

 1

A Parallel Distributed Arithmetic

Implementation of the Discrete Wavelet Transform

ALI M. Al-HAJ
Department of Electronics & Computer Engineering,

Princess Sumaya University for Technology,
Al-Jubeiha P.O.Box 1438, Amman 11941,

JORDAN

Abstract —The fine grained parallelism inherent in Field Programmable Gate Arrays (FPGAs) may be
well exploited to implement the computation-intensive discrete wavelet transform. In this paper, we
describe a parallel implementation of the discrete wavelet transform and its inverse using Virtex
FPGAs. We make maximal utilization of the look-up table architecture of Virtex FPGAs by
reformulating the wavelet computation in accordance with the parallel distributed arithmetic algorithm.
The single chip implementation may be used effectively in the construction of low-power, wavelet-
based MPEG-4 and JPEG 2000 decoders.

Key words: — Discrete wavelet transform, Parallel distributed arithmetic, Implementation, Virtex FPGAs.

1 Introduction
Digital signal processing algorithms are
increasingly employed in modern wireless
communications and multimedia consumer
electronics, such as cellular telephones and digital
cameras. Traditionally, such algorithms are
implemented using programmable DSP chips for
low-rate applications [1], or VLSI application
specific integrated circuits (ASICs) for higher
rates [2]. However, advancements in Filed
Programmable Gate Arrays (FPGAs) provide a
new vital option for the efficient implementation
of DSP algorithms [3]. FPGAs are bit-
programmable computing devices which offer
ample quantities of logic and register resources
that can easily be adapted to support the fine-
grained parallelism of many pipelined digital
signal processing algorithms [4,5,6].
 An emerging arithmetic-intensive digital signal
processing algorithm is the discrete wavelet
transform [7] . The perfect reconstruction and
lack of blocking artifacts properties of this
transform have proven to be extremely useful for
image and video coding applications [8]. In this

paper, we describe a parallel, single-chip
implementation of the discrete wavelet transform
and its inverse using Virtex FPGAs [9]. We make
maximal utilization of the look-up table
architecture of Virtex FPGAs by reformulating
the wavelet transform in accordance with the
parallel distributed arithmetic algorithm [10,11].
Unlike most papers in literature which report on
single-chip VLSI architectures of the forward
discrete wavelet transform only [12,13,14,15], this
paper describes an actual implementation of both
the forward and inverse transforms. Therefore, the
implementation may be used in the construction
of effective MPEG-4 [16] and JPEG 2000
decoders [17].
 The paper is organized as follows. Section 2
gives an overview of the discrete wavelet
transform and Virtex FPGAs. Section 3 describes
principles of parallel distributed arithmetic, and
section 4 describes our implementation.
Performance results are presented in section 5,
and discussed in section 6. Finally, concluding
remarks are presented in section 7.

mailto:ali@psut.edu.jo
http://www.psut.edu.jo/

 2

2 Background

2.1 Discrete Wavelet Transform (DWT)
Wavelets are special functions which, in a form
analogous to sines and cosines in Fourier analysis,
are used as basal functions for representing
signals. The coefficients of the discrete wavelet
transform can be calculated recursively and in a
straight forward manner using the well-known
Mallat’s pyramid algorithm [18]. Based on
Mallat’s algorithm, the discrete wavelet
coefficients of any stage can be computed from the
coefficients of the previous stage using the
following iterative equations:

)1().........2()1,(),(0 nmhjmWjnW
m

LL −−=∑

)2)........(2()1,(),(1 nmhjmWjnW

m
LH −−=∑

Where WL(n,j) is the nth scaling coefficient at the
jth stage, WH(n,j) is the nth wavelet coefficient at
the jth stage, and h0(n) and h1(n) are the dilation
coefficients corresponding to the scaling and
wavelet functions, respectively. In order to
reconstruct the original data, the DWT coefficients
are upsampled and passed through another set of
low pass and high pass filters, which is expressed
as

)3(....................).........2()1,(

)2()1,(),(

1

0

lngjlW

kngjkWjnW

l
H

k
LL

−+

+−+=

∑

∑

where g0(n) and g1(n) are respectively the low-
pass and high-pass synthesis filters corresponding
to the mother wavelet. It is observed from
Equation (3) that the jth level coefficients can be
obtained from the (j+1)th level coefficients.
 Daubechies 8-tap wavelet has been chosen for
this implementation. This wavelet type is known
for its excellent special and spectral localities
which are useful properties in image compression
[19]. The filters coefficients corresponding to this
wavelet type are shown in Table 1. H0 and H1 are
the input decomposition filters and G0 and G1
are the output reconstruction filters.

Table 1. Daubechies 8-tap wavelet filter coefficients.

H0 H1 G0 G1
-0.0106 0.2304 -0.2304 -0.0106
 -0.0329 0.7148 0.7148 0.0329
 0.0308 0.6309 -0.6309 0.0308
 0.1870 -0.0280 -0.0280 -0.187
-0.0280 -0.1870 0.1870 -0.0280
-0.6309 0.0308 0.0329 0.6309
 0.7148 0.0329 -0.0329 0.7148
-0.2304 -0.0106 -0.0106 0.2304

2.2 Virtex FPGAs
One of the most advanced FPGA families in
industry is the FPGA series produced by Xilinx
[20]. The Virtex user-programmable gate array
comprises two major configurable elements:
configurable logic blocks (CLBs) and input/output
blocks (IOBs). Each CLB is composed of two
slices where a slice contains 4-input, 1-output
LUTs and two registers. Interconnections between
these elements are configured by multiplexers
controlled by SRAM cells programmed by a user’s
bitstream. The LUTs allow any function of five
inputs, and two functions of four inputs, or some
functions of up to nine inputs to be created within
a CLB slice. This structure allows a very powerful
method of implementing arbitrary, complex digital
logic. Virtex FPGAs are programmed using the
popular hardware description language Verilog
HDL [21].

3 Parallel Distributed Arithmetic
Distributed arithmetic (DA) is an efficient
method for computing the inner product operation
which constitutes the core of the discrete wavelet
transform. Mathematical derivation of distributed
arithmetic is extremely simple; a mix of Boolean
and ordinary algebra [22]. Let the variable Y hold
the result of an inner product operation between a
data vector x and a coefficient vector a. The
distributed arithmetic representation the inner
product operation is given as follows:

)4.........(..............................2

)(2

1

1

1
0

1

1 1

FF

xaaxY

j
B

j
j

N

i
ii

j
B

j

N

i
iij

−=

−+






=

−
−

=

=

−
−

= =

∑

∑∑ ∑

 3

Where the input data words xi have been
represented by the 2’s complement number
presentation in order to bound number growth
under multiplication. The variable xij is the jth bit
of the xi word which is Boolean, B is the number
of bits of each input data word and x0i is the sign
bit. Distributed arithmetic is based on the
observation that the function Fj can only take 2N
different values that can be pre-computed offline
and stored in a look-up table. Bit j of each data xij
is then used to address this look-up table. Equation
(4) clearly shows that the only three different
operations required for calculating the inner
product. First, a look-up to obtain the value of Fj,
then addition or subtraction, and finally a division
by two that can be realized by a shift.

3.1 Parallel Realization
In its most obvious and direct form, distributed
arithmetic computations are bit-serial in nature,
i.e., each bit of the input samples must be indexed
in turn before a new output sample becomes
available. When the input samples are represented
with B bits of precision, B clock cycles are
required to complete an inner-product calculation.
A parallel realization of distributed arithmetic
corresponds to allowing multiple bits to be
processed in one clock cycle by duplicating the
LUT and adder tree. In a 2-bit at a time parallel
implementation, the odd bits are fed to one LUT
and adder tree, while the even bits are
simultaneously fed to an identical tree. The bits
partials are left shifted to properly weight the
result and added to the even partials before
accumulating the aggregate. In the extreme case,
all input bits can be computed in parallel and then
combined in a shifting adder tree.

3.2 Virtex Implementation
 The Xilinx Virtex slices have the ability to
implement distributed memory instead of logic.
Each 4-input LUT in a slice may be used to
implement a 16x1 ROM or RAM, or the two
LUTs may be combined together to create a 32x1
ROM or RAM or a 16x1 dual-port RAM. This
allows each slice to trade logic resources for
memory in order to maximize the resources
available for a particular application. Distributed
Arithmetic for inner product generation can be
easily implemented in the LUT-based Xilinx

Virtex FPGAs. The inner product production
basically consists of table-lookup operations and
additions. Thus RAM or ROM can be employed
holding table values, and table lookup operations
can be performed, and then a parallel adder
usually follows to sum up LUT values provided by
ROM or RAMs.

4 The Parallel DA Implementation
The discrete wavelet transform equations can be
efficiently computed using the pyramid filter
bank tree shown in Figure 1. In this section we
describe a parallel distributed arithmetic
implementation of the filter banks shown. We
start by deriving a parallel distributed arithmetic
structure of a single FIR filter. We then describe
the implementation of the decimator and
interpolator; the basic building blocks of the
forward and discrete wavelet transforms,
respectively.

X[n]
1H (z)

2H (z)0

2

H (z)1

H (z)0 2

2

H (z)1

H (z)0 2

2

H [n]1

2 G (z)

2 G (z)0

1

Y[n]

0G (z)2

G (z)2 1

2

2

G (z)0

G (z)1

H [n]2

H [n]3

L [n]3

L [n]3

H [n]

H [n]3

2

H [n]1

(a)

(b)

Fig. 1. Mallat's quadratic mirror filter tree (a). forward
DWT tree; (b). inverse DWT tree.

4.1 Parallel DA FIR Filter Structure
All filters in the pyramid tree structure shown in
Figure 1 are constructed using FIR filters
because of their inherent stability. Most discrete
wavelet transform implementations reported in
literature employ the direct FIR structure, in
which each filter tap consists of a delay element,
an adder, and a multiplier [23] . However, a major
drawback of this implementation is that filter
throughput is inversely proportional to the number
of filter taps. That is, as filter length is increased,
the filter throughput is proportionately decreased.
In contrast, throughput of an FIR filter constructed
using distributed arithmetic is maintained

 4

regardless of the length of the filter. This feature is
particularly attractive for flexible implementations
of different wavelet types since each type has a
different set of filer coefficients.
Distributed arithmetic implementation of the
Daubechies 8-tap wavelet filter consists of an
LUT, a cascade of shift registers and a scaling
accumulator, as shown in Figure 2. The LUT
stores all possible sums of the Daubechies 8-tap
wavelet coefficients given in Table 1. As the
input sample is serialized, the bit-wide output is
presented to the bit-serial shift register cascade,1-
bit at a time. The cascade stores the input sample
history in a bit-serial format and is used in forming
the required inner-product computation. The bit
outputs of the shift register cascade are used as
address inputs to the LUT. Partial results from the
LUT are summed by the scaling accumulator to
form a final result at the filter output port.

Fig. 2. A DA implementation of the Daubechies FIR filter.

Since the LUT size in a distributed arithmetic
implementation increases exponentially with the
number of coefficients, the LUT access time can
be a bottleneck for the speed of the whole system
when the LUT size becomes large. Hence we
decomposed the 8-bit LUT shown in Figure 2 into
two 4-bit LUTs, and added their outputs using a
two-input accumulator. The 4-bit LUT partitioning
is optimum in terms of logic resources utilization,
since this matches naturally the Virtex slice
architecture which uses 4-input LUTs. The
modified partitioned-LUT architecture is shown in
Figure 3. The total size of storage is now reduced
since the accumulator occupies less logic
resources than the larger 8-bit LUT. Furthermore,
partitioning the larger LUT into two smaller
LUTs accessed in parallel reduces access time.

Fig. 3. A partitioned-LUT DA implementation of the
Daubechies FIR filter.

A parallel implementation of the inherently serial
distributed arithmetic (SDA) FIR filter, shown in
Figure 4, corresponds to partitioning the input
sample into M sub-samples and processing these
sub-samples in parallel. Such a parallel
implementation requires M-times as many
memory look-up tables and so comes at a cost of
increased logic requirements. We describe below
the implementation of our PDA FIR filter at two
different degrees of parallelism; a 2-bit PDA FIR
filter and a fully parallel 8-bit PDA FIR filter.
 A 2-bit parallel distributed arithmetic (PDA) FIR
filter implementation is shown in Figure 4. It
corresponds to feeding the odd bits of the input
sample to an SDA LUT adder tree, while feeding
the even bits, simultaneously, to an identical tree.
Compared to the serial DA filter, shown is Figure
4, the shift registers are each replaced with two
similar shift registers at half the bit size. The odd
bit partials are left shifted to properly weight the
result and added to the even partials before
accumulating the aggregate by a 1-bit scaling
adder. Finally, since two bits are taken at a time,
the scaling accumulator is changed from 1-to-2-bit
shift (1/4) for scaling.
 As for the fully parallel 8-bit PDA FIR filter
implementation, the 8-bit input sample is
partitioned into eight 1-bit sub-samples so as to
achieve maximum speed. Figure 5 shows the
ultimate fully parallel PDA FIR filter, where all 8
input bits are computed in parallel and then
summed by a binary-tree like adder network. The
lower input to each adder is scaled down by a
factor of 2. No scaling accumulator is needed in
this case, since the output from the adder tree is
the entire sum of products.

 5

 Fig. 4. A 2-bit PDA Daubechies FIR filter.

Fig. 5. (a).1-bit and (b). 8 –bit PDA Daubechies FIR filter.

4.2 Decimator Implementation
Wavelets are The basic building block of the
parallel DA forward discrete wavelet transform
filter bank is the decimator, which consists of a
parallel DA, anti-aliasing FIR filter, followed by a
down-sampling operator [24]. Down sampling an
input sequence x[n] by 2 generates an output
sequence y[n] according to the relation y[n] =
x[2n]. All input samples with indices equal to an
integer multiple of 2 are retained at the output, and
all other samples are discarded. Therefore, the
sequence y[n] has a sampling rate equal to half
of the sampling rate of x[n].
 We implemented the decimator as shown in
Figure 6. The input data port of the PDA FIR
filter is connected to the external input samples
source, and its clock input is tied with the clock

input of a 1-bit counter. Furthermore, the output
data port of the PDA FIR filter is connected to the
input port of a parallel-load register. The register
receives or blocks data appearing on its input port
depending on the status of the 1-bit counter.
Assuming an unsigned 8-bit input sample is used,
the decimator operates in such a way that when
the counter is in the 1 state, the PDA FIR data is
stored in the parallel load register, and when the
counter turns to the 0 state, the PDA FIR data is
discarded.

FIR

DATA
IN

CLK

DATA
OUT

CLK
Counter

1-bit

OUT

m-bit
Register

QD

CLK

CLOCK

X
n m m

Y

 Fig. 6. Implementation of the decimator.

4.3 Interpolator implementation
Wavelets are The basic building block of the
inverse discrete wavelet transform filter bank is
the interpolator which consists of a parallel DA,
anti-imaging FIR filter, proceeded by an up-
sampling operator [24]. In up-sampling by a factor
of 2, an equidistant zero-valued sample is
inserted between every two consecutive samples
on the input sequence x[n] to develop an output
sequence y[n], such that y[n] = x[n/2] for even
indices of n, and 0 otherwise. The sampling rate
of the output sequence y[n] is twice as large as
the sampling rate of the original sequence x[n].
 We implemented the interpolator as shown in
Figure 7. The input data port of the PDA FIR
filter is connected to the output port of a parallel-
load register. Furthermore, the input port of the
register is connected to the external input sample
source, and its CLK input is tied with the CLK
input of a 1-bit counter. The operation of the
register depends on the signal received on its
active-high CLR (clear) input from the 1-bit

 6

counter. Assuming the input signal source sends
out successive samples separated by 2 clock
periods, the interpolating filter operates in such a
way that when the counter is in the 0 state, the
register passes the input sample X to the PDA
FIR filter, and when the counter turns to the 1
state, the register is cleared, thus transferring a
zero to the PDA FIR filter. That is, a zero is
inserted between every tow successive input
samples.

1-bit
Counter

CLOCK

X
m

CLK

m

OUT

D

CLR

CLK

Q
n

Y
DATA

IN

CLK

FIR

DATA
OUT

Register
m-bit

 Fig. 7. Implementation of the interpolator.

5 Performance Results
We have implemented the PDA filter bank
architectures described in the previous section
using one of the largest available Xilinx Virtex
FPGA devices, XCV300. This device contains
322,970 gates (3072slices) and can operate at a
maximum clock speed of 200 MHz. Therefore,
performance is usually measured with respect to
two evaluation metrics; the throughput (sample
rate) and is given in terms of the clock speed, and
device utilization, and is given in terms number of
Virtex logic slices used by the implementation.
 In the 2-bit PDA FIR implementation, the
forward discrete wavelet transform operated at a
throughput of 48.1 MHz, and required 645 Virtex
slices which represents around 21 % of the total
3072 slices. Throughout of the inverse discrete
wavelet transform was 46.5 MHz, and the
hardware requirement was 707 slices which
represent around 23 % of the total Virtex slices.
On the other hand, the fully 8-bit PDA
implementation, and as expected, performed much
better. The forward discrete wavelet transform
operated at a throughput of 154.6 MHz, and
required 1167 Virtex slices which represents

around 38 % of the total 3072 slices. Throughout
of the inverse discrete wavelet transform was 151
MHz, and the hardware requirement was 1352
slices which represent around 44 % of the total
Virtex slices.
 The bit stream corresponding to the 8-bit PDA
implementation was downloaded to a prototyping
board called the XSV-300 FPGA Board,
developed by XESS Inc [25]. The board is based
on a single Xilinx XCV300 FPGA. It can accept
video with up to 9-bits of resolution and output
video images through a 110 MHz, 24-bit
RAMDAC. Two independent banks of 512K x 16
SRAM are provided for local buffering of signals
and data.

6 Discussion
In this section we compare the results presented
above with the results of a serial distributed
arithmetic implementation. We also compare the
results of the FPGA implementations with the
results of an implementation on a Texas
Instruments digital signal processor. Comparison
results are illustrated in Figures 8 and 9, and
analyzed in the following paragraphs.
 We implemented the discrete wavelet transform
tree using the SDA FIR shown in Figure 3. The
forward discrete wavelet transform
implementation operated at a throughput of 26
MHz, and required 369 Virtex slices which
represents around 12 % of the total 3072 slices.
Throughout of the inverse discrete wavelet
transform implementation was 23.7 MHz, and the
hardware requirement was 461 slices which
represent around 15 % of the total Virtex slices. It
is noted from these results that there is a 6-fold
performance increase for a 3-fold increase in slice
count between the serial distributed arithmetic
implementation and the fully parallel distributed
arithmetic implementation. The results clearly
demonstrate the speed/cost scalability of the
distributed arithmetic algorithm, and suggest that
in between the SDA and fully PDA there exist
opportunities to increase performance by a factor
of two or more, with corresponding increase in
logic requirements.

 7

0
20
40
60
80

100
120
140
160

Th
ro

ug
hp

ut
 (M

H
z)

SDA 2-Bit PDA 8-Bit PDA

Implementation

Forward DWT Inverse DWT

(a)

0
200
400
600
800

1000
1200
1400

U
til

iz
at

io
n

(S
lic

e)

SDA 2-Bit PDA 8-Bit PDA

Implementation

Forward DWT Inverse DWT

 (b)
Fig.8. Performance results (a).throughput; (b).utilization.

The wavelet transform was also implemented on
the TMS320C6711; a Texas Instrument digital
signal processor with an a complex architecture
suitable for image processing applications [26].
The TMS320C6711 is a highly integrated single
chip processor and can operate at 150 MHz (6.7 ns
clock cycle) with a peak performance of 900
MFLOPS. The processor was programmed such
that the main portion of the wavelet transform was
written in C, and certain sections in assembly.
Also, parallel instructions were used whenever
possible to exploit the abundant parallelism
inherent in the wavelet transform. Sample
execution times obtained for both the forward and
inverse discrete wavelet transforms were 0.153 µs
(6.53 MHz) and 0.276 µs (3.62 MHz),
respectively.
 It is noted from the results obtained above, and
illustrated in Figure 9, that all distributed
arithmetic FPGA implementations perform much
better than the TMS20C6711 implementation.
The superior performance of the FPGA-based
implementations is attributed to the highly
parallel, pipelined and distributed architecture of
Xilinx Virtex FPGA. Moreover, it should be noted
that the Virtex FPGAs offer more than high speed
for many embedded applications. They offer

compact implementation, low cost and low power
consumption; things which can’t be offered by any
software implementation.

0
20
40
60
80

100
120
140
160

Th
ro

ug
pu

t (
M

H
z)

TMS320C6711 SDA 2-Bit PDA 8-Bit PDA

Implementation

Forward DWT Inverse DWT

 Fig. 9. Throughput performance comparison.

Finally, After completing this FPGA
implementation of the discrete wavelet transform
and its inverse, we are now working on integrating
a whole wavelet-based image compression system
on a single, dynamic, runtime reconfigurable
FPGA. A typical image compression system
consists of an encoder and a decoder. At the
encoder side, an image is first transformed to the
frequency domain using the forward discrete
wavelet transform. The non-negligible wavelet
coefficients are then quantized, and finally
encoded using an appropriate entropy encoder.
The decoder side reverses the whole encoding
procedure described above. Transforming the 2-D
image data can be done simply by inserting a
matrix transpose module between two 1-D discrete
wavelet transform modules such as those
described in this paper.

7 Conclusions
In this paper we described an effective parallel
single-chip implementation of the discrete wavelet
transform and its inverse using Virtex FPGAs.
The effectiveness of the implementation is
attributed to the exploitation of the natural match
which exits between the parallel distributed
arithmetic technique, and the LUT-based
architecture of the Virtex FPGAs. In conclusion,
the implementation can be adopted in the
construction of high speed MPEG-4 and JPEG
2000 multimedia compression decoders.

 8

References

[1] Texas Corporation, www.ti.com
[2] M. Smith, Application-specific integrated circuits.

USA: Addison Wesley Longman, 1997.
[3] R. Seals and G. Whapshott, Programmable Logic:

PLDs and FPGAs. UK: Macmillan, 1997.
[4] P. Kollig, B. Al-Hashimi and K. Abbot, “ FPGA

implementation of high performance FIR filters,”
In Proc. International Symposium on Circuits and
Systems, 1997.

[5] M. Shand, “ Flexible image acquisition using
reconfigurable hardware,” In Proc. of the IEEE
Workshop on Filed Programmable Custom
Computing Machines, Napa, Ca, Apr. 1995.

[6] J. Villasenor, B. Schoner, and C. Jones, “Video
communication using rapidly reconfigurable
hardware,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 5, no. 12, Dec.
1995, pp. 565-567.

[7] G. Strang and T. Nguyen, Wavelets and filter
banks. MA: Wellesley-Cambridge Press, 1996.

[8] M. Antonini, M. Barlaud, P. Mathieu, and I.
Daubechies, “Image coding using wavelet
transform,” IEEE Trans. Image Processing, vol. 1,
no.2, April 1992, pp. 205-220.

[9] Xilinx Corporation. “Xilinx breaks one million-
gate barrier with delivery of new Virtex series,”
October 1998

[10] L. Mintzer, “The role of distributed arithmetic in
FPGAs,” Xilinx Corporation.

[11] K. Parhi, VLSI digital signal processing systems.
US: John Wiley & Sons, 1999

[12] G. Knowles, “VLSI architecture for the discrete
wavelet transform,” Electron Letters, vol. 26, no.
15, July 1990, pp. 1184-1185.

[13] A. Grzeszczak, M. Kandal, S. Panchanathan,

and T. Yeap, “ VLSI implementation of discrete
wavelet transform,” IEEE Trans. VLSI Systems,
vol. 4, no. 4, Dec. 1996, pp. 421-433.

[14] K. Parhi and T. Nishitani, VLSI architectures for
discrete wavelet transforms, IEEE Trans. VLSI
Systems, June 1993, pp. 191-202.

[15] C.Chakabarti, M. Vishwanath, and R. Owens,
"Architectures for wavelet transforms: a survey,"
Journal of VLSI Signal Processing, vol. 14, no. 2,
Nov. 1996, pp. 171-192.

[16] T. Ebrahimi and F. Pereira, The MPEG-4 Book.
Prentice Hall, July 2002

[17] D. Taubman and M. Marcellin. JPEG2000:
Image compression fundamentals, standards, and
practice. Kluwer Academic Publishers,
November, 2001,

[18] S. Mallat, “ A theory for multresolution signal
decomposition: The wavelet representation, IEEE
Trans. Pattern Anal. And Machine Intell., vol. 11,
no. 7, July 1989, pp. 674-693.

[19] I. Daubechies, “Orthonomal bases of compactly
supported wavelets,” Comm. Pure Appl. Math,
vol. 41, 1988, pp. 906-966.

[20] Xilinx Corporation. Virtex Data Sheet, 2000.
[21] S. Palnitkar, Verilog HDL, SunSoft Press, 1996.
[22] S. White, “ Applications of distributed

arithmetic to digital signal processing: a tutorial”,
In IEEE ASSP Magazine,July 1989, pp. 4-19.

[23] A. Oppenheim and R. Schafer, Discrete signal
processing. New Jersy: Prentice Hall, 1999.

[24] P. Vaidyanathan, Multirate systems and filter
banks. New Jersey: Prentice Hall, 1993.

[25] Xess Corporation. www.xess.com.
[26] Texas Instruments Corporation. TMS320C6711

data sheet, 2000.

http://www.xess.com/

	2.1 Discrete Wavelet Transform (DWT)
	2.2 Virtex FPGAs
	4.1 Parallel DA FIR Filter Structure
	4.2 Decimator Implementation
	4.3 Interpolator implementation

