
A design of the transcoder to convert the VoiceXML documents into the
XHTML+Voice documents

JIEUN KIM, JIEUN PARK, JUNSUK PARK, DONGWON HAN

Computer & Software Technology Lab, Electronics and Telecommunications Research Institute,
Kajung-Dong 161, Yusung-Gu, Daejon, KOREA 305-350

Abstract: - Whereas HTML is commonly used for creating graphical web applications, VoiceXML is used for
voice-enabled web applications. But those applications that contain a big data or interaction a single-modality are
not suited for small and mobile devices. The multimodal markup language like the XHTML plus Voice(X+V) is
used for multimodal applications that are composed of VoiceXML-based voice applications and XHTML-based
visual applications. It can overcome the limitations of current voice browser and mobile devices by the efficiency
of visual display and ease of speech input.
And work to maintain different application documents that are formatted to specific devices on the same web
service is not economic. Therefore effort to reuse exiting application documents is necessary.
In this paper, we propose a new transcoder with an efficient algorithm to convert exiting VoiceXML-based
applications into corresponding multimodal applications. The transcoder consists of the voiceXML parser module
for fetching VoiceXML documents, the VoiceXML-to-X+V converter module for transforming a VoiceXML tree
into a X+V tree on various rules, and the X+V generator module for editing X+V documents about the X+V tree.
As a result, all the people who uses telephone and the X+V Browser can access VoiceXML-based services. A
service provider can reduce cost and time that are in production and maintenance.

Key-Words: - VoiceXML, Multi-modal interaction, XHTML+Voice, transcoder

1 Introduction
The emerging world without wires has fostered a
growing number of small and mobile devices
(everything from personal digital assistants to smart
phones) capable of accessing data and running
applications. Mobile information access and remote
transactions (for example, top news stories, weather,
sports, and stock quotes) are fast commonplace.
However, as devices become smaller, modes of
interaction other than keyboard and stylus are a
necessity. For example, mobile phones have relatively
a small visual display and a cumbersome keypad input.
PDAs have better the visual display, but have the same
input limitations [1, 2].
But the web application that was basically stored in the
HTML (Hypertext Markup Language) format was
originally designed for traditional desktop browsers.
So, the HTML-based application is not suited for
small and mobile devices. For example, to consider
accessing the CNN’s weather page through mobile
devices, it is very difficult to display world maps and
weather forecasts in the mobile device’s small screen.
It is even difficult and time consuming to enter texts

through mobile device’s key pad or stylus [3].
Also the web application that was stored in the
VoiceXML (Voice eXtensible Markup Language) [4]
format was originally designed for interactive voice
browsers, particularly for the telephone. Voice is a
good way that you can input quickly. But you must
remember what kind of item there are, and confirm
whether your speech input is valid or not repeatedly.
As a result, this is inefficient for you using mobile
devices that have a small screen.
In order to solve these problems, we consider the
multimodal web application that was stored in the
X+V (XHTML plus Voice) [5] for mobile devices.
Like VoiceXML, X+V meets the user demand for a
voice-based interaction in small and mobile devices.
Unlike VoiceXML, X+V uses both a voice-based and
a visual-based interaction. For example, in a web
browser on a PDA, you can select items by tapping or
by providing spoken input. Similarly, you can use
voice or stylus to enter information into stylus.
Information can be displayed and spoken by mobile
device [2].
But it is not economic to prepare different application
documents that were formatted to specific devices on

the same web service. Therefore effort to reuse exiting
application document is necessary.
In this paper, we propose a new transcoder with an
efficient algorithm to convert the exiting VoiceXML
-based applications to the corresponding multimodal
applications. Section 2 introduces a conceptual
overview to VoiceXML and X+V. Section 3 illustrates
an architectural view of our transcoder, a converter
algorithm, and an example that demonstrates the
utility of the transcoder.

2 Background
Today, most web application developers use some
type of markup language to code an application's user
interface. The markup language for the user interface
defines how the user can interact with the application.

2.1 What is VoiceXML?
VoiceXML is a markup language for creating
voice-base web applications, and is based on earlier
technologies from Motorola and IBM, and provides a
standard interface between voice and the Internet. It
uses the speech recognition and the touchtone (DTMF
keypad) for input, and the pre-recorded audio and the
text-to-speech synthesis (TTS) for output.
Instead of using a device with a web browser, any
telephone (or cellular phone) can access VoiceXML
applications via a VoiceXML "Interpreter" (also
known as a " VoiceXML Browser") running on a
telephony server.
One popular type of voice-based applications is the
voice portal, a telephone service where callers dial a
phone number to retrieve information such as stock
quotes, sports scores, and weather reports. By
separating application logic (running on a standard
Web server) from the voice dialogs (running on a
telephony server), VoiceXML and the voice-enabled
web allow for a new business model for telephony
applications. Other type of voice-based applications
such as speech-controlled home appliances are starting
to be developed [6].

2.2 What is X+V?
HTML was once the ruling standard for coding the
graphic-based web applications, but in recent years it
has been supplanted by XHTML [7]. Building an
XHTML-based user interface typically involves
laying out graphics, input fields, text prompts, check
boxes, and so on. More sophisticated user interfaces
might also include some type of scripting, such as

JavaScript, to enable input checking and other minor
computation or user-interface tasks. XHTML also
focus on mobile devices such as PDA, wireless cell
phone as well as PC.
X+V (XHTML plus Voice) is a markup language for
developing multimodal applications. X+V uses
XHML for visual interaction, a subset of VoiceXML
(basically the <form> element and everything it
contains) for voice interaction, and XML Events to
correlate the two. And X+V defines some extension
modules that include the <sync> element, the
<cancel> element, the src attribute of the VoiceXML
<prompt> element, and the id attribute of the
VoiceXML <field> element for synchronization
between the XHTML element and the VoiceXML
element.
For example, you can request Internet search
information from a travel site, enter the parameters for
your flight, book your flight and hotel, and even rental
car simply by speaking--which can be a far easier
solution than manually typing your information,
especially on handheld computers or mobile devices
[2, 5].

3 The proposed Transcoder

3.1 Architecture
Our transcoder is to convert a VoiceXML document
format into an X+V document format. But a
VoiceXML document cannot be converted into an
X+V document on sentence by sentence or node by
node basis. So, we proposed appropriate algorithm for
converting. Fig.1 shows components of our transcoder,
and their relationship to each other.

Modifier

Parser
VoiceXML DOM tree

Transformer

Interim VoiceXML DOM tree

XHTML+Voice DOM tree

GeneratorTranscoderTranscoder

ConverterConverter
(runs algorithm)

VoiceXML document

XHTML+Voice document
Fig.1 An architecture of the transcoder

The transcoder consists of:
 The VoiceXML Parser

 The VoiceXML-to-X+V Converter
 The VoiceXML Tree Modifier
 The VoiceXML-to-X+V Tree Transformer

 The X+V Generator

3.1.1 Transcoder Operation
The first thing that the transcoder does is to parse the
VoiceXML document into a DOM (document object
model) tree where each node in the tree is a node in the
original VoiceXML. Then the VoiceXML-to-X+V
converter operates. This phase converts the passed
VoiceXML tree into a new X+V tree consisting of a
XHTML tree and a set of VoiceXML tree. By the final
step, the X+V generator produces an X+V document
as output that corresponds with the X+V tree.
3.1.2 Converter Operation
Since VoiceXML is based on an XML document, the
converter phase is basically a tree translation. The
converter has two phases. The first is the VoiceXML
tree modifier phase and the next is the
VoiceXML-to-X+V tree transformer phase.
In the first phase, the VoiceXML tree is passed to the
modifier as input. Using modifier algorithm, this
phase remodels the VoiceXML tree into an interim
VoiceXML tree.
In the second phase, the interim VoiceXML tree is
passed to the transformer as input. Using transformer
algorithm, this phase produces a new X+V tree
consisting of a XHTML tree and a set of VoiceXML
tree in the interim VoiceXML tree. The transformer
extracts a node of a XHTML tree (for example, an
<label> element) from a node of the VoiceXML tree
(for example, a <prompt> element). And, it changes
the interim VoiceXML tree to a transformed
VoiceXML tree or trees. It links a node of the XHTML
tree to a form of VoiceXML trees using XML Events
and extension event modules.

3.2 Converter Logic
3.2.1 Modifier Algorithm
The modifier algorithm describes how to remodel a
VoiceXML tree into an interim VoiceXML tree.
The modifier traces an original tree from top-level
node to bottom-level node. A VoiceXML tree can
contain one or more form nodes, and a form can
contain various nodes.
A <prompt>, a <block>, a <field>, and a <grammar>
element must belong to each one form. And the
dependency of a variable must be removed or changed.
Though a <menu> element is the same level with a
<form> element, it must belong to one form, too.

3.2.2 Transformer Algorithm
The transcoder algorithm describes how to transform
an interim VoiceXML tree into an X+V tree.
Fig. 6 is a block diagram showing an execution
algorithm of the transformer roughly. Firstly, the
transformer creates a new XHTML tree having
sub-nodes that is composed of a <head> and a <body>
element. Secondly, it appends a <form> element to a
body node. Finally, it executes as following steps until
all nodes in the interim VoiceXML tree are visited.
The prompt node that belongs to the form node is used
to speak the content of a prompt node through the
speech synthesis engine. Therefore the transformer
appends a <p> element shown in a plain text to the
XHTML tree. Both the block node that belongs to the
form node and the prompt node that belongs to the
menu node are equally run, too.
The submit node that belongs to the block node is used
to deliver valuables to the linked application.
Therefore the transformer appends a <input
type="submit"> element shown in a push button to the
XHTML tree. The submit node that belongs to the
filled node is equally run, too.
The prompt node that belongs to the field node is used
to speak a question through the speech synthesis
engine, and to get a reply through the speech
recognition engine. Therefore the transformer appends
a <label> element shown in a plain text to the XHTML
tree, and then appends a <input type="text"> element
shown in an input field to the XHTML tree.
The choice nodes that belong to the menu node are
used to select one among menu’s items. Therefore, the
transformer appends <a> elements shown in hypertext
fields to the XHTML tree.
The one-of nodes that belong to the rule node are used
to select one among grammar’s items. Therefore, the
transformer appends <input type="radio"> elements
shown a bank of radio buttons to the XHTML tree.
In the <subdialog> node, the transformer jumps to the
above block, and then a current-pointer node of a tree
is changed to a top-level node of a subdialog tree.
In all case, the transformer has to define XML event
modules of XHTML to invoke the form of VoiceXML
documents, and extension event modules of X+V to
synchronize both valuables of XHTML and valuables
of VoiceXML. At the same time, some nodes of the
interim VoiceXML tree are deleted or changed
suitably.

3.3 Conversion Example
3.3.1 A basic VoiceXML document

To see how our transcoder works, Fig.2 shows a
simple code of a Voice XML document.
 If this speech dialog gets an input value, it executes
the next file, "info.asp".

<vxml >
 <form id="choice">
 <field name="info">
 <grammar src="choice.grxml"
 type="application/srgs+xml"/>
 <prompt> Choose from sports, weather,
 and news </prompt>
 </field>
 <block>
 <submit next="info.asp"/>
 </block>
 </form>
</vxml>

Fig.2 A code of VoiceXML document, " choice.vxml"
3.3.2 Parser and Modifier phase

form

submit

blockfield

prompt

grammar

vxml

form

blockfield

vxml

form

submit

prompt

grammar

(a) (b)

Fig.3 The VoiceXML tree: (a) an original tree,

 (b) an interim tree
Fig.3-(a) shows a VoiceXML tree about an original
document. The top-level VoiceXML element can
contain dialogs of ether <menu> or <form> elements.
In this case, an original tree contains a form node. And
the form contains a field node composing of a
grammar node and a prompt node, and a block node
including a submit node.
The modifier remodels an original tree into an interim
tree with two forms such as Fig.3-(b) using the
modifier algorithm.
3.3.3 Transformer phase

xhtml

form

input
submitlabel

Input
text

Input
reset

bodyhead

resetsync

form

field

vxml

prompt

grammar

(a) (b)

Fig.4 The X+V tree: (a) an XHTML tree,
(b) a transformed VoiceXML tree

Fig.4 shows a XHTML tree that is created from an
original tree, and a transformed VoiceXML tree that is
modified from an original tree. The field node of
VoiceXML is transformed into the label node and the
<input type="text"> node of XHTML, and is linked to
the form node of XHTML using XML events. The
submit node of VoiceXML is transformed into the
<input type="submit">, and is deleted with the above
nodes at the last.
The sync node of X+V is used to synchronize both the
field node of VoiceXML and the label node of
XHTML. The reset node of X+V and the <input
type="reset"> node of XHTML is used to cancel the
voice-able mode.
3.3.4 Generator phase
Fig. 5 shows a display of X+V browser that executes a
VoiceXML document, "choice.vxml" You can get a
voice prompt as well as visual text.

Fig.5 example execution in X+V Browser

The interaction would be as follow:
-You load the X+V browser in the mobile device and
request "choice.vxml" via URL.
-The request is routed to the application web server.
-A VoiceXML application document (in this case
choice.vxml) is delivered via HTTP at the transcoder.
-The transcoder transform a voiceXML document into
an X+V document.
-The X+V browser interpreters the X+V document.
Our transcoder may be part of X+V Browser or be
located in a network and running, for example, on
another machine, proxy server, on a server of the
content provider (server-side), or distributed on
various machines in the network.
-The speech dialog is activated when you click an
input field.
-The VoiceXML interpreter which belongs to the X+V
browser instructs the speech synthesis engine to
render a content of the prompt as audio. The speech
output is the text, "Choose from sports, weather, and
news"
-Then, it instructs the speech recognition engine to
listen for the words, "sports, weather, or news"
-You have to tell your selection to system as voice.

-If you pushes a submit button, the X+V browser
fetches the file, "info.asp" and the process continues.
4 Conclusions
In general, the exiting transcoders transformed HTML
documents into VoiceXML documents [3, 8] and
HTML documents into XHTML/WML documents for
mobile handhelds devices. Though the multimodal
interaction is necessity as devices become smaller,
those still support a single-modality.
Multimodal applications that are generated by our
transcoder, give you a choice of how they interaction
with system, and reduce the overexertion that can
result from single-modality interactions. And a service
provider can reduce a development time and a
maintenance cost via reuse of a code.
In this paper, we didn’t explain how some elements
convert. The call control elements like a <transfer>
element can be replaced by some system calls or by
outputs of another application. And ECMAscripts that
are supported by VoiceXML can alternate with
ECMA scripts that are support XHTML.

References:
[1] Harsha Srivatsa, Multimodal applications:Another

step in computer/human interaction, Whitepaper
of IBM develoerWorks, 2002.

[2] Les Wilson, X+V is a markup language, not a
Roman math expression, Whitepaper of IBM
developerWorks Whitepaper, 2003.

[3] Narayanan Annamalai, Thesis: An extensible
transcoder for HTML to VoiceXML conversion,
The University of Texas at Dallas, 2002.

[4] Scott McGlashan et al, VoiceXML 2.0, W3C CR
available at: http://www.w3.org /tr/ voicexml20/,
2003

[5] Chirs Cross et al, XHTML+Voice Profile 1.1,
W3C available at: http://www.ibm.com/software/
pervasive /multimodal/x+v/11/spec.htm, 2003.

[6] Kenneth G. Rehor, What is VoiceXML?,
 The VoiceXML Review, 2001.
[7] Altheim, Shane McCarron, XHTML 1.1, W3C

available at: http://www.w3.org/TR/xhtml11/.
[8] Zhiyan Shao et al, Transcoding HTML to

VoiceXML Using Annotation, ICTAI, 2003,
pp.434 -452.

Create a basic xhtml tree

Start

loop

Add P node to xhtml tree
Define Event & Handler

block

PCDATA

form

Add form node to xhtml tree

field

prompt

Add Label node to xhtml tree
Add input node to xhtml tree
Define Event & Handler

submit

Add a node to xhtml tree
Define Event & Handler
Delete node of vxml tree

menu

choice

grammar

Add Input node to xhtml tree
Define Event & Handler
Delete node of vxml tree

one of

rulefilled

subdialog

prompt

Add input node to xhtml tree
Define Event & Handler
Delete node of vxml tree

Fig.6 An execution algorithm of the transform in VoiceXML-to-X+V Converter

