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ABSTRACT 
 
 
Many control system design problems can be formulated as multi-objective problems: that is 
there are several competing objectives that need to be simultaneously satisfied (system step 
response, rise time, overshoot, disturbance rejection, or integral absolute error). These objectives 
are imbedded in system’s eigenvalues that are measures of system stability and robustness. The 
load frequency control (LFC) problem for two interconnected area system is considered, and the 
objective is to design an appropriate controller based on linear quadratic regulator and/or 
eigenvalues assignment techniques for achieving zero steady state error due to step input, as well 
as a desired transient response. The paper addresses two equally important topics: load frequency 
control and controller design for stable operation. The resulting controller is of proportional state 
plus integral output type.   The two control signals will not interface, since the integral action is 
usually much slower than the proportional action. An illustrative example is presented and 
solved by the three algorithms. 
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I. Introduction 
 
In highly structured systems like multi-area power systems the active power generation within 
each area has to be controlled so as to maintain scheduled power interchange and frequency 
close to their nominal values, despite load variations. This important control function in power 
system operation, commonly referred to as load frequency control (LFC), may be conveniently 
met by adopting a global centralized strategy. Taking into consideration that the need for 
disturbance rejection and stabilization creates the need for feedback control. A number of state 
feedback controllers based on linear optimal control theory have been proposed so as to achieve 
better performance and insensitivity to plant parameter variations. The most widely used strategy 
is based on proportional plus integral (PI) controller, this is because they are often available at 
little extra cost since they are often incorporated into the programmable logic controllers (PLC’s) 
that are used to control most industrial processes. Advanced control applications as applied to 
power systems include robustness, disturbance rejection, command following, fault tolerance, 
self autonomy, and so on. Intensive research work over the last few decades yielded a powerful 
set of algorithms for systems and control. Research on power system small-signal stability has 
produced valuable contributions to eigenanalysis [1]. Power plant operation and control provides 
one of the most challenging environments for industrial operations. Because of  changing 
electrical demand, stringent emissions regulations and pressures to reduce generating costs 
resulting from deregulations and competitive environment, power industry is facing greater 
demands on maintaing unit performance, operation flexibility and availability. The optimal 
power flow (OPF) problem attempts to minimize some function of power system variables. 
Minimizing the cost of real power generation or minimizing real power losses in the system are 
examples of (OPF) objective function which are constrained optimization problem. Since there 
are operating limits on voltage magnitudes and other system variables, the solution to the 
problem is a power system steady-state operating point which may not be stable since the 
constraints included in the (OPF) problem are not stability constrains. Three power system 
stability conditions are precisely defined in [2] according to different operating conditions, 
namely steady state, transient, and dynamic. At steady state operating point, one can linearize the 
set of differential equations, the algebraic equations, and the network equations to describe the 
power system dynamic response for small deviations from operating point. 
If the complex conjugate eigenvalues of the linearized system have negative real parts, then the 
power system can withstand small disturbances and is considered stable in the small-signal 
sense. Each eigenvalue is a function of power system variables, if one of these variables change, 
eigenvalues will experience some changes depending on their sensitivities. Alternatively when 
the system is subjected to large disturbances, there needs to be a mechanism to adapt the 
controller to the new operating conditions and ensure that the system stability is preserved. 
Adaptive control is an illustration based on estimating the linearized model from monitored data 
[3]. Eigenvalues analysis is a useful tool in both voltage collapse analysis at each intermediate 
equilibrium stage of the collapse (‘snapshots’) ,and finding a power system operating point that 
is both economically optimal and stable in the small-signal sense. As an extension to this issue 
[4] presented an approach to stabilize power system transient processes based on left shifting the 
real parts of the dominant eigenvalues via an optimization procedure. The drawback of the 
procedure is that it is limited to small or relatively infrequent change in the operating conditions.  
In practice power system stability can be enhanced by improving damping of power swings in 
the system. This can be provided by power system stabilizers (PSS) supplementing excitation 
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control of generators. Recently, several approaches based on modern control theory have been 
applied to (PSS) design problems [5]. The advent and wide spread use of high power 
semiconductors switches at the utilization, distribution, and transmission levels introduced 
FACTS devices (Flexible AC Transmission Systems) to achieve several goals. Linked to the 
improvements in semiconductor technology FACTS opened up new opportunities for controlling 
power and enhancing the usable capacity of existing transmission lines. Moreover it may be used 
for active as well as reactive power or voltage control, beside their capabilities in steady state or 
dynamic stability and damping inter-area oscillations [2]. Current work is looking at FACTS 
devices from both power electronics and power systems respectively. The former is to design 
devices in order to minimize the harmonic content of the waveform, while the latter is concerned 
with optimal application of FACTS devices and their control algorithms. The LFC is performed 
by automatic generation control (AGC). It serves to fulfill three important functions, first the 
frequencies of the various bus voltages and currents are maintained at or near specified nominal 
values, second the tie-line power flows among the interconnected areas are maintained at 
specified levels (LFC), and third the total power requirement on the system as a whole is shared 
by individual generators in an economically optimum fashion (active power dispatch) [6].  
 A solid analytical basis for the formulation, analysis, and evaluation of LFC performance 
criteria is presented in [7]. The cross fertilization between control system theory and power 
system analysis has been very fruitful towards improving electric power quality [8]. 
     Along this direction the present paper presents a controller design approach on the basis of 
state variable model of the power system based on optimal control theory and eigenvalues 
assignment techniques where the overall power system is controlled and optimized as a whole 
not in sequential steps. The paper is organized as follow; section II introduces the system model. 
In an attempt towards the achievement of both satisfactory acceptable transient and steady state 
performance for the power system two design perspectives are presented. Section III presents the 
optimal control theory in designing the controller, while section IV presents two design 
algorithms based on eigenvalues assignment techniques for achieving the desired specifications. 
The proposed controller combines the features of the proportional state plus integral output 
feedback control. The corresponding gains are calculated through optimization techniques and/or 
eigenvalues assignment techniques. An illustrative numerical example in each section is 
presented for synthesizing the appropriate feedback gains for two identical interconnected power 
systems. 

 

II. System model (State space description) 
 

A two area power system can be modeled by a set of linearized differential equations 
(augmenting governer, turbine, generators, load, and tie-line) as  

b)-(1                                 x(t)C y(t)
a)-(1         w(t)L u(t) B A x(t)x

=
++=&

 

Where x (t) is the entire state vector composed of measurable components defined as 
c)-(1     ]' p  p  f  p  p  p  f [x(t) n

v2t22tiev1t11 ℜ∈=  
And the time dependence of the components is understood. 

if is the frequency deviation (i=1,2), tip  is the power output from the i-th generator, vip is the 
deviation in the governor valve opening, tiep is the perturbation in the real power flowing along 



 4

the line from area one to area   two. The matrices A, B, C, and L are constants and of compatible 
dimensions. The two inputs are: 

 d)-(1    ]' p  [pu(t) m
c2c1 ℜ∈=   

And the unknown but constant disturbance  
e)-(1  ]' p  [pw(t) m

d2d1 ℜ∈=  
Where cip is the speed changer position, and dip is the load disturbance at subsystem i, i=(1,2). 
The overall output y(t) is given as  

f)-(1   ]' (t)y  t)([yy(t) q
21 ℜ∈=  

(t)yi is the i-th area control error (ACE). It is assumed that the system is completely controllable, 
observable. For disturbance rejection purpose using optimal control techniques let the quadratic 
performance index J is  

(2)dt    ) u(t) R (t)u'(t) x Q (t) x'(J
0
∫
∞

+=  

Where Q is an nxn symmetric positive semi definite state weighting matrix and R is an mxm 
symmetric positive definite control weighting matrix. This index may represent economic costs, 
system security, or other objectives. The optimal control problem is to find the input u(t) for all 
t≥ 0 such that the state x(t) is driven from a given initial value x(0) to the origin of the state space 
while minimizing the index J. This problem is well known and often referred to as linear 
quadratic regulator (LQR) [9]. It is logical to assume that step change of load is often the case, in 
order to achieve the rejection of the effects of finite constant load disturbance w(t), let us 
differentiate (1-a) once to get 

(3)     (t)u B  z(t)A  (t)z && +=  

Where 
dt
 x(t)d z(t) = , define an augmented state vector qn

a (t)x +ℜ∈  as  

(4)         ]'y y  p  p  f   p  p  p  f[  (t)]'y'  (t)[z'(t)x 21v2t22tiev1t11a &&&&&&&&&==  
It allows the expression for the augmented system as  

 b)-(5                (t) xC  (t)y
a)-(5     (t)uB  (t) xAx

aaa

aaaa

=
+= &&

 

Where the augmented matrices are given as 

[ ] (6)         0      CC  ,   
0
B

B   ,   
0     C
0A    

A eaa =







=








=  

It turns out that the augmented system (5) is controllable and observable as long as the original 
system is. The modified performance index for the augmented system is defined as 

(7)dt    ) (t) u R (t)'u(t)  xQ (t) x'(J
0

aaaa ∫
∞

+= &&  

Where aQ is a symmetric positive semi-definite (n+q)x(n+q) matrix. To this purpose we abstract 
from the details concerning the augmented system and its modified index that the problem is to 
find the control (t)u&  for all t 0≥  such that the augmented state vector (t)x a is driven from a 
given initial state to the origin of the augmented state space while minimizing the index (7). 
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III. Optimal Load Frequency Controller 
 

Basically the need for disturbance rejection creates the need for feedback control. A fundamental 
control structure that is well suited to compute and implement is the state feedback from the 
augmented states. Moreover it is natural to focus the feedback on the accumulated information in 
the output, i.e., the part that originates from disturbances, measurement errors, and model error. 
The solution of the quadratic optimal control problem is well known [9] and is given as 

(8)      (t)  xK-   (t)  xP B R -(t) u aaa
 '
a

-1 ==&  
Where the gain aK  is a unique mx(n+q) matrix, P is an (n+q)x(n+q) symmetric positive definite 
matrix being the solution of the algebraic Riccati equation (ARE) 

(9)      0   Q  P B R B P   A P P A a
'
a

-1
aa

'
a =+−+  

Interestingly, equation (8) may be written as   [ ] a)-(10     ' (t)y    (t)z K - (t) u ''
a=&  

Where  b)-(10        K  and   ; K   ;   ]   K   K [ K mxq
2

mxn
121a ℜ∈ℜ∈=  

As all the elements of the augmented state vector are measurable by appropriate transducers, it 
will be possible to combine the transducer outputs to generate the input signal as 

(11)        d(t)  y(t)K  - (t)  xK- u(t)
0

21 ∫
∞

=  

The control law derived above has the form proportional state plus integral output (past values of 
the output rather than the error signal). It ensures that the steady state value of the state 

(t)x a tends to zero as time goes large. Consequently the output y(t) tends to zero as it is part of 
(t).x a  This in turn ensures that both frequency and tie-line flow deviations of each area tend to 

zero as time goes large following load disturbance. In spite of such controller simplicity, it has 
some disadvantages, such as its sensitivity to variation of system parameters or limited range of 
controllable disturbances and also the computational burden is of the order 3q)(n +  [9]. 
 
Example 1: Consider a power system with two identical areas having the following matrices [6]. 
 

   ,  

       12.5-        0         5.21-    0          0            0                0
3.33     3.33-            0      0          0            0                0
0           6        0.0.5-    0          0            0                0
   0          0        0.545-    0          0            0           0.45
  0          0               0       0       12.5-       0          5.21-

0          0              0       0      3.33     3.33-             0  
   0          0              0        6-       0      6.00          0.05-

   A





























=





























=

0       12.5
0            0
0            0
0            0
0       12.5
0            0
0           0

B  

 









=

1       1        1     1-      0       0       0
0       0       0       1       0       0       1

C  
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The open loop system eigenvalues are 
 

〉±±〈− 13.2895-  13.2789,-  0.9386,- , i 2.5123  1.2953-  ,  i 8855.2  8312.0  
 

I. Construct the augmented state vector (t)x a (eqn.4) together with the associated 
matrices aaa C ,B, A  (eqn.6). 

II. To minimize the modified index (eqn.7), let 2qa IR  and , I Q ==             (13) 
The extended system eigenvalues are those of the open loop in addition to two eigenvalues at 
origin. 
III       The unique optimal controller gains (eqn.11) obtained via linear quadratic regulator 
technique are :-  
The proportional state feedback gain is  
 

            (14)   
  0.7449     1.6607         1.0479      1.3332-    0.0088-   0.0875-   0.1785-

0.0088-     0.221-     0.07907     1.5873-     0.6869     1.5875     0.9607  
K1 








=  

 
                                                                                                                                                
And the integral output feedback gain superimposed onto the proportional control is 
 

              (15)                                                                        
0.9999        0.0131
0.0131-      0.9999

K 2 







=  

It may be verified that the optimal closed loop eigenvalues (those of the matrix    
) K B-A aae are 

〉±±〈 17.8239- 0;75;-17.8408906;-1.510.6924;-0.- i; 2.50783.0642- ; i 2.7812-2.3800  
As it is well known, the objective of the voltage control in power system is to maintain the 
voltage profile within specified limits thus minimizing transmission losses and preventing 
cases of instability [10]. 
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IVController Design via Eigenvalues Assignment 
 
In this section and the next, two different procedures will be presented to generate the 
proportional state plus integral output controller based on eigenvalues assignment techniques. 
Assuming that the selected spectrum achieves some closed loop specifications or 
performance objectives indicating proper performance of the overall closed loop system. 
The evaluation of the small signal stability of power system requires the calculation of 
eigenvalues and sometimes the eigenvectors (eigenpairs). 
1. Algorithm I 
The design procedure utilizes freedom existing in nonunique feedback gains for the 
multivariable system; it allows not only for a systematic application of the feedback matrix 
for the system under consideration but also can be readily adapted for numerical solution to 
improve the efficiency of computations. Consider the augmented system given by (eqn.5), 
apply a state feedback of the form       (17)              (t) xK -  (t)u aa=&  
Where aK  is nonunique mx(n+q) real matrix, the closed loop system is  

(18)                    (t) x)K B - (A (t)x aaaaa =&  
The purpose in applying such a feedback is to assign a finite prescribed symmetric self 
conjugate spectrum { iλ } (i=1,…,(n+q)) which is specified in order to achieve some desired 
system specifications. In this case the closed loop eigenvalues are assigned but are not 
optimized. Based on the above let )(Pa λ  be the closed loop characteristic equation, hence 

(19)          q))(n1,...,(i       0I KB-A  )(P qniaaaa +==−= +λλ  

With some manipulations; [ ][ ] (20)    0KB)I(A-I I -A  )(P aa
1

qniaqnqniaa =−= −
+++ λλλ  

Let -1
qnai )I(A)( +−= ia λλφ  and     aa B )(  )( iia λφλψ =  

Equation (20) yields  (21)        0 KB)(-I IA aaiaqnqnia =− ++ λφλ  

Using the well known identity YXIY XI mqn +=++  where X is (n+q)xm, and Y is 
mx(n+q) matrix to rewrite (eqn.21) as 

(22)                0B )(KI I-A aiaamqnia =−+ λφλ  
It shows a considerable reduction in computational complexity. 
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There are several ways of choosing the gain aK  to satisfy (eqn.22), one possible selection is 
the sufficient condition 

(23)                   I)(K miaa =λψ  
This relation has two significant consequences. First, one may use the inherent flexibility in 
the assignment process. Second, the amount of memory required for computations is 
minimal; hence one can handle large scale power system problems. 
For the j th column of (eqn.23) to be zero;  

(24)        e )(K jaja −=iλψ  
 Where )( iaj λψ  is the j th column of the matrix je and),( ia λψ  is the j th column of mI . If the 
desired eigenvalues are distinct, one can arbitrarily find (n+q) linearly independent columns 
for the (n+q)x(n+q) matrix [ ])(.,.....,.... )(   )( qn21 +λψλψλψ  to form the matrix G  as 

[ ] (25)         )(..,,.....,... )(   )(G qnq)j(n2j211 ++= λψλψλψ j  
Hint: Controllability of the pair ( )B ,(A aa  implies rank  m )( =iλψ   [11]. 
Here a candidate feedback matrix is calculated as  

[ ] (26)         G  e  .....    .....   e  eK -1
q)j(nj2j1a +=  

For the complex conjugate eigenvalues same column of )( ia λψ is selected twice (once for 
the complex eigenvalue and once for its conjugate) [11]. This available high degree of 
freedom is best utilized to achieve some additional requirements e.g. robust eigenvalues, 
improved sensitivity, conditioned eigenvectors. 
Example 2: To illustrate the above procedure let us reconsider the LFC of the two 
interconnected power systems quoted from [6]. Let the entire closed loop response which the 
power system is required to track be expressed as the location of the closed loop eigenvalues 
specified as ,-24) 0.99i,-3.11 1.44i,-0.914 i 2.88,-2.1  i 7.23.1( ±±±±− . Using MATLAB 
[12] the numerical computations results the gain matrix aK  as  
The proportional state feedback gain is 
 

(27)   
 1.1001-     0.0607-     0.0348      5.3235-       0.9881     .61431 1      1.6182

0.0016     0.0054-     0.0381-      0.3875       0.5331      4027.0    1303.0
K1 







 −
=  

 
      

And the integral output feedback gain 






−
=

5.2031-            3733.5   
0379.0               3015.0

K 2    (28) 

Interestingly this procedure results in a closed loop system with good sensitivity 
characteristics. The system response due to step input is shown. 
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I1. AlgorithmII 
The analysis and synthesis in this subsection rely on exploiting the available freedom for 
shaping the eigenvectors associated with the prescribed set of eigenvalues. Again consider 
the augmented system (5) , the associated control law (10), and the closed loop (18). Like the 
previous subsection, let the desired spectrum be specified as { iλ }, and the associated 
eigenvectors as { iV } (i=1,…,…,(n+q)). The closed loop eigenvalues and eigenvectors are 
related by                              (29)         V V )KB-A( iiia aa λ=  

It can be readily expressed in the form [ ] (30)    0    
W

V
  B   I)A(

i

i

aa =















− iλ  
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Where iai V KW =   is an m-dimensional vector. In order to satisfy (eqn.30) the vector 
[ ] ''

i
'
i      WV  must lie in the null space of the (n+q)x(n+q+m) matrix  [ ]aia B    I -A λ  which is 

m-dimensional space as long as )B , (A aa  is a controllable pair. By repeated use of (eqn.30) 
and rearranging the associated vectors it follows that  

[ ] [ ] (31)      V ..,.....,.... V   V  K     W.,.....,....    WW q)(n21aq)(n21 ++ =  
Hence the required gain matrix aK  is obtained as 

[ ] [ ] (32)   K    V..,.....,....  V  V  W..,.....,....    WW a
-1

q)(n21q)(n21 =++  
Noting that prescribed symmetric self conjugate eigenvalues results in linearly independent 
self conjugate corresponding eigenvectors, this ensures the existence of the indicated inverse, 
and also self conjugate symmetric vectors iW . The sets of symmetric self conjugate spectrum 
results in real feedback matrix aK . The procedure steps are: 
Step 1. Let [ ]  iaiai g   ; B   I-A Null g λ∈  is (n+q+m)xm matrix. Let ijv be the upper (n+q) 
element of the j th column of iji  wand,g  be the lower (m) element of the same column, 
j=1,…,m). 
Step 2. Repeat step 1 for i=1,…,…,(n+q),and j=1,…,…,m then arrange the vectors 
correspondingly as 

[ ] [ ] (33)     K  v....,......,...    vv  w..,.....,....    ww  a
-1

q)j(n2j1jq)j(n2j1j =++  
Recall that [ ] b).-(10    K   KK 2  1a =  
Note that while both algorithms provide same closed loop eigenvalues, it is difficult to 
compromise which is best without further constraints. The present algorithm exploits the 
freedom on selecting the eigenvectors within a subspace of the augmented system null space. 
Example 3: Again consider same power system quoted from [6]. The required control law is 
to achieve same symmetric self conjugate eigenvalues set as specified in example 2, 
following the steps of the above algorithm II results in the feedback gains as 
The proportional state feedback gain is  

(34)  
1.0995-      0.0890-    0.5017-     4.7672-   2.9014     1.6881     2.3432
0.0154-     0.0000      0.0139-     0.6149     0.5325     0.3558-   1435.0

K1 







=  

And the integral output feedback gain is  

                 (35)                                                  
4.6746-        5.0819

0.1032     4042.0
K                              2 







−
=  
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Interesting applications of such a controller are 
(▪)At a given time the control signal is not dictated only by the state at that time. 
(▪▪)The control signal depends on both the state and duration period to and until the time of 
interest. 
 

Conclusions 
 

Electric power systems are typical complex dynamic systems, controller parameters that are 
optimum for one set of operating conditions may not be optimum for another set of operating 
conditions. The system configuration also keeps changing either due to switching actions, 
sudden loading,…, etc. In an interconnection, there are many control areas, each of which 
performs its AGC with the objective of maintaining the magnitude of ACE sufficiently close 
to zero using various criteria. The control problem of interest in the power system is to find a 
controller that will cause deviations in the area frequencies, and tie line flow go to zero 
following the introduction of load disturbance. A framework is suggested for interconnected 
power system which integrates control design by whatever method (optimum, or eigenvalues 
assignment) for load frequency control. It is feasible to develop and implement improved 
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controllers based on modern, more sophisticated techniques Controllers based on linear 
quadratic regulator and eigenvalues assignment techniques are presented in the paper. Three 
proposed design algorithms are conveniently illustrated by synthesizing appropriate 
proportional state superimposed by integral output feedback controller designed for load 
frequency control. In order not to interface both signals, the integral output control is much 
slower than the proportional control signal. However it is claimed in the literature that 
complete rejection of disturbance and insensitivity to parameter variation can be achieved 
through variable structure systems with some confusion about robustness. A more practical 
problem is that several performance indices can be dealt with, typically the subsequent 
problem of deciding what weighting to give the various indices to achieve satisfactory 
performance rather than optimal.  
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