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Abstract :

In the context of mobile communications, the aim of several researchers in recent years is the
reduction of Intersymbad interference (1Sl).

Blind equalizers reduce Intersymbol Interference using second-order statistics without the need for
training sequences. Most current methods require channel estimation as afirst step to estimate the equalizer.
However, direct methods bypass channel estimation and equalize it directly.

In this paper, we present two different methods to equalize a SIMO FIR channel in indirect context
using channel estimation and in direct context. The used methods are Zero Forcing (ZF) and Minimum
Mean-Square Error (MMSE). A comparison of the two classes of agorithmsis the goal of this paper.

Performance of the proposed methods are presented via smulations.

Index Terms— Blind channe identification, Blind channe equdization., IS, ZF, MMSE, direct methods,
indirect methods.



1 INTRODUCTION:

Indirect Blind equalization conssts of two
seps. Blind edtimation of the channed impulse
response (dso known as blind identification) and
construction of an equalizer based on the estimated
impulse response. Early methods for blind
identification were based on higher order datistics
of the received signa. An identification method

that uses only second order dtatistics was proposed
to surmount this problem [1].

Indirect Blind equalization condsts of two
seps. Blind edtimation of the channe impulse
response (adlso known as blind identification) and
construction of an equalizer based on the estimated
impul se response However, Direct methods bypass

the channel estimation step and directly estimate a
linear filter that can remove the Intersymbol
interference (191) [2].

In this paper, we present two methods for
finding linear equdizers from the data using two
different agorithms Zero-Forcing (ZF) and
Minimum Mean Square Error (MMSE) developed
in direct and indirect approached3].

This paper is organised as follows. In section
I, we present the model of an oversampled
communication system, in section |Ill, indirect
blind chand equdization dgorithms are
presented and in section IV their direct versions.
Simulation results are shown in section V and, we
conclude our work in section V1

2PROBLEM FORMULATION:

2.1 The system modd!:

The channd is considered Linear and Time
Invariant (LTI) during atime window sufficient to
dlow its estimation. The continuous time received
sgnd is(Fig.1)

y(0) = &, SO)h(t- ek +v(y) ®

where  h(t):The composte channd
gl):Information symbols, T:symbol duraion and
v(t).additive  noise. In discretetime:

+¥
y(n) = & s(Hh(n- IN) +v(n) =x(n) +v(n) (2)

=¥
The Single Input Single Output (SISO)
relationship of (2) accepts an equivaent Single

Input Multiple Output

SIMO) description as given by (Fig.2):
+¥
yi(n) = & sy (- 1) +vi() =x; () +v; () (3
=¥
Where:y; (N) =y(nN +i); h;(n) =h(nN +1i)
X;(n) = x(nN +i) and v;(n) = v(nN +1i)
Fori=0...N-1.
At this stage, we adopt the following
assumptions:
A1) The subchannels h (n) do not have any
common zero to alow the channd identifiability
which will be needed in indirect approach.

A2) The input sequence s(n) is white with unit
variancesZ =1 ,ie Esk)s ()] =d(k- 1)(4)
A3) The additive noise is white with variance S2:

ieE[v(k)v ()] =s Sd(k -1)©®
In each symbol interval, avector

y(n) = [yO(n)---yN—l(n)]T (6)
of length N is received. The channe impulse
response can aso be represented in vector form as

h(n) = [hy(n)..hy. (M]" ()
And the noise as
v(n) =[V0(n)-"VN-1(n)]T (8)

2.2 Fractionally Spaced Equalization (FSE):

In the receiver, ZF or MMSE equalizers
can be used to extract the transmitted symbol.The
i subchannel h(n) is equalized by the filter g(n),
as shown in Fig. 3. The equdizer impulse response
is:

g(n) =[go (M) & (N) . . . Gu1(N)] (9)
where n=0,...,L,, and L4 is the length of the
longest branch of the equalizer
A d-delay equdizer vector of length LgN is

constructed as: gy = [g(0) ... g(Lg-1)] (10
and the symbol estimate is obtained from
é(n - d) =04Yn, Lg 1)

Yotg =Y(MY(M+D).y(n+Lg-]" (12
We a so adopt the following assumptions.
A4) The data length and channel (egqualizer) order
satisfy

P-Lg3 Lg+L,+1 (13
Which is easily met in practice by collecting
sufficient data. [4]



A5) The triplet (N,LgLn) (number of channels,
equalizer order, channd order) must obey [4]
N(L,+D3 L, +L, +1

é ,
ie L, 3L, = - 1 14
g g SN-]. :IH ( )

3INDIRECT BLIND EQUALIZERS

3.1l Indirect Zero Forcing Equalizer:

In the absence of noise, it is obvious to
choose

§(n- d) =s(n)
N-1L,-1

8
a ahig'(m-n=dm-d (15)
i=0 1=0
This type of equalizer is known as Zero Forcing
(ZF)equalizer where d refers to the delay

di [O,L,+L,]
This definition dlows the ZF condition to be
written in matrix form as:H'g} = ey, [2]
Where
€4, = (0..010...0) (16)
—

dzeros

isa(Lgt+ Ly +1)x1 vector, so:

Jg = (H") egu)’ 17)
Where# indicates pseudoinverse.

3.2 Indirect MM SE Equalizer:

The MM SE equalizer minimize the cost function

Juse(Ga) =E(EN) - &n- d))’] (18)

L -1 2
sot :E[& g7 (K)y(n- K- sn)] =0 (19)
k=0
and  g={H HssTHT+s2} *HElsT |
=(HH" +s21) 'H (20)

The ZF equdizer do not perform optimaly
in the presence of noisg3] in comparison with
MMSE equdizer.

4 DIRECT BLIND EQUALIZERS

4.1 Direct Zero Forcing Equalizer:

ZF equalizers are used normally to suppress ISl in
free noise case:

R, =R,, =HR H" (21)
Sincethe input (n) isi.i.d then:

RSS=S§I=I;51):RXX=HHH (22

And R, 'gs=H'e =H'(.]) (23)

Where H(:,1) denotes the first column of H
We can eadily find that the ZF equalizer yidds [3]

ga = (Ru)*HT (1) (24)
4.2 Direct MM SE Equalizer:
From(18),we dbtain:
'\cl)-l La-l
gn)=a ag't)yin-n (25)
i=0 1=0
In matrix form:
Ry, 0g =H'(,d+1) (26)
and HT(d+1) = R 4R HT (1) (27)

Thus g = (R} RLRAHTGD)  (29)

5 SIMULATIONS:

In this paper, we evduaed the
performances of direct and indirect approaches for
channed equaization through smulations. The
channd order is L,=6 and two antennas were used.
Fig 4 depicts the NMSE of the equalizers versus
the SNR which ranges from 15dB to 35dB for a
number of data P=500. Fig 5 depicts the NMSE
versus the number of data P which ranges from
500 to 2500 for SNR=25dB. Fig 6 and 7 depict a
comparison between ZF and MMSE. For dll
smulations, a T=200 Monte Carlo runs was
considered.

We can deduce that direct methods provide better
results than indirect methods for the ZF and
MM SE algorithms.

6 CONCLUSION:

In this paper, we have treated two classes
of chane equdization: Direct and Indirect
approaches. In Indirect agorithms, we have used
Subspace algorithms of [4] to estimate the channd,
we coped then to two different algorithms ZF and
MMSE usudly used in indirect approaches, we
used their direct versions and compare their

3



peformances  through  smulations. From
smulations, Direct methods provide good results
than the indirect ones, and the MMSE provide
better results than ZF in the Direct and Indirect
dgorithms.
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Fg. 1. Fractionndy sampled communication system.
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Fig.2 . Single Input Multi Output (SIMO) channel modd.
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Fig.4. Comparison between 1ZF and DZF (4-8)- IMMSE and DMMSE (4-b)
NMSE versus SNR (for P=500 and T=200 Monte Carlo runs).
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Fig.5. Comparison between IZF and DZF (5-a)- IMMSE and DMMSE (5-b)
NM SE versus number of data (for SNR=25dB and T=200 Monte Carlo runs).
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Fig.6. Comparison between IZF and IMMSE (6-a)- DZF and DMMSE (6-b)
NMSE versus SNR (for P=500 and T=200 Monte Carlo runs).
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Fig.7. Comparison between 1ZF and IMMSE (7-a)- DZF and DMMSE (7-b)
NM SE versus number of data (for SNR=25dB and T=200 Monte Carlo runs).



