavelet transform filter bank. The decimator, which consists of a parallel DA, anti-aliasing FIR filter, followed by a down-sampling operator [24]. Down sampling an input sequence \(x[n] \) by 2 generates an output sequence \(y[n] \) according to the relation \(y[n] = x[2n] \). All input samples with indices equal to an integer multiple of 2 are retained at the output, and all other samples are discarded. Therefore, the sequence \(y[n] \) has a sampling rate equal to half of the sampling rate of \(x[n] \).

We implemented the decimator as shown in Figure 6. The input data port of the PDA FIR filter is connected to the external input samples source, and its clock input is tied with the clock input of a 1-bit counter. Furthermore, the output data port of the PDA FIR filter is connected to the input port of a parallel-load register. The register receives or blocks data appearing on its input port depending on the status of the 1-bit counter. Assuming an unsigned 8-bit input sample is used, the decimator operates in such a way that when the counter is in the 1 state, the PDA FIR data is stored in the parallel load register, and when the counter turns to the 0 state, the PDA FIR data is discarded.

4.3 Interpolator implementation
Wavelets are the basic building block of the inverse discrete wavelet transform filter bank. The interpolator, which consists of a parallel DA, anti-imaging FIR filter, proceeded by an up-sampling operator [24]. In up-sampling by a factor of 2, an equidistant zero-valued sample is inserted between every two consecutive samples on the input sequence \(x[n] \) to develop an output sequence \(y[n] \), such that \(y[n] = x[n/2] \) for even indices of \(n \), and 0 otherwise. The sampling rate of the output sequence \(y[n] \) is twice as large as the sampling rate of the original sequence \(x[n] \).

We implemented the interpolator as shown in Figure 7. The input data port of the PDA FIR filter is connected to the output port of a parallel-load register. Furthermore, the input port of the register is connected to the external input sample source, and its CLK input is tied with the CLK input of a 1-bit counter. The operation of the register depends on the signal received on its active-high CLR (clear) input from the 1-bit
counter. Assuming the input signal source sends out successive samples separated by 2 clock periods, the interpolating filter operates in such a way that when the counter is in the 0 state, the register passes the input sample \(X \) to the PDA FIR filter, and when the counter turns to the 1 state, the register is cleared, thus transferring a zero to the PDA FIR filter. That is, a zero is inserted between every two successive input samples.

![Fig. 7. Implementation of the interpolator.](image)

5 Performance Results

We have implemented the PDA filter bank architectures described in the previous section using one of the largest available Xilinx Virtex FPGA devices, XCV300. This device contains 322,970 gates (3072 slices) and can operate at a maximum clock speed of 200 MHz. Therefore, performance is usually measured with respect to two evaluation metrics; the throughput (sample rate) and is given in terms of the clock speed, and device utilization, and is given in terms of number of Virtex logic slices used by the implementation.

In the 2-bit PDA FIR implementation, the forward discrete wavelet transform operated at a throughput of 48.1 MHz, and required 645 Virtex slices which represents around 21% of the total 3072 slices. Throughout of the inverse discrete wavelet transform was 46.5 MHz, and the hardware requirement was 707 slices which represent around 23% of the total Virtex slices. On the other hand, the fully 8-bit PDA implementation, and as expected, performed much better. The forward discrete wavelet transform operated at a throughput of 154.6 MHz, and required 1167 Virtex slices which represents around 38% of the total 3072 slices. Throughout of the inverse discrete wavelet transform was 151 MHz, and the hardware requirement was 1352 slices which represent around 44% of the total Virtex slices.

The bit stream corresponding to the 8-bit PDA implementation was downloaded to a prototyping board called the XSV-300 FPGA Board, developed by XESS Inc [25]. The board is based on a single Xilinx XCV300 FPGA. It can accept video with up to 9-bits of resolution and output video images through a 110 MHz, 24-bit RAMDAC. Two independent banks of 512K x 16 SRAM are provided for local buffering of signals and data.

6 Discussion

In this section we compare the results presented above with the results of a serial distributed arithmetic implementation. We also compare the results of the FPGA implementations with the results of an implementation on a Texas Instruments digital signal processor. Comparison results are illustrated in Figures 8 and 9, and analyzed in the following paragraphs.

We implemented the discrete wavelet transform tree using the SDA FIR shown in Figure 3. The forward discrete wavelet transform implementation operated at a throughput of 26 MHz, and required 369 Virtex slices which represents around 12% of the total 3072 slices. Throughout of the inverse discrete wavelet transform implementation was 23.7 MHz, and the hardware requirement was 461 slices which represent around 15% of the total Virtex slices. It is noted from these results that there is a 6-fold performance increase for a 3-fold increase in slice count between the serial distributed arithmetic implementation and the fully parallel distributed arithmetic implementation. The results clearly demonstrate the speed/cost scalability of the distributed arithmetic algorithm, and suggest that in between the SDA and fully PDA there exist opportunities to increase performance by a factor of two or more, with corresponding increase in logic requirements.
The wavelet transform was also implemented on the TMS320C6711; a Texas Instrument digital signal processor with an a complex architecture suitable for image processing applications [26]. The TMS320C6711 is a highly integrated single chip processor and can operate at 150 MHz (6.7 ns clock cycle) with a peak performance of 900 MFLOPS. The processor was programmed such that the main portion of the wavelet transform was written in C, and certain sections in assembly. Also, parallel instructions were used whenever possible to exploit the abundant parallelism inherent in the wavelet transform. Sample execution times obtained for both the forward and inverse discrete wavelet transforms were 0.153 µs (6.53 MHz) and 0.276 µs (3.62 MHz), respectively.

It is noted from the results obtained above, and illustrated in Figure 9, that all distributed arithmetic FPGA implementations perform much better than the TMS20C6711 implementation. The superior performance of the FPGA-based implementations is attributed to the highly parallel, pipelined and distributed architecture of Xilinx Virtex FPGA. Moreover, it should be noted that the Virtex FPGAs offer more than high speed for many embedded applications. They offer compact implementation, low cost and low power consumption; things which can’t be offered by any software implementation.

Finally, After completing this FPGA implementation of the discrete wavelet transform and its inverse, we are now working on integrating a whole wavelet-based image compression system on a single, dynamic, runtime reconfigurable FPGA. A typical image compression system consists of an encoder and a decoder. At the encoder side, an image is first transformed to the frequency domain using the forward discrete wavelet transform. The non-negligible wavelet coefficients are then quantized, and finally encoded using an appropriate entropy encoder. The decoder side reverses the whole encoding procedure described above. Transforming the 2-D image data can be done simply by inserting a matrix transpose module between two 1-D discrete wavelet transform modules such as those described in this paper.

7 Conclusions
In this paper we described an effective parallel single-chip implementation of the discrete wavelet transform and its inverse using Virtex FPGAs. The effectiveness of the implementation is attributed to the exploitation of the natural match which exits between the parallel distributed arithmetic technique, and the LUT-based architecture of the Virtex FPGAs. In conclusion, the implementation can be adopted in the construction of high speed MPEG-4 and JPEG 2000 multimedia compression decoders.
References