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Abstract:  We use an inductive limit construction to examine the existence of Wada lakes for Hénon

mappings.
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1 Introduction

A continuum isacompact connected set. A contin-
uum is called indecomposableif it is not the union
of two proper subcontinua. A famous example in
planetopol ogy, attributed toamysteriousMr. Wada
by K. Yoneyamain [5], gives three bounded, con-
nected, simply connected, open subsets of R? with a
common boundary that is an indecomposable con-
tinuum.

Imagine an island that is home to three philan-
thropists owning lakes of water, milk, and wine,
respectively. The owner of the lake of water gener-
ously decidesto build a network of canals bringing
water within 100 meters of every spot of the is-
land. Itis clearly possible to do this while keeping
the union of the original water lake and the water
canals connected and simply connected with clo-
sures digjoint from the other lakes.

Next, the owner of lake of milk decidesto bring
milk to within 10 m of every spot on the island,
also keeping the milk locus connected and simply
connected.

Not to be outdone, the owner of the lake of wine
now decides to bring wine to within 1 m of every
spot on the idand. Although canal building is be-
coming more complicated, the wine purveyor, with
proper fortification, accomplishes the task.

Theconstruction continueswith each of thethree
philanthropists, in turn, bringing his or her product
closer to the poor inhabitants of the island. Land
prices soar as land becomes scarcer. Therea estate
market collapses.

Inthelimit, the construction achievesthedesired
result: each of the lakes, being an increasing union
of connected, ssimply connected open sets, isacon-
nected, simply connected set, and each point of the
boundary of oneisin the boundary of the ather two.

Wewish to show that, under appropriate circum-
stances, the basins of attraction of attracting cycles
form Wada lakes for Henon mappingsin R?. Asit
turns out, the “strategy” of these basins is remark-
ably similar to that of the philanthropists above.

2 Hénon Mappings

Let us consider the Hénon family
Hap : C? > C?
defined by

s [2] - [P0

wherea € C — {0}, p is a polynomia of degree
d>2andx,y e C. Hy pisinvertible since

1. X y
Hpa [y] = [(p(y) —x)/a]

For any natural number, let f°" and f°~" denote
the n-fold composites of f and f ~1, respectively.

Given apolynomial p(z), thefollowing sets are
central in the study of the dynamics of p:

o= 2 m oo s oo

and its boundary J, = 9K, the Juliaset of p.



In [3], the sets studied for a Hénon mapping H
aredefined inimitation of theone-dimensional case:

() G+~

Up = C? — Kg, Ji = 0Ky,
K=K, NnK_, J=J,NnJ.
K and J are compact invariant setsunder H.

3 Inductive Limits
If f: X — X isamapping from a spaceto itself,
then the inductive limit

Xt = lim(X, f)

is the quotient (X x N)/ ~, where ~ is generated
by setting (x, n) ~ (f(x), n + 1).

Fig. 1

Inductive limits are pathological objectsin gen-
eral, and will be Hausdorff only when f has some
nice properties. When f isopen and injective, the
inductive limit is an increasing union of subsets
homeomorphic to X, hence locally as nice as X.

The inductive limit comes with a map to itself:
f 1 X; — X; induced by

f:x,n) > (f(X),n) ~x,n—1).

This mapping is obviously bijective, as an inverse
isinduced by (x, n) — (x,n+ 1).

Let p beahyperbolic polynomial; then p hasno
critical pointsinits uliaset J,. Let D C C bea
disk of radius R sufficiently large so that J, C D.
Consider the mapping

fpor: Jpx D — JyxC

G
p,ot.R Z §+a% )

which iswell defined since p'(¢) # O.

given by

Proposition 1. For sufficiently small |«| # 0, the
mapping fp . r iSOpen and injective with

Proof. Clearly if |« issufficiently small, theimage
liesin J, x D. Moreover, if there are no critical
pointsin Jp, then there exists e > 0 such that when
1,82 € Jp With &1 # & and p(¢1) = p(&2), then
|¢1 — &o| > e. If « ischosen such that

eR

O<lo| < ———,
inf |p'(5)l

tedp

then f, o risclearly injective. Themappingisopen
because it isalocal homeomorphism. O

In generd, if ¥ : X — Y isahomeomorphism
conjugating f : X - Xandg:Y — Y, theny
induces a homeomorphism ¢ : X; — Yg conju-
gating f : Xf - Xst0g: Yy — Y.

Proposition 2. For all a1, ay sufficiently small and

all Ry and R, sufficiently large, there is a homeo-
mor phism

Y Jp x Dr, — Jp x Dg,
conjugating fpe, r, 10 fpa, R,

This proposition shows that theindicesae and R
may be dropped. Thus when p is hyperbolic and
|| is sufficiently small and R is sufficiently large,
we may set

Cp = Cpaur=limJp x D, fpur).
and

b = vp)a’R (vjp — (ép
The space C,, is quite difficult to understand.
Theonly case where it is anything familiar iswhen

Jp isaJordan curve; in that case C,, is homeomor-
phic to the complement of asolenoid in a 3-sphere.

When pisareal hyperbolic polynomial, thereal
part Rp is often the common separator of Wada
lakes. Thisillustratessome of the unavoidablecom-
plexity.

4 Dense Polynomials
A densepolynomial, p, satisfiesthefollowing prop-
erties:

(1) pisareal hyperbolic polynomial,



(2) the Juliaset of p isconnected,

(3) all the attracting cyclesof p arereal, and

(4) for each such fixed point x, itsreal domain
of attraction 2, N R isdensein J, N R.

There are lots of dense polynomials. The fol-
lowing lemma describes some of them in degree
2.

Lemma 1. Let p be a real quadratic polynomial
with an attracting cycle of period k, with k an odd
prime. Thenthek basinsU; =0, ..., Ux_; of the
attracting fixed points of p°k in R are all densein
JpNR.

Proof. Denoteby |y thelargest boundedinterval in-
variant under the polynomial; it is bounded by the
“external” fixed point and its inverse image. With-
out lossof generality wemay assumethat thecritical
point is periodic of period k; let

Co, C1, ..., Ck-1,C = Cp

be the critical orbit; all the interesting dynamics
occursintheinterval | = [cy, ¢;] C lo.

The polynomia p aso has an “internal” fixed
pointa € [Co, c1]. If J C | isany interval contain-
ing «, then Up°"(J) = |. The dternative is that
Up"(J) = Jpisaninterva in[cy, ¢1] bounded by
acycleof period 2, and there are no such cyclesin
[Co, €1] (here we are using that p is a polynomial,
not just aunimodal map). It follows from this that
each of the basins U; accumulates at «.

Thus to prove the lemma, it is enough to show
that thereal inverseimages of « aredenseintherea
Juliaset J, NR. Let usdenoteby Vo, ..., Vk_1 the
immediate domains of attraction in R. It is known
that if k isan odd prime (or more generaly simply
odd) the V; have digoint closures; let

s Tk—1}

be the bounded components of | — UV,.

T =Ty, ..

Sublemma. Ifthereisaninverseimageof « ineach
Tj, then p isa dense polynomial.

Proof of Sublemma. The Juliasetis

k=1 oo

BHnR=1lo—JJp "W).

i=0n=0

If each component of

k=1 M

Xu=1lo—JUJp "W
i=0n=0

contains an inverse image of «, then these inverse
images will accumulate on all of J, N R. But if
each component of Xy, contains an inverse image
of «, then this is also true of each component of
Xmi1, Since p maps each component of Xy, to
a component of Xy. Thusit is enough to start the
induction, whichisthe hypothesisof the sublemma.

[ Sublemma

Thereisarepelling cycle Z of length k such that
al endpointsof intervals T € T areeitherin Z orin
itsinverse images. Let us denote T’ those intervals
for which at least one end-point is periodic, and T”
the others. Moreover set

A=JJp"M.

TeJT’ n=0

Now there are two possibilities:

(@ If « € A, thereisan inverseimage of « in
some T’ € 7. But then there must be an inverse
image of o inevery T € 7, since each endpoint
of T will eventually land on every point of Z, in
particular on an end-point of T’; that iterate of T
will cover T’. Then by the Sublemma, p is dense.

(b) If « ¢ A, then A is disconnected, and p
permutes the components of A circularly, with pe-
riod k" with 1 < k' < k. This is because some
interval T € 77 must have both endpointsin Z, as
thereisonemore point in Z than there areintervals
in J. That interval must return to itself in fewer
that k moves. Moreover k' dividesk, since the map
Z — mo(A) isequivariant, i.e., the following dia
gram commutes:

This cannot happen if k is prime. 0 (Lemmal)
Fig. 2, for the polynomial

% —1.785866. . .,



with a superattractive cycle of length 9, should il-
lustrate what is going on.
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Fig. 2

For thispolynomial, thecritical pointisperiodic
of period 9. We have used heavy lines to indicate
theimmediate basin, and the line segments pointing
down form the repelling cycle Z = {z,, ..., zg}.
The8intervalsforming T break upinto 6in J’, and
twoinJ”. Theforward imagesof theintervalsin J”
form the set A which consists of 3 intervals which
are permuted circularly. The point @ isnot in A,
and this polynomial is not dense.

Remark. Theproof aboveshowsthat if ahyperbolic
polynomial is not dense, then it is renormalizable
in an appropriate sense.

5 Constructing Wada L akes

We will now construct Wada lakes for Hénon map-
pings that are “small perturbations’ of dense poly-
nomials.

Theorem 1. If p isa dense polynomial and if |a|
is sufficiently small, then the Henon mapping Ha
has attractive cycles close to those of p, and the
boundaries of all the components of the basins co-
incide.

Remark. The proof of Theorem 1 dependson Lem-
ma6.3, Proposition 6.1, and Theorem 7.7 of [4]. Let
us list these for reference, renaming them Lemma
A, Proposition B, and Theorem C.

WS is the stable manifold of J, the Julia set of
Ha, p.
LemmaA. Thereisa unique projection
T WS> Jp
such that the diagram

WS Hap WS

commutes, and thefibersof = are stable disks of the
crossed mappings.

For each ¢ € Jp, let L, betheinductive limit of

fp fo fp
{t}x D < (p()}x D = {(pZ()}xD = ...,

an increasing union of discs.

Proposition B. Each L, isa Riemann surfaceiso-

morphic to C, and is dense in C,,. The foliation is
compatible with the dynamics in the sense that

P(L:) = Lpe)-

Theorem C. If |a| is sufficiently small, then Ha,
has an attractive fixed point z(a) corresponding
to z, and the accessible boundary of its basin is
D ((39)).

Remark. General theorems of Bedford and Smillie
[BS3], and independently by Sibony and Fornaess
[FS], assert that for any saddle point of a Hénon
mapping (and many other mappings besides), the
stable manifold is dense in J,. We will use an
analogous statement, in the much more restricted
class of mappings to which LemmaA applies. But
Theorem 1 does not immediately follow from this
density argument. For instance, the mapping

[x] [x2—1.05—.38y]
H
y X

has an attractive cycle of period 3 (as well as an
attractive fixed point), and the basin of thiscycleis
bounded by the stable manifold of acycle of period
3 which is a saddle. Of course, in C?, each path
component of this stable manifold is densein J,,
and in particular each path component accumul ates
onto the others. But not in R2: in the real, each of
these path components accumul ates exactly on the
stable manifold of the saddle fixed point.

Proof of Theorem1. Theproof of LemmaA isvalid
over thereals. Thusfor |a| sufficiently small, @, :

Rp — J,; N R? is a homeomorphism, where the
space



isobtained by the sameinductive limit construction
asinthe complex. Fig. 3, Fig. 4, Fig. 5, and Fig.
6 illustrate this construction.

Moreover, Theorem Cisalsovalidover thereals;
if x isafixed point of p°k withimmediate basin ,
the accessible boundary of each basinis

@E@NR)Y = lim@Q x 1, f.4).

But 2 "R isaninterval, bounded by arepelling
fixed point £ of p°k and one of its inverse images
&’. Assuch, theinductive limit aboveisareal line,
which maps by @, to the the stable manifold of
the fixed point £ (a) of H, p«. Thus we understand
exactly what the accessible boundary of each basin
is, and what itsinverseimageby @ is. Sofar, none
of thisrequired that p be dense.

If p is dense, then every point of J, N R can
be approximated by inverse images &, € p~"™(&);
the curves ;' (£n) are then part of (3(Q2 N R)), by
the argument of Proposition B. Thus (3(22 N R))
is dense in (J, x |) x {0}, the first term in the
inductive limit defining Rp, and by the argument of
Proposition B, this shows it is dense in all of Rp.
Thusthe accessible boundary of each basinisdense
in J; N R?, so they do have common boundary.

]

Thefollowing picturescarry out the construction

of Rp for p area quadratic polynomial with an
attractive cycle of period 3. It is of course easy to
imaginethefirst step of theconstruction (J,NR) x I,
which is a product of a Cantor set by an interval.

Fig. 3

Fig. 3showstheset (J, NR) x I, thefirst step
in the construction.

Cy

How should we imagine the inclusion
((JpNR) x 1) x {0} = ((JpNR) x 1) x {1}?

Note f, maps the two intervals through the end-
points of the immediate basin of ¢y to two digoint
subintervals in the interval through the right end-
point of the immediate basin of c;. Note also that

the p'(¢) in the denominator in the definition of f,
isessential for the orientationsto be asindicated by
thearrowsin Fig. 4.

Thusin ((Jo NR) x 1) x {1} there must be an
arc joining the two intervals above, so that these
intervals and the arc will map to the interval where
the arrows end. Similarly one sees that there must
be an arc joining every pair of symmetric intervals.

LT \}

Gy

Fig. 4

Fig. 4 illustrates this construction. How should
we continue the construction? In ((Jp NR) x | ) X
{1} we need inverse images of the arcs added in the
previous step; Fig. 5 illustrates how thisis to be
done. Note that thistime some of these arcs do not
joinintervalstointervals. Thisis because pointsto
the left of ¢, have no inverse images in the Cantor
set Jy NR.

Fig. 5

Making these pictures is a bit addictive, and if
one gets carried away, the result may look like Fig.
6.
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