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Abstract: - RLC active circuit model with voltage-controlled voltage-source (VCVS) and current-controlled 
current-source (CCCS) for the second-order autonomous dynamical system realization is proposed. Its circuit 
parameters are directly related to the state model parameters that lead to simple design formulas. 
 
Key-Words: - Dynamical systems, State models, Active equivalent circuits, Piecewise-linear controlled sources 
 
 
1   Introduction 

Autonomous piecewise-linear (PWL) systems of 
Class C can be described by the general state matrix 
form [3], [4] 

)( xwbxAx Th+=&  ,                   (1) 

where the normalized elementary PWL feedback 
function (Fig. 1) 
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contains the regions D0 and D+1 (D-1). The dynamical 
behavior of the system is determined by two 
characteristic polynomials associated to these 
individual regions [3]. All systems of the Class C 
having the same characteristic polynomials are 
qualitatively equivalent and they are related by linear 
topological conjugacy [4]. Typical systems of this 
class are the Chua’s model, both its canonical forms 
[3], and also recently derived optimized state model 
having the minimum sum of relative eigenvalue 
sensitivity squares with respect to the change of the 
individual state matrix parameters [8]. Just this low-
sensitivity model is very useful as a prototype 
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Fig. 1. Simple memoryless PWL feedback function. 

for practical chaotic system realization in the form of 
electronic circuit. It provides the possibility to utilize 
the block-decomposed form of the state matrix so 
that the design procedure can be started from the 
optimized second-order system and then extended by 
a simple way to the optimized higher-order case [8]. 

State model can be used as a mathematical tool 
for the numerical simulation of dynamical system 
behavior as well as a prototype for the electronic 
circuit realizat-ion using available circuit technique. 
From the complete state equations can directly be 
derived either the general integra-tor-based circuit 
block-diagram (it is typical for both canonical forms) 
or the corresponding RLC active circuit (it is typical 
for  Chua’s  oscillator).  In both cases only a single 
PWL network element is used utilizing various types 
of active electronic blocks operating in both the 
voltage and current modes (op-amps, current 
conveyors, transimpedance amplifiers, etc.). 

For the optimized low-sensitivity model first the 
corresponding integrator-based block diagram has 
been derived for both second- and third-order cases 
[8]. The intention of this contribution is to propose 
the corresponding RLC active circuits where, unlike 
the Chua’s model, the circuit parameters have a direct 
relation to the model parameters. 

 
 

2  Optimized Second-order State Models 
with Low Eigenvalue Sensitivities 
The most frequently occurring autonomous 

dynamical systems have their complex conjugate 
eigenvalues in both regions of PWL function (Fig. 1), 
i.e. for the inner region (D0) it is ( )µµµ ′′±′= j,21  and 



for the outer regions (D-1, D+1) it is ( )ννν ′′±′= j,21 . 
Then the associated characteristic polynomials are 
defined as follows 

(D0):  =−−= ))(((s) 21 µµ ssP )(sdet 0A1−      (3a) 
(D-1, D+1): =−−= ))(()( 21 νν sssQ )(sdet A1−    (3b) 

where relation between the state matrices can be 
expressed as [3]                TwbAA +=0  ,            (4) 
and 1  is the unity matrix. The optimized low-
sensitivity state model (1) have been chosen in the 
simplified and decomposed complex form [9], where 
the corresponding state matrices are 
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and the optimizing coefficient K  is given as the real 
root of the quadratic equation 
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where the auxiliary parameter  M  is 
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para-meters can be chosen, e.g.  1=1w , while the 
others are obtained as [8] 
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Then  the  complete  state  equations of the optimized 
__________________________________________________________ 

second-order PWL autonomous system can be then 
written as 

[ ] )()( 22 ' ywxhy"ywxhx'x ++ +−−= µνν& ,   (7) 
)( 22 ywxhby'x"y +++= νν&  ,                           (8) 

where the parameters 2b  and 2w  are given by the 
formulas (6b,c). The corresponding integrator-based 
circuit block diagram, suitable also as the prototype 
for the practical realization, is shown in [8]. All the 
sensitivity functions are obtained in the complex 
form and the same functions, expressed separately 
for the eigenvalues real and imaginary parts, can 
easily be derived. Then the minimum sums of 
relative eigenvalue sensitivity squares with respect to 
the change of the individual state matrix parameters 
can be expressed for  both the real and imaginary 
parts generally as 

2
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where in outer regions (D-1, D+1) '' νλ = , "" νλ =  
and in inner region (D0) '' µλ = , "" µλ =  [9]. 

 
 

3  Equivalent active RLC circuits with 
piecewise-linear controlled sources 

3.1  Equivalent circuit utilizing VCVS 
Consider the autonomous RLC circuit introduced 

in Fig. 2 containing voltage-controlled voltage-source  
(VCVS) with PWL transfer characteristic function 

( )2210 iRufu +=  having three segments (Fig. 3) 
expressed as 

( ) ( ) ( )2211022110 iRuhAAiRuAu +−++=     (10) 
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Fig. 2. Second-order autonomous circuit with PWL voltage 
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Choosing state variables the capacitor voltage  u1  and 
the inductor current  i2 two Kirchhoff’s equations of 
this circuit can be written in the basic form 
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and then rewritten to the complete (non-normalized) 
state equation form, i.e. 
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Utilizing reference values of voltage  E  (Fig. 3), 
resistance R0, and capacitance C0 the normalized state 
variables including the time scaling can be given as 
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Then the corresponding normalized capacitance, 
inductance and all resistances are 
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Denoting    ( )00sgn CRk =      the state equations (12) 

can be rewritten into the normalized form 
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Comparing them with general matrix form (1) for the 
second-order system 
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the following equations are obtained  

( )[ ]31111 1 ggAka −−=
α
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α
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and then utilized as independent formulas for design 
of the individual circuit parameters. For the case 
when  α , β  and  k   are chosen as free parameters it 
is summarized in the next design formulas where 
both the general and optimized state model are 
considered.  
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Any other details about realization conditions of the 
individual circuit elements are introduced in [9]. 
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Fig. 3. Transfer PWL characteristic of VCVS. 
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3.2  Equivalent circuit utilizing CCCS 
Consider the autonomous RLC circuit introduced 

in Fig. 4 containing current-controlled current-source  
(CCCS) with PWL transfer characteristic function 

( )2210 uGifi +=  having three segments (Fig. 5) 
expressed as 

( ) ( ) ( )2211022110 uGihBBuGiBi +−++=    (19) 

Choosing state variables the inductor current  i1  and 
the capacitor voltage  u2  two Kirchhoff’s equations of 
this circuit can be written in the basic form 
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and then rewritten to the complete (non-normalized) 
state equation form, i.e. 
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Utilizing reference values of voltage E (in Fig. 5 
I0=E/R0), resistance R0 , and capacitance C0  the 
normalized state variables including the time scaling 
can be established as 
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Then the corresponding normalized inductance, capa-
citance, and all resistances are 
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Denoting ( )00sgn CRk =  the state equations (21) 
can be rewritten into the normalized form 
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Fig. 5. Transfer PWL characteristic of CCCS.
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Fig. 4. Autonomous 2nd order circuit with PWL current source  

R2

R4 

R3 

i1 + G2u2 i0 

t
iL

d
d 1

1

t
uC
d

d 2
2

i1

        B0 
B 
        B1 



Comparing them with general matrix form (1) for the 
second-order system 
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the following equations are obtained  
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and then utilized as independent formulas for design 
of the individual circuit parameters. For the case when  
α , β  and  k   are chosen as free parameters it is 
summarized in the resultant design formulas where 
both the general and optimized state model are 
considered. 
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Any other details about realization conditions of the 
individual circuit elements are introduced in [9]. 
 
 

4  Conclusion 
This contribution deals with the second-order 

nonlinear dynamical systems and their realization 
using active RLC circuit where the active elements the 
VCVS and CCCS with three-segment PWL symmet-
ric transfer characteristic is considered, i.e. suitable 
especially for voltage- and current mode realization. 
Dynamical behavior of such a system is determined 
by two sets of complex conjugate state matrix eigen-
values associated with the corresponding regions. 

The complete and normalized state equations are 
introduced where simple relation between model and 
circuit parameters entails also very simple design 
formulas in the synthesis procedure either in general 
or optimized (low eigenvalue sensitivities) forms. The 
circuits proposed represent one possibility of the 
second-order system realization and can be easily 
extended also for the third-order system utilizing the 
block decomposition of the state matrix. Such higher-
order equivalent circuit can model also chaotic 
behavior of the system. 
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