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Abstract —The fine grained parallelism inherent in Field Programmable Gate Arrays (FPGAs) may be 
well exploited to implement the computation-intensive discrete wavelet transform. In this paper, we 
describe a parallel implementation of the discrete wavelet transform and its inverse  using Virtex 
FPGAs. We make maximal utilization of the  look-up table architecture of  Virtex  FPGAs  by 
reformulating the wavelet computation in accordance with the  parallel distributed arithmetic algorithm. 
The single chip implementation  may be used effectively in the construction of  low-power, wavelet-
based   MPEG-4 and  JPEG 2000 decoders. 
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1   Introduction 
Digital signal processing algorithms are 
increasingly employed in modern wireless 
communications and multimedia  consumer 
electronics, such as cellular telephones and digital 
cameras. Traditionally, such algorithms are  
implemented using  programmable DSP chips for 
low-rate applications [1], or VLSI application 
specific integrated circuits (ASICs) for higher 
rates [2]. However, advancements in Filed 
Programmable Gate Arrays (FPGAs) provide a 
new vital option for  the efficient  implementation 
of DSP algorithms [3].  FPGAs are  bit-
programmable computing devices which offer 
ample quantities of logic and register resources 
that can easily be adapted to support the fine-
grained parallelism of many pipelined digital 
signal processing algorithms [4,5,6].  
    An emerging arithmetic-intensive digital signal 
processing algorithm is the discrete wavelet 
transform [7] . The perfect reconstruction  and 
lack of blocking artifacts properties of  this 
transform have proven to be extremely useful for 
image and video coding applications [8]. In this 

paper, we describe a parallel, single-chip 
implementation of the discrete wavelet transform 
and its inverse  using Virtex FPGAs [9]. We make 
maximal utilization of the  look-up table 
architecture of  Virtex  FPGAs  by reformulating 
the wavelet transform  in accordance with the  
parallel distributed arithmetic algorithm [10,11]. 
Unlike most  papers in literature which  report on 
single-chip VLSI  architectures of the forward 
discrete wavelet transform only [12,13,14,15], this 
paper describes an actual  implementation of  both 
the forward and inverse transforms. Therefore, the 
implementation  may be used in the construction 
of  effective MPEG-4 [16] and  JPEG 2000 
decoders [17].  
     The paper  is organized as follows. Section 2 
gives an overview of  the discrete wavelet 
transform and Virtex FPGAs. Section 3 describes 
principles of parallel distributed arithmetic, and 
section 4 describes our implementation. 
Performance results  are presented in section 5, 
and discussed in section 6. Finally,  concluding 
remarks are presented in section 7.   
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2   Background 

2.1  Discrete Wavelet Transform (DWT)  
Wavelets are special functions which, in a form 
analogous to sines and cosines in Fourier analysis, 
are used as basal functions for representing 
signals. The coefficients of the discrete wavelet 
transform can be calculated recursively and in a 
straight forward manner using the well-known 
Mallat’s pyramid  algorithm [18]. Based on 
Mallat’s algorithm, the discrete wavelet 
coefficients of any stage can be computed from the  
coefficients of  the previous stage using the 
following iterative equations:   
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Where WL(n,j) is the nth scaling coefficient at the 
jth stage,  WH(n,j) is the nth wavelet coefficient at 
the jth stage, and h0(n)  and  h1(n) are the dilation 
coefficients corresponding to the scaling and 
wavelet functions, respectively.  In order to 
reconstruct the original data, the DWT coefficients 
are upsampled and passed through another set of 
low pass and high pass filters, which is expressed 
as 
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where  g0(n)  and  g1(n) are respectively the low-
pass and high-pass synthesis filters corresponding 
to the mother wavelet. It is observed from  
Equation (3) that the jth level coefficients can be 
obtained from the (j+1)th level coefficients.  
   Daubechies 8-tap  wavelet   has been chosen for 
this implementation. This wavelet type is known 
for its  excellent special and spectral localities 
which are useful  properties  in image compression 
[19]. The filters coefficients  corresponding to this 
wavelet type  are shown  in Table 1. H0 and H1 are 
the input decomposition  filters and  G0 and G1   
are the output reconstruction filters. 
   

Table 1. Daubechies 8-tap  wavelet  filter coefficients.  
 

H0 H1 G0 G1 
-0.0106 0.2304 -0.2304 -0.0106 
 -0.0329 0.7148 0.7148 0.0329 
 0.0308 0.6309 -0.6309 0.0308 
 0.1870 -0.0280 -0.0280 -0.187 
-0.0280 -0.1870 0.1870 -0.0280 
-0.6309 0.0308 0.0329 0.6309 
 0.7148 0.0329 -0.0329 0.7148 
-0.2304 -0.0106 -0.0106 0.2304 

 

2.2 Virtex FPGAs  
One of  the most advanced FPGA families in 
industry is the FPGA series  produced by Xilinx 
[20].  The Virtex user-programmable gate array 
comprises two major configurable elements: 
configurable logic blocks (CLBs) and input/output 
blocks (IOBs). Each CLB is composed of two 
slices where a slice contains 4-input, 1-output 
LUTs and two registers. Interconnections between 
these elements are configured by multiplexers 
controlled by SRAM cells programmed by a user’s 
bitstream. The LUTs allow any function of five 
inputs, and two functions of four inputs, or some 
functions of up to nine inputs to be created within 
a CLB slice. This structure allows a very powerful 
method of implementing arbitrary, complex digital 
logic. Virtex FPGAs are  programmed using the 
popular hardware description language Verilog 
HDL [21].  
 
3   Parallel Distributed Arithmetic 
Distributed arithmetic  ( DA) is an efficient 
method for computing the inner product operation  
which constitutes the core of  the discrete wavelet 
transform. Mathematical derivation  of distributed 
arithmetic is extremely simple; a mix of Boolean 
and ordinary algebra [22]. Let the variable Y hold 
the result of an inner product operation between a 
data vector x and a coefficient vector a. The 
distributed arithmetic  representation the inner 
product operation is given as follows:   
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Where  the  input data words xi have been 
represented by the 2’s complement number 
presentation in order to bound number growth 
under multiplication. The variable   xij  is the jth bit 
of the xi word which is Boolean, B is the number 
of bits of each input data word and x0i  is the sign 
bit.  Distributed arithmetic is based on the 
observation that the function Fj can only take 2N 
different values that can be pre-computed offline 
and stored in a look-up table. Bit  j of each data xij  
is then used to address this look-up table. Equation 
(4) clearly shows that the only three different 
operations required for calculating the inner 
product. First, a look-up to obtain the value of Fj, 
then addition or subtraction, and finally a division 
by two that can be realized by a shift.  
 
3.1 Parallel Realization  
In its most obvious and direct form, distributed 
arithmetic computations are bit-serial in nature, 
i.e.,  each bit of the input samples must be indexed 
in turn before a new output sample becomes 
available. When the input samples are represented 
with B bits of precision, B clock cycles are 
required to complete an inner-product calculation. 
A parallel realization of  distributed arithmetic 
corresponds to allowing multiple bits to be 
processed in one clock cycle by duplicating the 
LUT and adder tree. In a 2-bit at a time parallel 
implementation, the odd bits are fed to one LUT 
and adder tree, while the even bits are 
simultaneously fed to an identical tree. The bits 
partials are left shifted to properly weight the 
result and added to the even partials before 
accumulating the aggregate. In the extreme case, 
all input bits can be computed in parallel and then 
combined in  a shifting adder tree. 
 
3.2 Virtex  Implementation 
 The Xilinx Virtex slices  have the ability to 
implement distributed memory instead of logic. 
Each 4-input LUT in a slice may be used to 
implement a 16x1 ROM or RAM, or the two 
LUTs may be combined together to create a 32x1 
ROM or RAM or a 16x1 dual-port RAM. This 
allows each slice to trade logic resources for 
memory in order to maximize the resources 
available for a particular application. Distributed 
Arithmetic for inner product generation can be 
easily implemented in the LUT-based Xilinx 

Virtex FPGAs. The inner product production 
basically consists of table-lookup operations and 
additions. Thus RAM or ROM can be employed 
holding table values, and table lookup operations 
can be performed, and then a parallel adder 
usually follows to sum up LUT values provided by 
ROM or RAMs. 

 
4  The Parallel DA Implementation 
The discrete wavelet transform equations can be  
efficiently  computed using the  pyramid filter 
bank tree shown  in Figure 1. In this section we 
describe a parallel distributed arithmetic 
implementation of the filter banks shown.  We 
start by deriving  a parallel distributed arithmetic  
structure of  a single  FIR filter. We  then describe 
the implementation of  the decimator and 
interpolator;  the basic building blocks of  the 
forward and discrete wavelet transforms, 
respectively. 
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Fig. 1. Mallat's quadratic mirror filter tree (a). forward 
DWT tree;  (b). inverse  DWT tree.  
 

4.1 Parallel DA  FIR Filter Structure 
All filters in the pyramid tree structure shown in 
Figure 1  are  constructed using  FIR filters 
because of their inherent stability. Most discrete 
wavelet transform  implementations reported in  
literature employ  the direct FIR structure, in 
which each filter tap consists of a delay element, 
an adder, and a multiplier [23] . However, a major 
drawback of this  implementation is that filter 
throughput is inversely proportional to the number 
of filter taps. That is, as  filter length is increased, 
the filter throughput  is proportionately decreased. 
In contrast, throughput of an FIR filter constructed 
using distributed arithmetic  is maintained 
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regardless of the length of the filter. This feature is 
particularly attractive for flexible implementations 
of different wavelet types since each type has a 
different set of filer coefficients. 
Distributed arithmetic  implementation of  the  
Daubechies 8-tap  wavelet   filter consists of  an 
LUT, a cascade of shift registers and a scaling 
accumulator, as shown in Figure 2.  The LUT 
stores all possible sums of the Daubechies 8-tap  
wavelet coefficients  given in Table 1. As the 
input sample is serialized, the bit-wide output is 
presented to the bit-serial shift register cascade,1-
bit at a time. The cascade stores the input sample 
history in a bit-serial format and is used in forming 
the required inner-product computation. The bit 
outputs of the shift register cascade  are used as 
address inputs to the LUT. Partial results from  the 
LUT are summed by the scaling accumulator to 
form a final result at the filter output port. 

 
Fig. 2. A DA  implementation of the Daubechies FIR filter. 
 
Since the LUT size in a distributed arithmetic 
implementation increases exponentially with the 
number of coefficients, the LUT access time can 
be a bottleneck for the speed of the whole system 
when the LUT size becomes large.  Hence we 
decomposed the 8-bit LUT shown in Figure 2  into 
two 4-bit LUTs, and added their outputs using a 
two-input accumulator. The 4-bit LUT partitioning 
is optimum in terms of logic resources utilization, 
since this matches naturally the Virtex slice 
architecture  which uses 4-input LUTs. The 
modified partitioned-LUT architecture is shown in 
Figure 3.  The total size of storage is now reduced 
since the accumulator occupies less logic 
resources than  the larger 8-bit LUT. Furthermore, 
partitioning the larger LUT into two smaller  
LUTs accessed in parallel reduces access time.  

 
Fig. 3. A partitioned-LUT DA implementation of the 
Daubechies FIR  filter. 
 
A parallel implementation of the inherently serial 
distributed arithmetic (SDA) FIR filter, shown in 
Figure 4,   corresponds to partitioning the input 
sample into M sub-samples and processing these 
sub-samples in parallel. Such a  parallel 
implementation requires M-times as many 
memory look-up tables and so comes at a cost of 
increased logic requirements. We describe below 
the implementation of  our PDA FIR  filter at  two 
different degrees of parallelism; a 2-bit PDA FIR 
filter and a fully parallel 8-bit PDA FIR filter. 
   A 2-bit parallel distributed arithmetic (PDA) FIR 
filter implementation is shown in Figure 4. It 
corresponds to feeding the odd bits of the input 
sample to an SDA  LUT  adder tree, while feeding 
the even bits, simultaneously,  to an identical tree. 
Compared to the serial DA filter, shown is Figure 
4, the shift registers  are each replaced with two 
similar shift registers at half the bit size. The odd 
bit partials are left shifted to properly weight the 
result and added to the even partials before 
accumulating the aggregate by a 1-bit scaling 
adder. Finally, since two bits are taken at a time, 
the scaling accumulator is changed from 1-to-2-bit 
shift (1/4) for scaling. 
    As for the fully parallel 8-bit  PDA  FIR filter 
implementation, the 8-bit input sample  is 
partitioned into eight  1-bit  sub-samples so as to 
achieve maximum speed. Figure 5 shows the  
ultimate fully parallel PDA FIR filter, where all 8 
input bits are computed in parallel and then 
summed by a binary-tree like adder network. The  
lower input to each adder is scaled down by a 
factor of 2. No scaling accumulator is needed in 
this case, since the output from the adder tree is 
the entire sum of products.  
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      Fig. 4. A 2-bit  PDA Daubechies FIR filter. 
 

                
                                                         
Fig. 5. (a).1-bit and  (b). 8 –bit PDA Daubechies  FIR filter. 
 

4.2 Decimator Implementation 
Wavelets are The  basic building block of the 
parallel DA forward discrete wavelet transform 
filter bank is the  decimator, which consists of a 
parallel DA, anti-aliasing FIR filter, followed  by a 
down-sampling operator [24]. Down sampling an 
input sequence x[n]  by 2 generates an output 
sequence y[n] according to the relation  y[n] = 
x[2n].  All input samples with indices equal to an 
integer multiple of 2 are retained at the output, and 
all other samples are discarded.  Therefore, the 
sequence  y[n] has a  sampling rate equal to half  
of the sampling rate  of x[n]. 
   We implemented the decimator as shown in 
Figure 6.  The input data  port of the PDA FIR 
filter is connected to the external input samples 
source, and its clock input is tied with  the clock 

input of  a 1-bit counter. Furthermore, the output 
data port of the PDA FIR filter is connected to the 
input port of a  parallel-load register. The register 
receives or blocks data appearing on its input port 
depending on the status of  the 1-bit counter. 
Assuming an unsigned 8-bit input sample is used,  
the decimator  operates in such a way that when 
the counter is in the 1 state, the  PDA FIR data is 
stored in the parallel load register, and when the 
counter turns to the  0 state, the PDA FIR data is 
discarded.  

FIR

DATA
IN

CLK

DATA
OUT

CLK
Counter

1-bit

OUT

m-bit
Register

QD

CLK

CLOCK

X
n m m

Y

 
          Fig. 6. Implementation of the decimator. 
 

 

4.3 Interpolator implementation 
Wavelets are The  basic building block of the 
inverse discrete wavelet transform filter bank is 
the  interpolator  which consists of a parallel DA, 
anti-imaging FIR filter, proceeded  by an up-
sampling operator [24]. In up-sampling by a factor 
of  2,  an equidistant zero-valued sample is 
inserted between every two consecutive samples 
on the input sequence x[n] to develop an output 
sequence y[n], such that  y[n] =   x[n/2]  for even 
indices of n, and 0  otherwise. The sampling rate 
of  the output sequence  y[n]   is twice as large as  
the sampling rate of the original sequence   x[n].  
   We implemented the interpolator as shown in 
Figure 7.  The  input data  port of the PDA FIR 
filter is  connected to the output port of  a parallel-
load register. Furthermore, the input port of the 
register is connected  to the external  input sample 
source, and its CLK input is tied with the CLK 
input of a 1-bit counter. The operation of  the 
register depends on the signal received on its 
active-high CLR (clear) input  from the 1-bit 
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counter. Assuming the input signal source sends 
out successive  samples separated by 2 clock 
periods, the interpolating filter operates in such a 
way that when the counter is in the 0 state, the 
register passes the input sample  X  to the PDA 
FIR filter, and when the counter turns to the 1 
state, the register is cleared, thus transferring a 
zero to the PDA FIR filter. That is, a zero is 
inserted between every tow successive input 
samples.  
  

1-bit
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X
m

CLK

m

OUT

D

CLR

CLK

Q
n

Y
DATA

IN

CLK

FIR

DATA
OUT

Register
m-bit

    Fig. 7.  Implementation  of the interpolator. 

 
5   Performance Results 
We have implemented the PDA filter bank 
architectures described in the previous section 
using one of the largest  available Xilinx Virtex 
FPGA devices, XCV300. This device contains  
322,970 gates ( 3072slices) and can operate at a 
maximum clock speed of 200 MHz. Therefore, 
performance is  usually measured with respect to 
two evaluation metrics; the throughput (sample 
rate)  and is given in terms of  the clock speed, and 
device utilization, and is given in terms number of  
Virtex logic  slices used by the implementation.  
   In the 2-bit PDA FIR implementation, the  
forward discrete wavelet transform operated at a 
throughput of  48.1 MHz, and required  645 Virtex 
slices which represents  around 21 % of the total 
3072 slices. Throughout of the inverse discrete 
wavelet transform  was 46.5 MHz, and the 
hardware requirement was 707 slices which 
represent around 23 % of the total Virtex  slices. 
On the other hand, the fully 8-bit PDA 
implementation, and as expected, performed much 
better. The  forward discrete wavelet transform 
operated at a throughput of  154.6 MHz, and 
required  1167 Virtex slices which represents  

around 38 % of the total 3072 slices. Throughout 
of the inverse discrete wavelet transform  was 151 
MHz, and the hardware requirement was 1352 
slices which represent around 44 % of the total 
Virtex  slices. 
   The bit stream corresponding to the 8-bit PDA 
implementation was downloaded to a prototyping 
board called the XSV-300  FPGA Board, 
developed by  XESS Inc [25]. The board is based 
on a single Xilinx  XCV300 FPGA. It can accept 
video with up to 9-bits of resolution and output 
video images through a 110 MHz, 24-bit 
RAMDAC. Two independent banks of 512K x 16 
SRAM are provided for local buffering of signals 
and data. 
 
 
6  Discussion 
In this section we compare the results presented  
above with the results of  a serial distributed 
arithmetic implementation. We also  compare the 
results of the FPGA implementations with the 
results of  an  implementation on a Texas 
Instruments digital signal processor. Comparison 
results  are illustrated in Figures 8 and 9, and 
analyzed in the following paragraphs.   
   We implemented the discrete wavelet transform  
tree using the SDA FIR shown in Figure 3. The  
forward discrete wavelet transform 
implementation operated at a throughput of  26 
MHz, and required  369 Virtex slices which 
represents  around 12 % of the total 3072 slices. 
Throughout of the inverse discrete wavelet 
transform  implementation was 23.7 MHz, and the 
hardware requirement was 461 slices which 
represent around 15 % of the total Virtex  slices. It 
is noted from these results that there is a 6-fold 
performance increase for a 3-fold increase in slice 
count between the serial distributed arithmetic  
implementation and the fully parallel distributed 
arithmetic implementation. The results clearly 
demonstrate the speed/cost scalability of  the 
distributed arithmetic algorithm, and suggest that  
in between the SDA and fully PDA there exist 
opportunities  to increase performance by a factor 
of two or more, with corresponding increase in 
logic requirements.  
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Fig.8. Performance results (a).throughput;  (b).utilization. 

 
The wavelet transform was also implemented on 
the TMS320C6711; a Texas Instrument  digital 
signal processor with an a complex architecture 
suitable for  image processing  applications [26]. 
The TMS320C6711 is a highly integrated single 
chip processor and can operate at 150 MHz (6.7 ns 
clock cycle) with  a peak performance of 900 
MFLOPS.  The  processor  was programmed such 
that the main portion of the wavelet transform was 
written in C, and certain sections in assembly. 
Also, parallel instructions were used whenever 
possible to exploit the abundant parallelism 
inherent in the wavelet transform. Sample 
execution times obtained for both the forward and 
inverse discrete wavelet transforms were 0.153 µs 
(6.53 MHz) and 0.276 µs (3.62 MHz),  
respectively.  
   It is noted from the results obtained  above, and 
illustrated  in Figure 9, that all distributed 
arithmetic FPGA implementations  perform much 
better than the TMS20C6711 implementation.  
The superior performance of the FPGA-based  
implementations is attributed to the highly 
parallel, pipelined  and distributed architecture of 
Xilinx Virtex FPGA. Moreover, it should be noted 
that the Virtex FPGAs offer more than high speed 
for many embedded applications. They offer 

compact implementation, low cost and low power 
consumption; things which can’t be offered by any 
software implementation. 
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               Fig. 9. Throughput  performance comparison. 

 
 

Finally, After completing this  FPGA 
implementation of the discrete wavelet transform 
and its inverse, we are now working on integrating 
a whole wavelet-based image  compression system 
on a single, dynamic, runtime reconfigurable 
FPGA.  A typical  image compression system 
consists of an encoder and a decoder. At the  
encoder side, an image is first transformed to the 
frequency domain using the forward discrete 
wavelet transform. The non-negligible wavelet 
coefficients  are then  quantized, and finally 
encoded using  an  appropriate entropy encoder.  
The decoder side reverses the whole encoding 
procedure described above. Transforming the 2-D 
image data  can be done simply by inserting a 
matrix transpose module between two 1-D discrete 
wavelet transform modules such as those 
described in this paper. 
 
7   Conclusions 
In this paper we described an effective parallel 
single-chip implementation of the discrete wavelet 
transform and its inverse  using Virtex FPGAs. 
The effectiveness of the  implementation  is 
attributed to the exploitation of the natural match 
which exits between the parallel distributed 
arithmetic technique, and the LUT-based 
architecture of the Virtex FPGAs.  In conclusion, 
the implementation can be adopted  in the 
construction of  high speed  MPEG-4 and  JPEG 
2000 multimedia compression decoders. 
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