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Abstract

This paper studies the pricing of European-style options using mixed lognormal distributions.
We advocate such distributions as a computationally efficient way to calculate prices of such
options: we derive higher truncated moments in analytic form, explain how to use them
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follows either a Black-Scholes model with jumps or one with stochastic volatility.
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1 Introduction

One of the intrinsic advantages of the Black-Scholes setup is that pricing formulas for many

derivatives can be expressed in closed-form; thereby prices of large portfolios can be calcu-

lated and intrinisic parameters can be extracted in efficient ways. More recent models of

securities’ dynamics have much better statistical porperties 1 but lack the above-mentioned

computational properties. This paper argues that mixed lognormal distributions (henceforth

MLD) provide approximations that exhibit both better statistical properties 2 and retain

the analytic tractability of the Black-Scholes setup.

Our argument rests on two contributions: in a first contribution this paper calculates trun-

cated moments of MLD in closed-form and explains how this is used to approximate deriva-

tives’ payoffs and resulting prices. Truncated moments play an important role in the cal-

culation of option prices, e.g. the European call and put option pricing formula can be

decomposed into a sum of truncated moments of order zero and 1. Most option payoff

functions of the literature only have a finite number of discontinuties; we discuss how a

Taylor-series approximation over sub-intervals can yield approximations up to any oder of

accuracy. This requires calculation of trunated moments up to third order, which the paper

derives in closed-form. This provides the basis to calculate option prices efficiently for mixed

lognormal distributions.

The second contribution is that we construct sequences of MLD that approximate the Black-

Scholes setup and models of stochastic volatility 3 . Stochastic volatility and Black-Scholes

with jumps are the two extensions of the Black-Scholes theory that are used most often in the

literature. They provide a rich basis to describe the dynamics of the underlying securities.

To provide MLD approximations of the Black-Scholes model with jumps we assume that

over each period at most one jump occurs; this describes a sequence of distribution of stock

1 For a recent discussion, see, e.g. Bates (2000) and Eraker, Johannes, and Polson (2003).
2 It is a well documented fact that asset price distributions are skewed and exhibit kurtosis in
excess compared to the lognormal. Mixed lognormal distributions can be used to construct dis-
tributions with skewness and excess kurtosis relative to the lognormal. For example, a mixture of
two lognormals has five degress of freedom which allow matching the empirical mean, variance,
skewness and kurtosis.
3 This paper ignores the important question what determines in incomplete markets the pricing
measure, we refer to the literature for details on that.
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price at maturity and we prove that this is a sequence of MLD and that it converges to

the continuous-time distribution at maturity; we use this to prove the convergence of prices

to the continuous-time solution. Tree based approximations for stochastic volatility models

have been constructed by Hilliard and Schwartz (1996) and Leisen (2000) 4 ; we construct

mixing lognormal distributions that are driven by a binomial path approximation for the

volatility process 5 .

To our knowledge, at present, MLD have not been used to provide an efficient way to

calculate derivatives’ prices. Previously, the literature studied them only marginaly and only

to extract parameters of the underlying security price process or marginal distribution from

traded options. Gemmill and Saflekos (2000) and Melick and Thomas (1997) used mixed

lognormal distributions to calibrate the underlying stock price distribution such that prices

of the stock and traded options on it are best matched. Brigo and Mercurio (2000) calibrate

a mixture of geometric Brownian motions to traded option prices. Our technique could be

adapted to these purposes and used to provide efficient model based approximations of

marginal distributions. In this paper we refrain from doing so since our focus is on efficient

calculation of prices.

The remainder of the paper is organized as follows: the following section introduces MLD,

discuss option pricing using such distributions and introduces the concept of weak conver-

gence of MLD and its implications for price convergence. The third section looks at the

Black-Scholes model with jumps; it discuss convergence in distribution of random variables

as the concept to ensure that prices calculated through MLD approximations converge to the

continuous-time counterpart, construct sequences of MLD with that property and discuss

efficiency of the numerical schemes. The fourth section parallels that of the third one looking

at the Black-Scholes model with stochastic volatility. The fifth section concludes the paper.

4 Ritchken and Trevor (1999), and Duan and Simonato (2000) provides approximations for GARCH
models.
5 The binomial approximation for the volatility process replicates the construction by Nelson and
Ramaswamy (1990)
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2 Mixed Lognormal Distributions

2.1 Notation

On a probability space (Ω,F , Q) we adopt:

Definition 1 A mixed lognormal distribution (henceforth MLD) with ((µ1, σ1, γ1), . . . ,

(µM , σM , γM)) is a random variable A with

A
d
= A0

M∑
i=0

1C=iXi, Xi
d
= exp (µi + σiYi) ,

where Yi is a standard normal distributed random variable under Q, i.e. a normal distributed

random variable with mean 0 and variance 1, Yi
d
= N (0, 1), A0, µi ∈ IR, σi > 0, γi ≥ 0

(i = 0, . . . ,M),
∑M

i=0 γi = 1 and C is a random variable on {0, 1, . . . , M} with Q[C = i] = γi.

We denote by
d
= equality in distribution of random variables and by EQ[·] the expectation

operator with respect to Q. In the remainder of this section we look at the MLD of definition

1. For future reference we denote for i = 1, . . . ,M , j = 0, 1, 2, 3 and K ≥ 0

νij(K) = EQ[Xj
i · 1Xi≥K ], νAj(K) = EQ[Aj · 1A≥K ].

Here νij(K) is the function that describes the j-th moment of Xi truncated at K and νAj(K)

is the function that describes j-th moment of the MLD A. As usual we assume that any

number taken to the power 0 is equal to 1, i.e. x0 = 1 for all x ∈ IR so that νi0(K) and

νA0(K) describe the upper probability distribution. Note that the random variable A can

not become negative and so we use the value at K = 0 in these functions to describe the

non-truncated moments. We have

νAj(K) = EQ[E[Aj · 1A≥K |C]] =
M∑
i=1

γiEQ[Aj · 1A≥K |C = i] = Aj
0

M∑
i=1

γi · νij(K). (1)

According to the appendix we have

EQ[Xi] = A0 exp
(
µi +

1

2
σ2

i

)
, EQ[X2

i ] = A2
0 exp

(
2µi + 2σ2

i

)
, (2)

EQ[X2
i ] = A3

0 exp
(
3µi +

9

2
σ2

i

)
, EQ[X4

i ] = A4
0 exp(4µi + 8σ2

i ), (3)
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and

νi0(K) = Φn(di2), νi1(K) = exp
(
µi +

1

2
σ2

i

)
· Φn(di1), (4)

νi2(K) = exp(2µi + 2σ2
i ) · Φn(di3), νi3(K) = exp

(
3µi +

9

2
σ2

i

)
· Φn(di4) (5)

where for i = 1, . . . , N the parameters 6

di1 =
ln(A0/K) + µi + σ2

i

σi

, di2 = di1 − σi, di3 = di1 + σi, di4 = di1 + 2σi,

and Φn(·) denotes the standard normal cumulative distribution function.

2.2 Using MLD to approximate derivatives prices

Throughout this paper we are interested in pricing European-style options with maturity

date T > 0. We therefore need to evaluate the distributions from the stock at that date and

look at those MLD which can be used to price derivatives as discounted expected payoffs,

i.e. for a derivative with payoff f(A) at time T we calculate its price as

1

BT

EQ[f(A)], (6)

where 1/BT denotes the discount factor 7 between 0 and T . Here the probability measure Q

is the so-called the risk-neutral pricing measure; it will be discussed in the following sections

in more detail.

Equation (6) can be calculated easily for many derivatives in closed-form. Our main example

of interest here is the standard call option, e.g. the payoff f(A) = (A−K)+ of a call option

with strike K; it has the price

6 The parameters di1(K), di2(K) correspond to those used in the Black-Scholes pricing formula.
The connection will be further explored below.
7 In the following sections the short rate will be assumed to be constant over time and then
BT = B0 exp(rT ). Our setup could be extended to stochastic interest rate models using the change
of measure technique derives similar representations, see, e.g. Bjork (1999).
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1

BT

EQ[(A − K)+] =
1

BT

(EQ[A · 1A≥K ] − KEQ[1A≥K ]) (7)

=
1

BT

(νA1(K) − K · νA0(K)) (8)

=
1

BT

N∑
i=1

γi · (A0νi1(K) − K · νi0(K)) (9)

=
1

BT

N∑
i=1

γi · exp

(
µi +

σ2
i

2

)
· BS(A0, K, µi, σi), (10)

where we define

BS(A0, K, µi, σi) = A0Φn(di1(K)) − K · exp

(
−µi − σ2

i

2

)
· Φn(di2(K)), (11)

and di1(K), di2(K) are as above and Φn(·) denotes the standard normal distribution function.

We refer to the formula in equation (11) later as the Black-Scholes (call option) formula.

This is a slight abuse of notation since we have defined µi, σi to contain the maturity T ,

whereas usually the Black-Scholes keeps these parameters separate: note that in the Black-

Scholes setup the stock price is ST = S0 exp((r − σ2/2)T + σWQ
T ), where WQ is a standard

Brownian motion under Q; the bond is BT = B0 exp(rT ) and then the price of the option

with maturity T is given by

BS

(
S0, K,

(
r − σ2

2

)
T, σ

√
T

)

= S0Φn


 ln(S0/K) +

(
r − σ2

2

)
T

σ
√

T


− K · exp (−rT ) · Φn


 ln(S0/K) +

(
r + σ2

2

)
T

σ
√

T


 .

Many derivatives’ payoff functions are piecewise linear; we can then proceed similarly, e.g

for a put option and others that are subject to truncation. When the function f is not

piecewise linear but it is differentiable we can perform a Taylor-series expansion f(a) =

f(a0) + f ′(a0)(a − a0) + f ′′(a0)(a − a0)
2 + f ′′′(a0)(a − a0)

3 + . . .. Provided we can exchange

integration and infinite summation the price of derivative f is approximatively

1

BT

·
(
f(a0) + f ′(a0) (νA1(0) − a0) + f ′′(a0)(νA2(0) − a0)

2 + f ′′′(a0)(νA3(0) − a0)
3 + . . .

)

Here we stopped our approximation somewhat artifically at the cubic term, but this could

of course be extended easily to achieve higher accuracy.

If the payoff function f is not differentiable then in practice it will be piecewise differentiable.
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We can then use the truncation method described above together with the Taylor series

expansion method to derive closed-form approximations up to the cubic term using equations

(1, 4, 5).

2.3 Convergence of MLD

In the following sections we construct approximations of the marginal distribution ST (of the

stock price at time T ) using sequences of MLD A(n). We assume each A(n) is characterized

using C(n), X
(n)
i (n = 1, 2, . . . ; i = 1, . . . , imax < ∞). We are then interested in using these to

calculate derivatives’ prices.

To apply general mathematical theorems we need to translate this into the right conver-

gence concept. If Q represents the pricing measure and A the distribution of stock prices

we wish to approximate, then we calculate the “true” price as B0 · EQ[f(A)]; for each re-

finement n we calculate similarly B0 ·EQ[f(A(n)]. We are here interested in the convergence

EQ[f(A(n))]
n−→ EQ[f(A)] for any European-style derivative payoff function f . The defini-

tion of the mathematical concept of convergence in distribution A(n) d
=⇒ A is to require

this to hold for all bounded payoff functionals F . In the following sections we adopt this

as a consistency requirement 8 . Note that this requires A(n) to be (approximations of) risk-

neutral distributions but they do not correspond to risk-neutral distributions nor do the

numbers B0 ·EQ[f(A(n)] correspond to prices themselves. They are to be interpreted merely

as approximations of the prices of driven by A under Q.

3 Mixed Lognormal Distributions as an Approximation to Black-Scholes with
Jumps

We assume a market in which a stock and a bond are traded. The interest rate r is assumed

to be constant over time; without loss of generality we normalize the price of today’s (date 0)

bond to 1 so that Bt = exp{rt}. We fix a probability space (Ω,F , P ); P is called the objective

8 The “boundedness” condition excludes some payoffs, e.g. call options. It excludes payoffs like call
options. However, there are tricks to get around this, e.g. using put–call parity and the fact that
the put option is bounded.
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probability measure and describes the actual distribution the econometrician would observe.

It is to be distinguished from the so-called risk-neutral probability measure Q we introduce

later under which pricing will occur.

3.1 The Continuous-Time Dynamics

We introduce here the model of Merton (1976) which is an extension of the Black-Scholes

setup to jumps. Although there are many other ways to introduce jumps this has become

the most frequently used one and for that reason it will be studied here. We assume that

the stock price dynamics is under P

St = S0 · exp

{(
µ − σ2

2

)
t + σWt

}
·

Nt∏
i=1

Ui. (12)

where W is a standard Wiener process and µ ∈ R, σ > 0. (Nt)t is a Poisson process with con-

stant parameter λ > 0, (Ui)i a sequence of lognormal random variables, Ui
d
= exp (α + βYi),

where Yi
d
= N (0, 1). The processes N,W and the random variables Ui (respectively Yi),

i = 1, 2, . . . are assumed to be mutually independent of the each other.

To illustrate the dynamics of stock prices let us define the process (Gt)t with Gt = S0 ·
exp

{(
µ − σ2

2

)
t + σWt

}
. It describes the first part in equation (12), has stationary, Gaus-

sian returns and is the continuous process known as geometric Brownian motion. Originally

suggested by Samuelson (1965) and later used by Black and Scholes (1973) in their seminal

contribution it has become one of the standard financial models for derivatives pricing. S

evolves according to G until the next jump time τ of the Poisson process at which N changes

from, say, i to i + 1. We then observe a per-cent change Ui − 1, i.e., the stock changes value

from Sτ− before the jump to Sτ− · Ui. Therefore, the two parts in equation (12) have the

following two properties: (Gt)t models the “typical” evolution of the stock under the “nor-

mal” arrival of information, whereas
∏Nt

i=1 Ui models jumps in the stock prices, due to some

rare strong information shock. Since the Poisson process is “memoryless,” the expected time

until the next shock occurs is equal to 1/λ, independent of current time.

The Fundamental Theorem of Asset Pricing (Harrison and Kreps (1979), Harrison and Pliska

(1981)) implies that there are no arbitrage opportunities if and only if a so-called equivalent
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martingale measure (henceforth EMM ) Q exists, i.e. a probability measure Q that is equiva-

lent to Q and under which discounted price processes of all traded securities are martingales.

If the derivative with payoff f(ST ) is traded in addition to the stock then this means that

price processes for the stock St and for the derivative Dt are under Q

St = BtEQ

[
ST

BT

∣∣∣∣Ft

]
, Dt = BtEQ

[
f(ST )

BT

∣∣∣∣∣Ft

]
, (13)

where Ft = σ(Su|0 ≤ u|leqt) describes the σ-algebra generated by S. We refer to this as the

risk-neutral technique and to Q as the pricing measure. This setup represents an incomplete

market, i.e., not every contingent claim on the stock can be hedged (see Duffie (1992)). In

the language of EMM this means that under the assumption of absence of arbitrage oppor-

tunities there is a multiplicity of EMM, i.e. there is multiplicity of probability measure Q,

equivalent to P , under which (St/Bt)t is a martingale. From a purely theoretical perspective

the probability measures P can be changed separately on three components:

(1) the Wiener process part: Girsanov’s theorem tells us how to change the mean (drift)

and that changes of variance (volatility) are impossible.

(2) Poisson process part: We refer to Brémaud (1981) how to change the intensity of the

Poisson process.

(3) The sequence of random variables Ui: The distribution of each of these can be changed to

any other distribution whose density function w.r.t. the Lebesgues measure is absolutely

continuous.

Throughout we adopt the following:

Restriction 2 We only study probability measures Q that are equivalent to P with the prop-

erties that

(1) Ui remains a sequence of independent, identically, lognormally distributed random vari-

ables, and

(2) the intensity of the Poisson process remains constant over time.

This restricts us to measure changes that leave us in the same model class we started with

in equation (12). We do not impose any other restrictions on the Poisson process and no

restrictions on the Wiener process part. For any equivalent probability measure Q under
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which the drift of the Wiener process is constant over time 9 we denote by λQ the intensity

of N , ν the drift of the Wiener process, νU the mean of Ui, and by θ, ζ the mean and variance

of Yi, all under the probability measure Q, i.e. 10

λQ =
EQ[Nt]

t
, ν =

EQ[Wt]

t
, νU = EQ[Ui] = exp

(
α + βθ +

(βζ)2

2

)
, θ = EQ[Zi], ζ = varQ(Zi).

Note also that the process WQ, defined by setting WQ
t = Wt − νt, is a standard Wiener

process under Q. According to equation (13) a pricing measure Q is a probability measure

Q equivalent to P with the property that for all 0 ≤ t ≤ T , E[St/S0] = exp(rt). Since

EQ

[
Nt∏
i=1

Ui

]
= exp (λQ · EQ[Ui − 1]t) = exp (λQ · (νU − 1) · t) ,

see, e.g., Protter (1990) or Jacod and Shiryaev (1987), and EQ[Gt/G0] = exp((µ+ νσ)t) any

pricing measure Q is characterized by

r − µ = νσ + λQ(νU − 1) = νσ + λQ

(
exp

(
α + βθ +

(ζβ)2

2

)
− 1

)
. (14)

We therefore have four variables for measure changes: changes in ν, λQ > 0, θ, ζ. Throughout

we will not discuss how to derive the probability measure under which pricing should occur

in the market; there are many excellent papers on that topic in the mathematical finance

literature to which we refer the reader. Here we assume suitable parameters λQ, θ, ζ are

chosen correspondingly; we then know that the dynamics of S is under Q

St = S0 · exp

{(
r − σ2

2
− λQ(νU − 1)

)
t + σ · WQ

t

}
·

Nt∏
i=1

Ui (15)

= S0 · exp
{
µrnt + σ · WQ

t

}
·

Nt∏
i=1

Ui, (16)

where µrn = r − σ2

2
− λQ(νU − 1). (17)

This representation is what we will use in the sequel when discussing approximations and

derive option prices as discounted expectations 1
BT

EQ[f(ST )].

9 A consequence of restriction 2 is that we will only be interested in changes of the Wiener process
part where the drift is constant over time, see equation (14).
10 Note that by the first condition in restriction 2 we are permitted to change volatility and variance
of Zi.
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3.2 Constructing a Sequence of Mixed Lognormal Distributions

For given integer n we discretize the interval [0, T ] into n equidistant intervals Ii = [tni, tn,i+1)

(i = 0, . . . , n − 1) with tni = i∆tn, ∆tn = T
n
. Discretization and convergence are linked: the

appropriate discretization is one where taking the limits we recover the continuous processes.

As discussed before our goal is to construct sequences that converge in disctribution to their

continuous-time counterpart.

We will now construct processes (S
(n)
k , N

(n)
k )k=0,...,n for given n. Under Q we start with se-

quences of standard normal random variables Ỹni0, Ỹni1, Ỹni2, Ỹni3 where n = 1, 2, . . . and

i = 0, 1, 2, . . . , n; elements within and between the sequences are supposed to be indepen-

dent of the others. We calculate under Q that σWT +
∑k

i=1 βYi
d
= N (0, σ2T + iβ2), since

the sequence Ui
d
= exp (α + βYi) is iid with Yi

d
= N (0, 1), WQ

t
d
= N (0, t). A straightforward

approximation can then be obtained based on equation (16) by setting for i = 0, 1, . . . , n

X
(n)
1i = S0 exp

{
µrnT + αi +

√
σ2T + iβ2 · Ỹni3

}
, (18)

denoting by C
(n)
1 the random variable NT truncated to the set {0, . . . , n} and by

A
(n)
1 =

n∑
i=0

1
C

(n)
1 =i

X
(n)
1i (19)

the resulting sequence of MLD. Note that this is converges in distribution to ST , i.e. A
(n)
1

d
=⇒

ST , since C
(n)
1

d
=⇒ NT ; therefore this is a first approximation in line with our goals. (We

recall that by equation (17), µrn = r − σ2

2
− λQ(νU − 1).)

In the remainder of this section we construct a second MLD approximation based directly on

an approximation of processes. There are two reasons for us: First, a process approximation

might be of interest to those readers who look for process approximations, e.g. to calculate

prices of path-dependent securities. The second is that our construction for the stochastic

volatility process will be based on a process approximation and so this allows us to introduce

in a simplified setup the main concepts that guide us there.

We construct the processes (S
(n)
k , N

(n)
k )k=0,...,n by forward induction as follows: At date 0 ≤

k ≤ n the distribution of S
(n)
k+1 at the next date conditional on Stnk

= S
(n)
k , Ntnk

= N
(n)
k at
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date k would be equal in distribution to

S
(n)
k · exp

{
µrnt + σ

√
∆tnỸnk0

}
·

Ntnk+1∏
i=N

(n)
k

Ui,

if we assume that the dynamics over that interval follows the one described in equation (16).

We will now approximate the Poisson process part: the Poisson process jumps in integers

and is memoryless, i.e. the number of jumps over the interval of length ∆tn ahead of tnk

is independent of the number of jumps that occured up to that date and depends only on

the length of the time period; it is known that the distribution of Ntnk+1
conditional on

Ntnk
= N

(n)
k is

P [Ntnk+1
= N

(n)
k + n|Ntnk

= N
(n)
k ] = e−λQ∆tn

(λQ∆tn)n

n!
.

For sufficiently small ∆tn we approximate that distribution by P [Ntnk+1
= N

(n)
k + n|Ntnk

=

N
(n)
k ] = e−λQ∆tn ≈ 1 − λQ∆tn, and P [Ntnk+1

> N
(n)
k + n|Ntnk

= N
(n)
k ] ≈ λQ∆tn. We define

sequences of mutually independent random variables Zn,k,0, Zn,k,1, εnk (n = 1, 2, . . . ; k =

0, 1, 2, . . . , n) with

Zn,k,0 = exp
{
µrn∆tn + σ

√
∆tn Ỹnk0

}
,

Zn,k,1 = exp
{
µrn∆tn + α +

√
σ2∆tn + β2 · Ỹnk1

}
d
= Zn,k,0 · Unk,

and

εnk =




1; with probability λQ∆tn

0; with probability 1 − λQ∆tn
.

We then set

N
(n)
k+1 = N

(n)
k + εnk, S

(n)
k+1 = S

(n)
k · Zn,k,εnk

= S
(n)
k · Zn,k,0 · 1εnk=0 + S

(n)
k · Zn,k,1 · 1εnk=1.

Note that this implies that conditional on S
(n)
k we have

S
(n)
k+1 =




S
(n)
k · Zn,k,1; with probability λQ∆tn

S
(n)
k · Zn,k,0; with probability 1 − λQ∆tn

.
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S0

jum
p

no jump

S0Zn,1,1

S0Zn,1,0

ju
m

p

no jump

no jump

jum
p

S0Zn,1,1Zn,2,1

S0Zn,1,0Zn,2,1

S0Zn,1,0Zn,2,0

Fig. 1. Conditional dynamics of the Poisson process over two periods and the resulting random
variables that describe the stock price.

Figure 1 provides a snapshot of our approximation for the Poisson process and the resulting

random variables to describe the dynamics of stock prices conditional on a jump event or the

absence of a jump (“no jump”) between dates 0,1, and 2. Note that the resulting random

variables to describe the stock prices are equal in distribution on whether we first go up and

then down or the other way round. Therefore this behaves like a a so-called recombining

“tree;” this will reduce significantly the computational requirements.

We conjecture that (S(n), N (n))
d

=⇒ (S,N) but will not prove it since our main interest is in

European-style options and for that purpose convergence for functionals based on time T ,

only, are sufficient. Instead we note that this gives us a sequence of distributions at date n:

Theorem 3 The sequence of random variables S(n)
n at time T converges in distribution to the

distribution of stock price ST in the continuous-time model of equation (12), i.e. S(n)
n

d
=⇒ ST .

To prove theorem 3 note first that the Central Limit Theorem implies that
√

∆tn
∑n

i=1 Ỹni0
d

=⇒
WQ

T ; therefore

S0

n∏
i=1

Zn,i,0 = S0 exp

((
r − σ2

2

)
T + σ

√
∆tn

n∑
i=1

Ỹni0

)
d

=⇒ S0 exp

((
r − σ2

2

)
T + σWQ

T

)
.

Furthermore we have N (n)
n

d
=⇒ NT and so we derive S(n)

n
d

=⇒ ST , which ends the proof of

13



theorem 3.

It therefore remains to write S(n)
n as an MLD to finish our construction of the second MLD

that approximates ST . For i = 0, 1, . . . , n we set

X
(n)
2i = S0 exp

{
µrnT + αi +

√
σ2T + iβ2 · Ỹni2

}
, (20)

and denote by C
(n)
2 the n-step binomial distributed random variable with probability λQ∆tn

for an up-move and 1 − λQ∆tn for a down move and

A
(n)
2 =

n∑
i=0

1
C

(n)
2 =i

X
(n)
2i . (21)

(We recall that by equation (17), µrn = r − σ2

2
− λQ(νU − 1).) Note that C

(n)
2

d
= N (n)

n and

that

S(n)
n

d
= S0 ·

N
(n)
n∏

k=0

Zn,k,1 ·
n−N

(n)
n∏

k=0

Xn,k,0
d
=

n∑
i=0

1
N

(n)
n =i

X
(n)
2i

d
= A

(n)
2 . (22)

Therefore A
(n)
2 is a sequence of MLD that approximate S(n)

n . This ends the second construc-

tion of a sequence of MLD.

In this section we have presented two sequences of MLD approximations mixing n+1 lognor-

mal distributed random variables given by equations (18, 19) and (20, 21). Note that they

coincide in the lognormal random variable to be mixed, i.e. X
(n)
1i

d
= X

(n)
2i ; the difference is

that one takes the exponential random variable NT (with paramter λQT ) truncated to the

interval {0, . . . , n} whereas the other one takes a binomial random variable on that set. Note

that both converge to the continuous-time limit in distribution.

3.3 Accuracy and Efficiency

We now discuss accuracy and efficiency in pricing call options. We first recall that by equation

(17), µrn = r − σ2

2
− λQ(νU − 1). For both MLD approximations (i = 1, 2) we calculate

approximations of the price of the call option with strike K as

14



1

BT

EQ[(A
(n)
i − K)+] = EQ

[
1

BT

EQ[(A
(n)
i − K)+|C(n)

i ]
]

=
n∑

j=0

P [C
(n)
i = j]

1

BT

EQ[(A
(n)
i − K)+|C(n)

i = j].

The difference between the two MLD approximations is in the probability Q[C
(n)
i = j]. For

the first it is Q[C
(n)
1 = j] = e−λQT (λQT )j

j!
and so n-th approximation of the derivative’s price

is, see also the discussion leading to equations (7, 10),

1

BT

EQ[(A
(n)
1 − K)+] = e−(r+λQ)T

n∑
j=0

(λQT )j

j!
exp

(
µrnT + αj +

σ2T + jβ2

2

)
(23)

·BS
(
S0, K, µrnT + αj,

√
σ2T + jβ2

)
.

For the second MLD we have Q[C
(n)
2 = j] =

(
n
j

)
(λQ∆tn)j(1 − λQ∆tn)n−j and so the n-th

approximation of the derivative’s price is

1

BT

EQ[(A
(n)
2 − K)+] (24)

= e−rT
n∑

j=0

(
n

j

)
(λQ∆tn)j(1 − λQ∆tn)n−j exp

(
µrnT + αj +

σ2T + jβ2

2

)

·BS
(
S0, K, µrnT + αj,

√
σ2T + jβ2

)
.

Both approximations (23, 24) converge to the true price 11 .

To discuss accuracy and efficiency of these approximations we now derive the continuous-time

price: We write the continuous-time price as 1
BT

EQ[(ST −K)+] = EQ

[
1

BT
EQ[(ST − K)+|NT ]

]
and then based on equation (16) we calculate by analogy with the Black-Scholes derivation

(S0 exp(−λQ(νU − 1)T )
∏j

k=1 Uk becomes the equivalent of the current stock price) that

1

BT

EQ[(ST − K)+|NT = j]

= EQ[EQ[(ST − K)+|U1, . . . , Uj]|NT = j]

= EQ


BS


S0 exp(−λQ · (νU − 1)T )

j∏
k=1

Uk, K, r − σ2

2
, σ2



∣∣∣∣∣∣NT = j


 .

11 Although the call payoff options is not a bounded function the put payoff is and so put-call parity
leads to that conclusion.
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This gives the continuous-time price as

1

BT

EQ[(ST − K)+] (25)

= e−λQT
∞∑

j=0

(λQT )j

j!
EQ


BS


S0 exp(−λQ · (νU − 1)T )

j∏
k=1

Uk, K, r, σ2






= e−λQT
∞∑

j=0

(λQT )j

j!
EQ

[
BS

(
S0 exp (−λQ · (νU − 1)T + j(α + βYj)) , K, r − σ2

2
, σ2

)]
.

This coincides with the equation in Merton (1976) for the price of a call option 12 .

For the following approximations we take λQ = λ, θ = 0, ζ = 1, i.e. we leave the jump

part independent as in Merton (1976). We then have νU = exp(α + β2

2
). Table 1 presents

prices using our approach according to equation (24) (MLD) and those of the Merton model

according to equation (25) (Merton). In table 1 Merton sums up j = 0, . . . , 20 while MLD

only takes j = 0 and j = 1. All cases take S0 = 100, r = 0.05, T = 1, σ = 0.1. We compare

prices for three call options with strikes K = 90; 100; 110; each line differs in their risk-

neutral jump-components, i.e. in the variables describing mean and variance α, β in the

events of jumps and in the frequency of jumps λQ. Note that λQ equal to 0 corresponds to

the Black-Scholes setup. Prices in that setup are 14.6288, 6.8050, 2.1739 respectively for the

three options. All approximations are off at most one decimal in the third digit to the Merton

solution despite the simplicity of our approximation. Higher order mixing (j = 0, 1, 2) would

produce even more accurate results but we leave this to the reader since we believe our

implementation is both simple and fairly accurate.

4 Mixed Lognormal Distributions as an Approximation to Stochastic Volatility
Models

As in the previous section we assume a market in which a stock and a bond with price

Bt = exp{rt} are traded. We fix a probability space (Ω,F , P ); P is called the objective

probability measure and describes the actual distribution the econometrician would observe.

12 Merton (1976) advocates a risk-neutral stock price dynamics with specific parameters for λQ, θ, ζ
in equation (16). We do not impose this here and extend his formula as discussed here to the general
case.
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λQ = 0.01

K = 90 K = 100 K = 110

MLD Merton MLD Merton MLD Merton

α = −0.2, β = 0.1 14.6823 14.6823 6.8723 6.8723 2.2156 2.2156

α = −0.2, β = 0.3 14.7260 14.7253 6.9111 6.9105 2.2494 2.2489

α = −0.5, β = 0.1 14.8506 14.8506 7.0144 7.0144 2.2881 2.2881

α = −0.5, β = 0.3 14.8485 14.8484 7.0083 7.0083 2.2857 2.2856

λQ = 0.05

K = 90 K = 100 K = 110

MLD Merton MLD Merton MLD Merton

α = −0.2, β = 0.1 14.8912 14.8893 7.1398 7.1390 2.3862 2.3859

α = −0.2, β = 0.3 15.1142 15.0951 7.3394 7.3238 2.5604 2.5477

α = −0.5, β = 0.1 15.7088 15.7088 7.8631 7.8631 2.7811 2.7811

α = −0.5, β = 0.3 15.7074 15.7042 7.8349 7.8326 2.7667 2.7650

λQ = 0.20

K = 90 K = 100 K = 110

MLD Merton MLD Merton MLD Merton

α = −0.2, β = 0.1 15.6100 15.5770 8.1078 8.0939 3.0724 3.0669

α = −0.2, β = 0.3 16.5606 16.2665 8.9816 8.7406 3.8408 3.6435

α = −0.5, β = 0.1 18.4783 18.4783 11.0384 11.0384 5.0853 5.0853

α = −0.5, β = 0.3 18.6237 18.5672 10.9943 10.9520 5.0138 4.9818
Table 1
Comparing option prices calculated using Merton’s formula with those calculated based on our
approach (MLD) mixing two lognormals

4.1 The Continuous-Time Dynamics

Extending the Black-Scholes model by incorporating jumps captures the presence of rare

events affecting securities. Another important extension of the Black-Scholes setup is the

bivariate diffusion, where the dynamics under the objective probability measure P is given

jointly by
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Model ϕ(V ) ψ(V )

Hull and White (1987) σ · V √
V

Heston (1993) σ · √V
√

V

Stein and Stein (1991) σ V

Chesney and Scott (1989) σ exp{V }
Table 2
Parameter specifications for different models (σ a constant)

dVt = κ(ν − Vt)dt + ϕ(Vt)dW1t, dSt = µ(Vt)Stdt + ψ(Vt)Std
(
ρW1t +

√
1 − ρ2W2t

)
. (26)

Here (W1,W2) is a bivariate independent Wiener process and −1 ≤ ρ ≤ 1. Note that

ρW1t +
√

1 − ρ2W2t is also a standard Wiener process and that the instantaneous correlation

of that process with W1 is ρ. We define by Ft = σ(Vu, Su|0 ≤ u ≤ t) the filtration generated

by V, S. We assume that the size of volatility is part of the information structure; this is a

common assumption in the mathematical finance literature.

The process S describes the stock dynamics and V plays the role of the process that drives

volatility; ψ(Vt) enters as the current volatility. The function µ describes the stock drift

and will not be discussed further. If the function ψ(V ) = V , then V models volatility; for

ψ(V ) =
√

V , V models the variance. For simplicity we refer to V as volatility throughout.

The volatility process is mean-reverting to ν at a rate κ; its dispersion coefficient (“volatility

of volatility”) is ϕ(Vt). By specifying ϕ and ψ, the models in the literature can be treated

in a unified way (see table 2). We will not impose specific functional forms for ϕ and ψ in

(26), (26); we require ϕ, ψ only to be twice continuously differentiable as well as to fulfill

growth conditions that ensure the existence of a solution to the system (26, 26). (We refer

the reader to the literature on stochastic differential equations for a detailed treatment of

this topic.)

For two functions η1, η2 we study the processes (R1t)t and (R2t)t that are solutions to the

SDE’s dR1t = η1(t, R1t)R1tdW1t, dR2t = η2(t, R2t)R2tdW2t and assume that both are mar-

tingales; we can then define a probability measure Qη1,η2 that is equivalent to P . According

to Girsanov’s theorem under Qη1,η2 the processes (WQ
1t ,W

Q
2t )t with dWQ

1t = d(W1t − η1tt) and

dWQ
2t = d(W2t − η2tt) are two standard (independent) Wiener processes under Q. We can

write

18



dVt = {κ(ν − Vt) + ϕ(Vt)η1t} dt + ϕ(Vt)dWQ
1t ,

dSt =
{
µ(Vt) + ψ(Vt) ·

(
ρη1t +

√
1 − ρ2η2t

)}
Stdt + ψ(Vt)Std

{
ρWQ

1t +
√

1 − ρ2WQ
2t

}
.

The stock is traded while volatility is not. Therefore, according to the EMM technique

we need to find the probability measure(s) such that the discounted stock price process

is a martingale. (No such restriction is imposed on the volatility process.) Changes of the

volatility and instantaneous correlation structure are not possible and therefore the condition

to be a martingale is that

ψ(Vt) ·
(
ρη1t +

√
1 − ρ2η2t

)
= r − µ.

Again, this is an incomplete market setup and here we have one degree of freedom. In the

following we assume that the “correct” process η1 that describes the pricing measure in

the market has been chosen; for a detailed discussion of that topic we refer to the vast

mathematical finance literature. Since η1 is adapted to the filtration σ(W 1
u |0 ≤ u ≤ t) =

σ(Vu|0 ≤ u ≤ t) generated by V , there exists a function of Vt, which we call η1t by simplicity,

such that η1t = η1t(Vt). Our construction will be for the equivalent martingale measure Q

and for standard independent Brownian motion WQ
1 ,WQ

2 under Q with

dVt = µV
rn(t, V )dt + ϕ(Vt)dWQ

1t , where µV
rn(t, V ) = κ(ν − Vt) + ϕ(Vt)η1t(t, Vt), (27)

and

dSt = rStdt + ψ(Vt)Std
{
ρWQ

1t +
√

1 − ρ2WQ
2t

}
. (28)

4.2 Constructing a Sequence of Mixed Lognormal Distributions

For given integer n we discretize the interval [0, T ] into n equidistant intervals [tni, tn,i+1)

(i = 0, . . . , n − 1) with tni = i∆tn, ∆tn = T
n
. We will now construct joint Markov pro-

cesses (V
(n)
k , S

(n)
k )k=0,...,n for this n; this will give us a sequence of processes and our goal is

to construct sequences of processes such that (V (n), S(n))
d

=⇒ (V, S) under Q. Heuristically

the standardized mean and (co-)variances to should converge to their continuous-time coun-

terpart. The following theorem formalizes mathematically that essentially imposing these
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conditions is sufficient for weak convergence; it is an immediate consequence of the martin-

gale central limit theorem (see, Ethier and Kurtz (1986), p. 354 and He (1990)).

Theorem 4 Define, for m > 0, Mm = (−m,m) × (−m,m). If, for all m > 0,

(1) drifts converge on Mm, i.e. for (V
(n)
k , S

(n)
k ) ∈ Mm with tnk

n−→ t, V
(n)
k

n−→ V , S
(n)
k

n−→
S we have

1

∆tn
EQ




V

(n)
k+1 − V

(n)
k

S
(n)
k+1 − S

(n)
k



∣∣∣∣∣∣∣V

(n)
k , S

(n)
k


 n−→


µV

rn(t, V )

rS


 ,

(2) variance/covariances converge on Mm, i.e. for (V
(n)
k , S

(n)
k ) ∈ Mm with V

(n)
k

n−→ V ,

S
(n)
k

n−→ S we have

1

∆tn
V arQ




V

(n)
k+1 − V

(n)
k

S
(n)
k+1 − S

(n)
k



∣∣∣∣∣∣∣V

(n)
k , S

(n)
k


 n−→


ϕ2(V ) ρϕ(V )ψ(V )S

ρϕ(V )ψ(V )S ψ2(V )S2


 ,

(3) and jump-sizes vanish on Mm in the limit Q-a.s., i.e.

max
(V

(n)
k

,S
(n)
k

)∈Mm

max
( ∣∣∣V (n)

k+1 − V
(n)
k

∣∣∣ , ∣∣∣S(n)
k+1 − S

(n)
k

∣∣∣) n−→ 0,

then, (V (n), S(n))
d

=⇒ (V, S).

The local conditions of this theorem will guide us in our construction. Our main goal in the

following construction is mainly to ensure conditions 1 and 2, i.e. convergence of the first two

moments to their corresponding continuous-time counterparts; we will see that condition 3

on vanishing jump sizes is easily fulfilled on Mm.

We now construct two processes (S
(n)
k )k=0,...,n, (V

(n)
k )k=0,...,n for which we will prove at the end

of this subsection (V (n), S(n))
d

=⇒ (V, S) (as processes). As a direct corollary we then also

know that S(n)
n

d
=⇒ ST . Our construction is based on sequences of standard normal random

variables Yni1, Yni2 (n = 0, . . . , n; i = 0, . . . , 2n). Elements of each series are assumed to be

independent of all others.

We first construct an approximation of the volatility process (V
(n)
k )k=0,...,n using the technique

of Nelson and Ramaswamy (1990). For that purpose we define the function

f(x) =
∫ x 1

ϕ(z)
dz,
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Model f(x) g(z)

Hull and White (1987) ln
(

x
σ

)
exp(σz)

Heston (1993) 2
√

x
σ

(σz)2

4 ; if z > 0

0 ; otherwise

Stein and Stein (1991) σx 1
σz

Chesney and Scott (1989) σx 1
σz

Table 3
The transformation functions f, g for the models from the literature (σ as in table 2)

and denote g its inverse (see table 3 for those of the models commonly used in the literature).

Since f ′(V ) = 1
ϕ(V )

, Itô’s formula implies that

df(V )t =

{
κ(ν − Vt)

ϕ(Vt)
+ η1(t, Vt) +

1

2
f ′′(Vt)ϕ(Vt)

}
dt + dWQ

1t , (29)

i.e. the dynamics of the transformed process f(V ) is homoscedastic. We define the points

D
(n)
i = g

(
f(V0) + i

√
∆tn

)
, i an integer,

and the Markov-chain 13 (M
(n)
k )k on the time-homogeneous grid (D

(n)
i )i with the following

transition probabilities: at date k conditional on M
(n)
k = D

(n)
i we assume that the transition

to grid point D
(n)
mk,i+1 occurs with probability q

(n)
k,i and to D

(n)
mk,i−1 occurs with complementary

probability 1 − q
(n)
k,i , i.e.

Q
[
M

(n)
k+1 = D

(n)
mk,i+1|M (n)

k = M
(n)
i

]
= q

(n)
k,i , (30)

Q
[
M

(n)
k+1 = D

(n)
mk,i−1|M (n)

k = D
(n)
i

]
= 1 − q

(n)
k,i , where (31)

q
(n)
i =

µV
rn(tnk, D

(n)
i )∆tn − (D

(n)
mk,i−1 − D

(n)
i )

D
(n)
mk,i+1 − D

(n)
mk,i−1

, and (32)

mk,i = min
{
j | {µV

rn(tnk, D
(n)
i )∆tn < D

(n)
j − D

(n)
i

}
(33)

Note that typically the drift µV
rn(tnk, D

(n)
i )∆tn will be of smaller order than D

(n)
i+1 − D

(n)
i =

g′
(
f(V0) + i

√
∆tn

)√
∆tn + O(∆tn); therefore typically mi = i. The general case is neces-

sary, however, at grid points for which g′ itself is small in order to ensure 14 p
(n)
i ∈ (0, 1).

13 The Markov chain will be time-homogeneous if and only if η1 is independent of t.
14 For a detailed discussion we refer to Nelson and Ramaswamy (1990); for example they construct
an example of a recombining binomial model that approximates the square root process which is
used in the Heston (1993) model and explain why in that case sometimes mi 
= i is necessary.
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Equation (33) defines in these exceptional cases the transition to be to two grid points that

lie around D
(n)
i + µV

rn(tnk, D
(n)
i )∆tn. The Markov chain defines a process which we adopt as

(V
(n)
k )k=0,...,n. Doing this for each n defines a sequence of processes (V (n))n. Note that each

process corresponds to a recombining binomial tree with transition probability depending

on where you are in the tree. We denote M1m = (−m,m). We have

E
[
M

(n)
k+1 − M

(n)
k

∣∣∣M (n)
k = D

(n)
i

]
= D

(n)
mk,i+1q

(n)
i + (D

(n)
mk,i−1 − D

(n)
i )(1 − q

(n)
i )

= D
(n)
mk,i−1 + q

(n)
i (D

(n)
mk,i+1 − D

(n)
mk,i−1) − D

(n)
i

= µV
rn(tnk, D

(n)
i )∆tn.

Therefore the first condition in theorem 4 is always fulfilled for the volatility process, i.e. the

volatility drift converges on M1m, i.e. for (V
(n)
k ∈ Mm with tnk

n−→ t, V
(n)
k

n−→ V we have

1

∆tn
EQ

[
V

(n)
k+1 − V

(n)
k

∣∣∣V (n)
k

]
n−→ µV

rn(tnk, D
(n)
i ). (34)

We also have

E
[(

M
(n)
k+1 − D(n)

mk,i

)2
∣∣∣∣M (n)

k = D
(n)
i

]

= (D
(n)
mk,i+1 − D(n)

mk,i
)2q

(n)
i + (D

(n)
mk,i−1 − D(n)

mk,i
)2(1 − q

(n)
i )

=
(
g′

(
f(V0) + i

√
∆tn

))2

∆tnq
(n)
i +

(
g′

(
f(V0) + i

√
∆tn

))2

∆tn(1 − q
(n)
i ) + O(∆t3/2

n )

=
(
g′

(
f(V0) + i

√
∆tn

))2

∆tn + O(∆t3/2
n ),

which implies that

V ar
(
M

(n)
k+1 − M

(n)
k

∣∣∣M (n)
k = D

(n)
i

)
= E

[(
M

(n)
k+1 − D(n)

mk,i

)2
∣∣∣∣M (n)

k = D
(n)
i

]

−
(
E

[
M

(n)
k+1 − D

(n)
i

∣∣∣M (n)
k = D

(n)
i

]
−

(
D(n)

mk,i
− D

(n)
i

))2
.

Note that when mki = i, we also have that conditions 1, 2 in theorem 4 is fulfilled. Therefore

in the (typical) case convergence holds; we will not prove this here for the general case; instead

we note that our application here is covered by theorem 3 in Nelson and Ramaswamy (1990);

in addition to equation (34) they prove also that
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(1) variance/covariances converge on M1m, i.e. for (V
(n)
k , S

(n)
k ) ∈ Mm with (tnk

n−→ t)

V
(n)
k

n−→ V we have 1
∆tn

V arQ

[
V

(n)
k+1 − V

(n)
k

∣∣∣V (n)
k

]
n−→ ϕ2(V ),

(2) and jump-sizes vanish on Mm in the limit Q-a.s., i.e. max
V

(n)
k

∈Mm

∣∣∣V (n)
k+1 − V

(n)
k

∣∣∣ n−→ 0.

Nelson and Ramaswamy (1990) conclude that V (n) d
=⇒ V . We next construct the process

(S
(n)
k )k=0,...,n by forward induction: First, note that when the volatility that enters into the

stock process would be constant at V
(n)
k over the time period [tnk, tn,k+1) in equation (28)

then S
(n)
k+1 would be equal to

S
(n)
k · exp





r − ψ2(V

(n)
k )

2


 tnk

+ψ(V
(n)
k ) ·

(
ρ · (WQ

1,tn,k+1
− WQ

1,tnk
) +

√
1 − ρ2 · (WQ

2,tn,k+1
− WQ

2,tnk
)
)
.

We use the Markov-chain (M
(n)
k )k to define the Markov-chain εn by setting

εn,k =
M

(n)
k+1 − M

(n)
k − µV

rn

(
tnk,M

(n)
k

)
∆tn

ϕ(M
(n)
k )

, i.e.

M
(n)
k+1 − M

(n)
k = µV

rn

(
tnk,M

(n)
k

)
∆tn + ϕ(M

(n)
k ) · εn,k.

and since V (n) d
=⇒ V we therefore conclude immediately that

� t
∆tn

�∑
k=1

εnk
d

=⇒ WQ
1t . (35)

Note also that by equation (33)

max
{
D

(n)
mk,i+1 − D

(n)
i , D

(n)
i − D

(n)
mk,i−1

}
= g′

(
f(V0) + i

√
∆tn

)√
∆tn + O(∆tn)

= ϕ(D
(n)
i )

√
∆tn + O(∆tn)

uniformly on Mm. Since f ′(V ) = 1
ϕ(V )

and g is the inverse of f we have Q-a.s.

|εnk| =
√

∆tn + O(∆tn). (36)

We then approximate WQ
1,tn,k+1

−WQ
1,tnk

by εnk, approximate WQ
2,tn,k+1

−WQ
2,tnk

by Ynk,εnk
, and

set, conditional on V
(n)
k = Di,
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S
(n)
k+1 = S

(n)
k · exp




r − ψ2(V

(n)
k )

2


∆tn + ψ(V

(n)
k ) ·

(
ρεnk +

√
(1 − ρ2)∆tnYnkεnk

)
 (37)

= 1θki=1S
(n)
k Znki1 + 1θki=2S

(n)
k Znki2. (38)

where we denoted

Zn,k,i,1 = exp





r − ψ2(D

(n)
i )

2


∆tn + ρ

ψ(D
(n)
i )

ϕ(D
(n)
i )

(
D

(n)
mk,i+1 − D

(n)
i − µV

rn

(
tnk, D

(n)
i

)
∆tn

)

+ψ(D
(n)
i )

√
(1 − ρ2)∆tn Ynk1


, (39)

Zn,k,i,2 = exp





r − ψ2(D

(n)
i )

2


∆tn + ρ

ψ(D
(n)
i )

ϕ(D
(n)
i )

(
D

(n)
mk,i−1 − D

(n)
i − µV

rn

(
tnk, D

(n)
i

)
∆tn

)

+ψ(D
(n)
i )

√
(1 − ρ2)∆tn Ynk2


, (40)

and

θk ∼



1 ; if εnk > 0

2 ; otherwise
.

In particular we have Q[θk = 1|M (n)
k = D

(n)
i ] = q

(n)
i and Q[θki = 2|M (n)

k = D
(n)
i ] = 1 − q

(n)
i .

Based on equation (37) we calculate, since E[εnk] = 0 and using equation (36) that

E
[
S

(n)
k+1

∣∣∣S(n)
k

]
= E

[
E

[
S

(n)
k+1

∣∣∣ εnk

]∣∣∣S(n)
k

]

= S
(n)
k E


exp




r − ψ2(D

(n)
i )

2
+

ψ2(D
(n)
i )

2
(1 − ρ2)


∆tn + ρψ(D

(n)
i )εnk






= S
(n)
k E


1 + ρψ(D

(n)
i )εnk +


r − ψ2(D

(n)
i )

2
ρ2


∆tn +

ρ2ψ2(D
(n)
i )

2
ε2
nk + O(∆t3/2

n )




= S
(n)
k

(
1 + r∆tn + O(∆t3/2

n )
)
.

Together with the above this ensures the first condition in theorem 4. Similarly we calculate
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E
[(

S
(n)
k+1

)2
∣∣∣∣S(n)

k

]
= E

[
E

[(
S

(n)
k+1

)2
∣∣∣∣ εnk

]∣∣∣∣S(n)
k

]

=
(
S

(n)
k

)2
E

[
exp

{(
2r − ψ2(D

(n)
i ) + 2ψ2(D

(n)
i )(1 − ρ2)

)
∆tn + 2ρψ(D

(n)
i )εnk

}]
=

(
S

(n)
k

)2
E

[
1 + 2ρψ(D

(n)
i )εnk +

(
2r + ψ2(D

(n)
i )(1 − 2ρ2)

)
∆tn + 2ρ2ψ2(D

(n)
i )ε2

nk + O(∆t3/2
n )

]
=

(
S

(n)
k

)2 ·
(
1 + (2r + ψ2(D

(n)
i ))∆tn + O(∆t3/2

n )
)
.

Note that
(
1 + r∆tn + O(∆t3/2

n )
)2

= 1 + 2r∆tn + O(∆t3/2
n ) so that

V ar
(
S

(n)
k+1 − S

(n)
k

∣∣∣S(n)
k

)
=

(
E

[(
S

(n)
k+1

)2
∣∣∣∣S(n)

k

]
− E

[
S

(n)
k+1

∣∣∣S(n)
k

]2
)

=
(
S

(n)
k

)2 · ψ2(D
(n)
i ))∆tn + O(∆t3/2

n ),

i.e. this proves the variance part of S in the theorem 4. It remains to check the covariance

part: we have based on the above analysis and based on equation (35) that conditional on

V
(n)
k and S

(n)
k that

V
(n)
k+1 · S(n)

k+1

=
(
V

(n)
k + µV

rn(tnk, V
(n)
k ) + ϕ(V

(n)
k )εnk

)

·S(n)
k


1 + ρψ(V

(n)
k )εnk +


r − ψ2(V

(n)
k )

2
ρ2


∆tn +

ρ2ψ2(V
(n)
k )

2
ε2
nk + O(∆t3/2

n )




= S
(n)
k

{(
V

(n)
k + µV

rn(tnk, V
(n)
k )

)

·

1 + ρψ(V

(n)
k )εnk +


r − ψ2(V

(n)
k )

2
ρ2


∆tn +

ρ2ψ2(V
(n)
k )

2
ε2
nk




+ϕ(V
(n)
k )εnk ·


1 +


r − ψ2(V

(n)
k )

2
ρ2


∆tn




+ϕ(V
(n)
k )ρψ(V

(n)
k )ε2

nk + ϕ(V
(n)
k )

ρ2ψ2(V
(n)
k )

2
ε3
nk + O(∆t3/2

n )

}

which implies since E[εnk] = 0, E[ε2
nk] = O(∆tn), E[ε3

nk] = O(∆t3/2
n ) that

E
[
S

(n)
k+1V

(n)
k+1

∣∣∣V (n)
k , S

(n)
k

]
= S

(n)
k

{ (
V

(n)
k + µV

rn(tnk, V
(n)
k )

)
· (1 + r∆tn) + ρϕ(V

(n)
k )ψ(V

(n)
k )∆tn + O(∆t3/2

n )
}
.

Therefore, since E[V
(n)
k+1|V (n)

k ] = V
(n)
k + µV

rn(tnk, V
(n)
k ),
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Fig. 2. The volatility dynamics and a description of the lognormal transition variables at each grid
point.

Cov
(
S

(n)
k+1, V

(n)
k+1

∣∣∣V (n)
k , S

(n)
k

)
= ρϕ(V

(n)
k )ψ(V

(n)
k )∆tn + O(∆t3/2

n ),

which directly implies the covariance condition in theorem 4. Note that jump sizes in S are

limited 15 on Mm and so we conclude based on theorem 4:

Theorem 5 The sequence of processes (S
(n)
k )k=0,...,n converges weakly to the process (St)t∈[0,T ]

of equations (27, 28).

It remains to write this as an MLD. Before doing so let us take a look at the structure of our

construction: Figure 2 describes the volatility tree for n = 2 over the two periods. Over the

first period volatility can increase to V1 = D
(n)
1,1 or decrease to V1 = D

(n)
1,−1. Over the second

period volatility can increase or decrease; note that by construction a decrease followed by

an increase leads to the same volatility D
(n)
2,0 as an increase followed by a decrease, i.e. the

volatility tree is recombining.

15 Those of the volatility process are covered by Nelson and Ramaswamy (1990).
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The figure also depicts at each node the two lognormal variables that will be mixed over each

period; note that this depends on the volatility at the previous period. While the volatility

tree is recombining the mixing lognormal random variables depend on the volatility path

chosen, i.e. a volatility decrease followed by an increase will lead to a stock price determined

by S0 · Z2,1,1,1(V0) · Z2,1,1,1(D
(n)
1,1 ) and this is not equal in distribution to the stock price

determined by S0 · Z2,1,1,1(V0) · Z2,1,1,1(D
(n)
1,1 ) when we see a volatility increase followed by a

decrease.

Let us denote J
(n)
k the index j for which V

(n)
k = D

(n)
j . Note that this is a process and describes

the evolution of the volatility process on the grid. We can then write using the definition of

equation (38)

S(n)
n = S0

∏
k=1,...,n

Z
n,k,J

(n)
k

,θk
.

Note that this is equal in distribution to all possible paths

S(n)
n

d
= S0

∑
i1,...,in∈{1,2}

∏
k=1,...,n

1θk=ik

n∏
k=1

X
n,k,J̃

(n)
k−1

,ik

where J̃
(n)
k = −k+

∑k
j=0 ij denotes the current grid node. Here the first product term describes

that we condition on the path of volatility and the second product term describes a lognormal

random variable since it is a product of exponentials of normal random variables and can

therefore be written as a single random variable which is the exponential of an appropriately

defined normal random variable. Therefore the distribution of S(n)
n at date n is a mixture

of 2n lognormal appropriately chosen lognormal distributions that depend on the volatility

path. We derive directly from Theorem 5:

Theorem 6 The sequence of mixed lognormal distributions S(n)
n converges weakly to ST .
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4.3 Accuracy and Efficiency — Implementing the Hull and White Model

According to table 3 the Hull-White model is given by ϕ(V ) = σV, ψ(V ) =
√

V . In the

following discussion we assume that ν = 0 and η1 = 0. The risk-neutral process is then

dVt = −κVtdt + σVtdWQ
1t , dSt = rStdt +

√
VtStdWQ

2t .

In particular VT is a lognormal distributed random variable, i.e. we have ln(VT /V0) ∼
N

((
−κ − σ2

2

)
t; σ

√
t
)
. We have f(x) = ln(x/σ) and g(z) = exp(σz); therefore our grid

points are

D
(n)
i = V0 · exp

(
iσ

√
∆tn

)
.

We recall the definition in equation (27) and note that under our assumptions here µV
rn(t, V ) =

−κV . For sufficiently large n we have M2m = (−m,m) that µV
rn(t,D

(n)
i )∆tn < D

(n)
i /σ

√
∆tn+

O(∆tn) = g′
(
i
√

∆tn
)√

∆tn + O(∆tn) = D
(n)
i+1 − D

(n)
i . In the sequel we will always take n

large enough and therefore we can always assume that mk,i = i. Also we calculate from

equation (32)

q
(n)
i =

D
(n)
i − κD

(n)
i ∆tn − D

(n)
i−1

D
(n)
i+1 − D

(n)
i−1

.

Note that D
(n)
i −κD

(n)
i ∆tn ≈ D

(n)
i exp(−κ∆tn) and so corresponds to the standard binomial

approach. In particular this is time-homogeneous.

We approximate
D

(n)
i+1−D

(n)
i

ϕ(D
(n)
i )

= exp(σ
√

∆tn )− 1 by
√

∆tn and according to equations (39, 40)

we take the mixing random variables

Xn,k,i,1 = exp




r − D

(n)
i

2


∆tn + ρ

D
(n)
i+1 − D

(n)
i − κD

(n)
i ∆tn

σ
√

D
(n)
i

+
√

(1 − ρ2)D
(n)
i ∆tn Ynk1


 ,

Xn,k,i,2 = exp




r − D

(n)
i

2


∆tn + ρ

D
(n)
i−1 − D

(n)
i − κD

(n)
i ∆tn

σ
√

D
(n)
i

+
√

(1 − ρ2)D
(n)
i ∆tn Ynk2


 ,

since ψ(V )
ϕ(V )

= 1
σV

. According to theorem 6 we have S(n)
n

d
=⇒ ST .

Note that we know from before

S(n)
n

d
= S0

∑
i1,...,in∈{1,2}

∏
k=1,...,n

1θk=ik

n∏
k=1

X
n,k,J̃

(n)
k−1

,ik

28



10
0

10
1

10
2

10
−3

10
−2

10
−1

Error MLD
Error MC
1/(20*n)
1/(40*sqrt(n))

Fig. 3. Errors for MLC and Monte-Carlo depending on the refinement.

For any path i1, . . . , in ∈ {1, 2} we can write the second product term as

n∏
k=1

X
n,k,J̃

(n)
k−1

,ik

= exp


rT −

∑n−1
k=1 D

(n)

J̃
(n)
k−1

2
∆tn + ρ

n−1∑
k=1




D
(n)

J̃
(n)
k

− D
(n)

J̃
(n)
k−1

− κD
(n)

J̃
(n)
k−1

∆tn

σ
√

D
(n)

J̃
(n)
k−1




+

√√√√(1 − ρ2)
n−1∑
k=1

D
(n)

J̃
(n)
k−1

∆tnYnk3


,

where Ynk3 is a sequence of iid standard normal random variables.

Figure 3 assesses the accuracy of our approximation when the stock and volatility process

are uncorrelated, i.e. ρ = 0. Then we can write the price of the option as

1

BT

EQ[f(ST )] =
1

BT

EQ[EQ[f(ST )|VT ]] = EQ

[
BS(S0, K, r,

√
VT )

]
. (41)

This allows us to calculate prices as a numerical integration over Black-Scholes prices weighted

by the normal density function. Figure 3 compares the errors that result from calculating
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ρ = −0.5

K = 90 K = 100 K = 110

n = 5 16.5068 11.1214 7.1498

n = 10 16.6812 11.3077 7.3254

n = 15 16.7671 11.3994 7.4120

ρ = 0

K = 90 K = 100 K = 110

n = 5 16.4041 11.2264 7.4577

n = 10 16.5777 11.4213 7.6519

n = 15 16.6632 11.5172 7.7475

ρ = 0.5

K = 90 K = 100 K = 110

n = 5 16.2725 11.3075 7.7382

n = 10 16.4378 11.5048 7.9447

n = 15 16.5193 11.6020 8.0465
Table 4
Option prices calculated our approach varying refinement n

that price using MLD and Monte-Carlo approach. We plot the errors depending on the refine-

ment; for the Monte-Carlo approach we took that as the time-discretization and simulated

1000000 paths. We see that initially the MLD is less accurate but quickly catches up; it seems

that MLD converges with order one in the refinement while Monte-Carlo only converges with

the slower order 1/2. (The MLD line is not straight; the price calculation based on equation

(41) used step-sizes of 0.00001 step sizes and was implemented in MATLAB; this did not

improve by decreasing step-sizes; this indicates that we are beyond the accuracy of the price

calculation based on equation (41).)

We also find that to achieve the same level of accuracy the MLD needs less computing

time. We conclude that our MLD method is an accurate method to price derivatives. For

comparative purposes we present in table 4 we take v0 = 0.32; κ = 0; σ = 0.5; S0 = 100;

r = 0; T = 1 and vary K = 90, 100, 110 and n = 5, 10, 15.
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5 Conclusion

This paper constructed approximations of the Black-Scholes setup with jumps (Merton

model) and of the Black-Scholes with stochastic volatility model using MLD. We explained

how to use them to calculate option prices within these models and discussed efficiency and

accuracy.

A Calculating The First Three Moments

We assume here Xi as in defnition 1 and dij(K) as defined in the paragraphs thereafter.

Since only the ratio A0 to matters we assume A0 = 1 to simplify notation. Calculations of

the necessary terms will make use of the following:

Lemma 7 For a normal distributed random variable Z with E[Z] = 0, V ar(Z) = σ2 and

µ ∈ IR we define the random variable dQ̃
dQ

= exp
(
µZ − 1

2
µ2σ2

)
and a new probability measure

Q̃ on (Ω,F) by setting Q̃[A] = E[1A
dQ̃
dQ

] for A ∈ F . (The expectation operator will be denoted

EQ̃[·].) Then the random variable Z̄ has mean µσ2 and variance σ2 under Q̃, i.e. Z − µσ2

has mean zero and variance σ2 under Q̃.

PROOF. The density of Q̃ (w.r.t. the Lebesgue measure λ on IR) is

dQ̃

dλ
=

dQ̃

dQ

dQ

dλ
= exp

(
µz − 1

2
µ2σ2

)
· 1√

2πσ2
exp

(
− z2

2σ2

)

=
1√

2πσ2
exp

(
−z2 − 2µσ2z + µ2σ4

2σ2

)
=

1√
2πσ2

exp

(
−(z − µσ2)2

2σ2

)
.

To calculate expectations note first that E[Xi] = exp
(
µi +

σ2
i

2

)
and

E
[
X2

i

]
= exp

(
2µi +

(−2σi)
2

2

)
· E

[
exp

(
−(−2σi)

2

2
+ 2Z

)]
= exp

(
2µi + 2σ2

i

)
,

E
[
X3

i

]
= exp

(
3µi +

9

2
σ2

i

)
· E

[
exp

(
−(−3σi)

2

2
+ 3Z

)]
= exp

(
3µi +

9

2
σ2

i

)
.
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To calculate truncated moments note that standard arguments used in option pricing theory

tell us immediately that E [Xi1Xi≥Ki
] = exp

(
µi +

σ2
i

2

)
Φn(di1) and E [1Xi≥Ki

] = Φn(di2).

Also,

νi2(K) = E
[
X2

i 1Xi≥Ki

]
= exp(2µi + 2σ2

i ) · E
[
exp

(
−(2σi)

2

2
+ 2Z

)
· 1Xi≥Ki

]
.

Using lemma 7 we interpret the term exp
(
− (2σi)

2

2
+ 2Z

)
as the density of a new probability

measure Qi3 and find that under this measure Z − 2σ2
i is a normal distributed random

variable with mean 0 and variance σ2
i . Therefore EQi3

[1Xi≥Ki
] = Φn(di3) and so νi2(K) =

exp(2µi + 2σ2
i ) · Φn(di3). It remains to calculate

νi3(K) = E
[
X3

i · 1Xi≥Ki

]
= exp

(
3µi +

9

2
σ2

i

)
· E

[
exp

(
−(3σi)

2

2
+ 3Z

)
· 1Xi≥Ki

]

Using lemma 7 we interpret the term exp
(
− (3σi)

2

2
+ 3Z

)
as the density of a new probability

measure Qi4 under which Z − 3σ2
i is a normal distributed random variable with mean zero

and variance σ2
i . Therefore EQi1

[1Xi≥Ki
] = Φn(di4) and so E [X3

i 1Xi≥Ki
] = exp

(
3µi + 9

2
σ2

i

)
·

EQi1
[1Xi≥Ki

] = exp
(
3µi + 9

2
σ2

i

)
· Φn(di4).
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