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Abstract– An algorithm basing on numerical 
differentiation and central Lagrange interpolation with 
multi-points is presented for the fundamental frequency 
estimation of non-sinusoidal signals in this paper. The 
signal is sampled at a fixed sample frequency of  
25600Hz with the unknown parameters, the frequency 
is estimated with 7-point consequences using the 
high-order differentiation at a high accuracy of 0.001% 
over a very wide range varying from 2Hz to 1MHz in at 
most 1 cycle. Comparing with other algorithms, this 
algorithm spends little time and computation for 
frequency of the signal. The proposed algorithm is 
simulated in Matlab software using a testing study 
example with satisfactory results.  
 
Index Terms—frequency estimation, fundamental 
harmonic, nonsinusoidal signal, numerical 
differentiation, Lagrange interpolation 

1 Introduction 

Frequency estimation has been one of important task in 
intelligent instrumentation and metering. Many of 
well-proven techniques such as zero crossing technique 
[1]-[2], level crossing technique [3], least squares error 
technique[4]-[6], Newton method [7], Kalman filter 
[8]–[12], Fourier transform [13]-[19], wavelet transform 
[18] have been used for this purpose, and some estimation 
results in accuracy give us a helpful guide. However, larger 
errors in frequency measurement of signal are often brought 
in, and much more time and computation must need so as 
not to be applied in real-time measurement and control.  
The algorithm proposed in this paper is developed to 
estimate the fundament frequency of non-sinusoidal signals 
with a frequency varying from 6Hz  to 1MHz. This 
algorithm is based on numerical differentiation and central 
Lagrange interpolation with multi-points. Comparing with 
other algorithms, this algorithm spends little time and 
computation over a wide range at a high accuracy. 
In section 1, the pioneering works in frequency estimation 
are described. In section 2, the proposed algorithm is 
presented. In section 3, the steps for the algorithm 
implementation are discussed. In section 4, a study case is 
simulated with Matlab software to illustrate the results of 
the proposed algorithm. 

2 The Proposed Algorithm 

2.1 Numerical Differentiation 

Given a function of voltage signal: 
     )(tv =0                                                              (1) 

At discrete points such as ( it , iv ) and  ( jt , jv ), 
i =0,1,2,…, 1−M , j =0,1,2,…, 1−M , the Taylor series 
expansion is expressed as:  
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where t∆ = it - jt . 
Without consideration of M order and higher order 
derivatives, we have central difference formulas such that: 
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where   M is interpolation number, k =floor( 2/M ). 
floor( A ) rounds the elements of A  to the nearest integers 
less than or equal to A. 
Given ( 0t , 0v ), ( 1t , 1v ),…, ( Mt , Mv )  with regular spaced 
h , we have the following relationship: 

   0t , htt += 01 , htt 202 += , htt 303 += ,…, 
MhttM += 0  

So that equation (3)-(8) become: 
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From equation (9)-(14), the s  order differentiation of 
)(tv can mathematically be concluded as: 
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where s is the differentiation order number for )(tv , 1u , 2u , 

3u ,…, su  is differentiation index. 
For example, the 2nd-order differentiation of )(tv with 
respect to t  has the following formulation: 
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The value of )('' pv at point p is expressed as: 
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where  k =floor( 2/M ). floor( A ) rounds the elements of 
A  to the nearest integers less than or equal to A. 

The 4th-order differentiation of )(tv with respect to t  is 
obtained: 
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With to M =7, the 1st order derivative of )(tv  at point p  
is expressed as follow: 

)(' pv = {[ )3( +pv - )3( −pv ]-9 [ )2( +pv - )2( −pv ] 
+45[ )1( +pv - )1( −pv ]}/60 h                                (19) 

The 2nd order derivative of )(tv  at point p  is expressed as 
follow: 
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In the same form, the 3rd, 4th, 5th and 6th order derivative of 

)(tv  at point p  is written respectively: 
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With to M =15, the 2nd order differentiation of )(tv  at 
point p  is expressed as follow: 
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2.2 Frequency Estimation  

Without loss of generality, a non-sinusoidal signal with 3rd 
-order harmonics is taking into consideration: 

)(nv = 1V )2sin( 1φπ +sft + 2V ))2(2sin( 2φπ +stf  
+ 3V ))2(3sin( 3φπ +stf                                      (26) 



 

The 1st-order differentiation of )(nv  is formulated: 

)(' nv = 1V )2(1 fπ )2sin( 1φπ +sft  
+ 2V )2(2 fπ ))2(2cos( 2φπ +stf  

   + 3V )2(3 fπ ))2(3cos( 3φπ +stf                       (27) 
The 2nd-order differentiation of )(nv  is formulated: 

)('' nv =- 1V 2)]2(1[ fπ )2sin( 1φπ +sft  
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         - 3V 2)]2(3[ fπ ))2(3sin( 3φπ +stf                    (28) 
From equation (27) and (28), we get the odd-order and 
even-order differentiation of )(nv  is expressed 
respectively: 
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where e  is even-order differentiation index, o  is   
odd-order differentiation index. 
So, we get the 4th-order differentiation of )(nv : 
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)(1 nv = 1V )2sin( 1φπ +sft                                          (32) 
From equation (26) and (32), we obtain: 
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From equation (28), we get the 1st-order differentiation of 
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Using Equation (36), the fundamental frequency is 
estimated by: 
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There is greater error using equation (37) for estimating the 
fundamental frequency of non-sinusoidal signals due to the 
magnitude and phase of the voltage signal are not taken into 
consideration in the computation process of frequency 

estimation. In order to compensate this large error in 
computation and to estimate the frequency with high 
accuracy in a wide range of frequency, a coefficient, saying 
η , must be jointed into the right of Equation (37): 

          ef =η
π2
1

)(
)(

1

''
1

nv
nv−

                                          (38) 

where η  is a coefficient depending not only upon the 
magnitude, the frequency and the phase of the sampled 
signal but also upon the sample frequency, sf . At a great 
degree, η  is determined by experiences, which influence 
the estimation accuracy of frequency. 
Making use of equation (38), The estimated value of 
fundamental frequency is obtained at a higher accuracy in at 
most 1 cycle.  

3 Implementation Process 

The algorithm proposed in this paper is based on the 
assumption that the frequency, amplitude and phase angle 
of non-sinusoidal signals are all unknown. However, its the 
fundamental frequency can be estimated at a higher 
accuracy over a very wide range with the proposed 
algorithm. The steps for the implementation of the proposed 
algorithm may be written as follow: 
Step1: Sample the non-sinusoidal signal with a fixed 
sample frequency: 512×50Hz=25600Hz. 
Step2: Basing on central numerical differentiation of 7 
points, compute the 2nd-order to 5th-order differentiation of 
the signal basing equation (16) -(25). 
Step3: calculate the estimated frequency 1ef using equation 
(37). 
Step4: Compute the signal consequences basing on the 
following formulation: 

)(nv  = ∑ +
=

K

k
kckc NkfnTV

1
)/2sin( φπ                                 (39) 

where T =1/ 1ef . 
Calculate the estimated frequency 2ef using equation (37). 
Step5: Compute the signal consequences basing on 
equation (38) with T =1/ 2ef . Calculate the estimated 
frequency 3ef using equation (37).  

3ef  is the measurement value of the fundamental frequency, 
namely ef = 3ef . 

4 Simulation Results 

The tests of numerical simulation for a non-sinusoidal 
signal with 3 order harmonics are carried out in Matlab 
codes. The tested signal is shown as the following equation 
(40). The amplitude of the fundamental harmonic change 
from 1V to 100V, and the phase of the fundamental 
harmonic, the amplitudes and phases of the 2nd and 
3rd-order harmonic are fixed.      

)(tv =20 2 )2sin( 11 φπ +tf  

+0.8 2 )612sin( 2
o+tfπ  

+1.6 2 )122sin( 3
o+tfπ                                    (40) 



 

Basing on the implementation steps, a fixed sample 
frequency: 512×50Hz is used for frequency estimation. The 
results of estimation for fundamental frequency are shown 
in Table I. From the table, it is seen that the fundamental 
frequency is estimated at an accuracy of 0.001% over a 
range varying from 2Hz to 1MHz. Over wide frequency 
range, the relative errors are retained at 0.001% or smaller. 
However, the relative errors and he absolute are all very 
small when the frequency varies from 2Hz to 40kHz while 
the relative errors are small and the absolute errors are large 
when the frequency varies from 40kHz to 1MHz. 
 
 
 

TABLE I   
FREQUENCY MEASURED FROM 2HZ TO 1MHZ 

No. Real-value Measurement value 
1 1000000 999998.43353 
2 982735.758 982738.83195 
3 827657.357 827660.03799 
4 637657.357 637674.00867 
5 592384.274 592398.17806 
6 535989.274 535993.77602 
7 400000.578 400001.44807 
8 348679.578 348680.61951 
9 285372.579 285372.26743 
10 137657.357 137657.11574 
11 118564.387 118564.18878 
12 108357.375 108357.21213 
13 98356.747 98357.16082 
14 86375.356 86375.22484 
15 73745.742 73745.66320 
16 63568.275 63568.18502 
17 56856.356 56856.25765 
18 43576.256 43576.19551 
19 29837.246 29837.23577 
20 12385.356 12385.35507 
21 9356.588 9356.58760   
22 6256.274 6256.27538 
23 3853.578 3853.57179 
24 1358.257 1358.25706 
25 956.246 956.24604 
26 635.746 635.74602 
27 357.472 357.47201 
28 128.583 128.58300 
29 88.563 88.56300 
30 38.385 38.38500 
31 18.385 18.38500 
32 6.856 6.85600 

 

5 Conclusion 

Basing on numerical differentiation and central Lagrange 
interpolation with multi-points, an algorithm is presented 
for the fundamental frequency estimation in this paper. One 
advantage of the proposed algorithm is that the fundamental 
frequency of non-sinusoidal signals with multi-components 
is estimated at a high accuracy of 0.001% over a very wide 
range varying from 2Hz to 1MHz in at most 1 cycle.  
Basing on the proposed algorithm, the parameters of the 
sampled signals such as amplitudes and the phase angles of 
the fundamental harmonic and other harmonic need not to 
be known. At a great degree, the frequency range with a 
higher accuracy is dependent on the sample frequency and 

the coefficients for the computation, which comes from the 
experiences. 
Over wide frequency range, the relative errors are retained 
at 0.001% or smaller. However, the relative errors and he 
absolute are all very small when the frequency varies from 
2Hz to 40kHz while the relative errors are small and the 
absolute errors are large when the frequency varies from 
40kHz to 1MHz.  
Comparing with other algorithms, this algorithm spends 
little time and computation over a wide range at a high 
accuracy duo to the use of numerical differentiation and 
central Lagrange interpolation with multi-points. 
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