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Abstract :- In the present work we consider the higher order linear parabolic equation in a
rectangle with initial and boundary conditions.We establish new a priori estimates for the
solutions to this problem in general Hölder anisotropic norms, under the assumption that the
coefficients and the independent term are continuous functions in the rectangle , they satisfy
the general Hölder condition in the rectangle of exponent al,with respect to the space
variable only and they satisfy the general Hölder condition on the boundary of exponent
bl, with respect to all variables . In this connection, however, we also obtain an estimate for
the modulus of continuity with respect to the time of the higher derivatives with respect to x of
the corresponding solutions.
On the basis of our new a priori estimates for the solution to this problem , we establish the
corresponding theorem on the solvability in general Hölder anisotropic spaces.
We apply our results in the linear theory to establish the local solvability with respect to the
time , in general Hölder anisotropic spaces, for the nonlinear parabolic equation , with the
same type of initial and boundary conditions.
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1.Introduction

In the present work we consider the higher order linear parabolic equation

Lu ≡ ut + −1m∑
r=0

2m

art,xDxr u = f t,x , (1)

in the rectangle RT = 0,T × −ρ,ρ with the initial condition
u ∣t=0 = ϕ0x, (2)

and the boundary conditions on ST = t,x ; 0 ≤ t ≤ T, x =−
+ ρ

bp
+

−
Dxu ∣

x =
+
− ρ

≡ ∑
q=0

mp
+
−

bqp
+

− Dxqu ∣
x =

+
− ρ

= ϕp

+

−
t, (3)

where 0 ≤ t ≤ T p = 1, ...,m ; 0  mp
+

−
 2m − 1, bqp

+

−
− real numbers satisfying the

complementary condition with respect to the operator Lu, p = 1, ...,m ;q = 0,1, ...,mp
+

− (See [1]).
Here x is a point in −ρ,ρ, t ∈ 0,T, ut = ∂u

∂t , Dx
r u = ∂ru

∂xr , r = 0, ...,m, Dx
0u ≡ u.,

We establish new a priori estimates for the solutions to the problem (1), (2),(3) in general
Hölder anisotropic norms, under the assumption that the coefficients art,x and the
independent term f t,xare continuous functions in the rectangle RT = 0,T × −ρ,ρ , they
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satisfy the general Hölder condition in the rectangle RT = 0,T × −ρ,ρ of
exponent βl, l > 0 with respect to the space variable only and they satisfy the general Hölder
condition on the boundary ST of exponent αl, l > 0 with respect to the variables
t,x (SeeTheorem 1 ).In this connection, however, we also obtain an estimate for the
modulus of continuity with respect to the time t of the derivatives Dxru, r = 0, ...2m, but not ut
(SeeTheorem1 ).
Note that in the works [1]-[13] and in many others, the a priori estimates are obtained under
the fulfillment of a (general) Hölder condition with respect to the totality of variables t,x on the
coefficients of equation 1.
On the basis of new a priori estimates for the solutions to the problem (1), (2),(3) we establish
the corresponding theorem on the solvability for this problem in general Hölder anisotropic
spaces (SeeTheorem 2 ).We assume that the coefficients of Equation (1) satisfy the uniform
parabolicity condition: for any t,x ∈ RT = 0,T × −ρ,ρ

−1m+1 a2mt,x > λ , . λ = const. > 0 , (4)
We apply our results in the linear theory ( for the problem (1),(2),(3) ) to establish the local
solvability with respect to the time t, in general Hölder anisotropic spaces, for the nonlinear
parabolic equation

ut = At,x,u,Dxu, ...,Dx2mu, (5)
in RT = 0,T × −ρ,ρ with the initial condition (2) and the boundary conditions (3)
(SeeTheorem 3).
In the present work, the equation (5) is linearized directly. No conditions are imposed here on
the nature of the growth of the nonlinearity of the function At,x,p0,p1...,p2m, where pr-scalar,
0 ≤ r ≤ 2m,which is defined for t,x ∈ RT = 0,T × −ρ,ρ and any pr, .0 ≤ r ≤ 2m.
The main assumption concerning to the function At,x,p0,p1...,p2mis the paraboliicity condition:
for any t,x ∈ RT and p0,p1...,p2m

−1m+1 Ap2mt,x,p0,p1...,p2m > 0 (6)
We require less smoothness conditions from the functions At,x,p0,p1...,p2mand ϕxthan in
the works [8] , [10]and [11] (See theorem 3).
In almost all the work we suppose that in the equation (1),the function f = f1 + f2; the functions
art,x, 0 ≤ r ≤ 2m and f1satisfy the general Hölder condition in RT = 0,T × −ρ,ρ of
exponent βl , l > 0 with respect to the space variable only and they satisfy the
(complementary ) condition general Hölder condition on the boundary ST of exponent
βl, l > 0 with respect to the variables t,x, f2 satisfies the general Hölder condition in
RT = 0,T × ρ,−ρ of exponent αl, l > 0 with respect to the space variable only and it
satisfies the ( co0mplementary )general Hölder condition on the boundary ST of exponent
αl, l > 0 with respect to the variable t,x ( See 14 )
All the coefficients and the independent terms are continuous in the rectangle
RT = 0,T × −ρ,ρ .Some close results have been established in [15] , [16], [17], [18],
[19],[20] and [22].

2.Basic Notations. Auxiliary Propositions.

We shall say that the function ut,x defined in the rectangle RT = 0,T × −ρ,ρ satisfies the
general Hölder condition of exponent βℓ, ℓ > 0 in RT = 0,T × −ρ,ρ with respect to the
space variables if there exists a constant C > 0 such that

|ut,x − ut,y| ≤ C|x − y|β|x−y|, t,x, t,y ∈ RT.
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The function βℓ is defined and continuous in 0 < ℓ < ∞.Moreover it has the following
properties:
Ia. βℓ → σ ∈ 0,1 if ℓ → 0+ or ℓ → +∞.
Ib. β′ℓℓ ln ℓ → 0 if ℓ → 0+ or ℓ → +∞.
Ic. if σ = 0 then βℓ ln ℓ → −∞ for ℓ → 0+ and
βℓ + β′ℓℓ ln ℓ > 0 for ℓ ∈0,ℓ0, where ℓ0 is sufficiently small number (we suppose that the
derivative β′ℓ exists and it is a continuous
function in R0 =0, ℓ0∪1/ℓ0,+∞.
Note that the condition Ic. introduces a new set of functions ( the functions ut,x that satisfy
the general Hölder condition with respect to x only ).In this new set of functions we will obtain
the corresponding existence and uniqueness theorems for the solutions to the problems
(1),(2),(3) and (5), (2),(3).
It follows from the conditions Ia, Ib, Ic that
IIa ℓβℓ is a monotonically increasing function for ℓ ∈ R0
IIb

kℓβkℓ−σ

ℓβℓ− σ
→ 1 if ℓ → 0+or ℓ → +∞.

uniformly respect to k, 0 < a ≤ k ≤ b < ∞.
We denote by Γi i = 1,2, the set of functions βℓ for which

Γ1ℓβℓ ≡ Γβℓ ≡ ∫
0

ℓ tβt−1dt < ∞ ; Γ2ℓβℓ ≡ Γ
Γ1ℓβℓ < ∞

For the functions βℓ ∈ Γ1 ( βℓ ∈ Γ2 ) we introduce the functions
Bβℓ
1 ≡ Bβℓ =

1
ln ℓ ln

Γβℓ

Γβ1
, Bβℓ

2 = BBβℓ
.

The function Bβℓ
j is a function of the type βℓ, j = 1,2.

See the examples of functions of the type βℓ in [21]
For the functions ut,x defined and Hölder continuous ( in the general sense) of exponent
βℓ, ℓ > 0 in the rectangle RT = 0,T × −ρ,ρ with respect to the space variable, we introduce
the following norms for 0  t  T
.

|u|0,0t = sup0≤ τ ≤ t |u|0,0τ , |u|0,βℓ
t = sup0≤ τ ≤ bt |u|0,βℓτ , (7)

where
|u|0,0t = supx∈−ρ,ρ |ut,x|, |u|0,βℓt = |u|0,0t + Hβℓ

t u, (8)
Hβℓ
t u = sup x,y ∈ −ρ,ρ

x≠y

|ut,x−ut,y|
|x−y|β|x−y|

(9)

For the functions ut,x that have continuous derivatives with respect to x up to the order m
(m = 1,2, ...) inclusively in the rectangle RT = 0,T × −ρ,ρ and satisfying the general Hölder
condition of exponent βℓ, ℓ > 0, with respect to space variables in the rectangle
RT = 0,T × −ρ,ρ we define the norms
|u|m,βℓτ = ∑

r=0

m
|Dxru|0,βℓτ ; |u|m,βℓ

t = sup0≤τ≤ t |u|m,βℓτ , m = 0,1,2, ...,Dx0u ≡ u (10)
We will denote by Cm,βℓ

t Rt, m = 0,1,2, ... the Banach space of functions uτ,x that are
continuous in Rt = 0, t × −ρ,ρ together
with all derivatives respect to x up to the order m, m = 0,1,2, ... inclusively and have a finite
norms (10).
For the functions ut,x that have continuous derivatives with respect to x up to the order m(
m = 0,1,2, ... inclusively in the layer Πt = 0, t × E1 , 0 ≤ t ≤ T , E1 = −∞ , ∞ ( or in the

3



half layer Πt
+

= τ,x ; 0 ≤ τ ≤ t, x ≥ 0 ,0 ≤ t ≤ T ) and satisfying the general Hölder
condition of exponent βℓ, ℓ > 0, with respect to space variables in the layer Πt ( or in the half
layer Πt

+ ) we define similarly the norms (7) ... (10) and the corresponding spaces
Cm,βℓ

t Πt (or the spaces Cm,βℓ
t Πt

+).
We define the parabolic distance between each two points P = θ,x ∈ RT, Q = τ,y ∈ RT , by
the magnitude

dP,Q =  |θ − τ| 1m + |x − y|2 1/2. (11)
For the functions ut,x that have continuous derivatives with respect to x up to the order m
(m = 0,1,2, ...) inclusively in the rectangle Rt = 0, t × −ρ,ρ and satisfying the general Hölder
condition of exponent βℓ, ℓ > 0, with respect to the variables t,x in the rectangle
Rt = 0, t × −ρ,ρ with we define the norms for 0  t  T
0  t  T with respect to the variables t,x, we introduce the following norms:

|u|0,0Rt = supτ,x ∈ Rt |uτ,x|, Hβℓ
RT u = sup P,Q∈Rt

P≠Q

uP−uQ
dP,QβdP,Q

(12)

|u|0,βℓ
Rt = |u|0,0Rt + Hβℓ

Rt u, (13)
|u|m,βℓ
Rt = ∑

r=0

m
|Dxru|0,βℓ

Rt m = 0,1,2, ..., Dx0u ≡ u (14)
We will denote by Cm,βℓRt, m = 0,1,2, ..., 0 ≤ t ≤ T the Banach space of functions
uτ,x that are continuous in Rt = 0, t × −ρ,ρ together with all derivatives respect to x up
to the order m, m = 0,1,2, ...inclusively and have a finite norm (14) With respect to the
coefficients of the equation (1) we assume that art,x ∈ C0,βℓ

T RT, 0 ≤ r ≤ 2m and

∑
|k|=0

2m
|ak |0,βl

T = B < ∞, ∑
|k|=0

2m
|ak |0,βl

ST = C < ∞, (15)

For equation (5) we consider in addition to the parabolicity condition (6) that there exists a
domain
HM = t,x ∈ RT; |u| ≤ M,|pr| ≤ M, 1 ≤ r ≤ 2m, M = const. in which the function
At,x,p0,p1, ...,p2m, and its derivatives with respect to p0, p1, ..., p2m , up to the second order
inclusively are continuous, satisfy the Lipschitz condition with respect to p0, p1, ..., p2m , the
general Hölder condition of exponent βℓ with respect to x and with the constant BM.They also
satisfy the general Hólder condition of exponent βℓ

2m with respect to t on the boundary
x =−

+ ρ, 0  t  T with the constant BM.Moreover
At,x, 0, 0, 0,  ∈ C0,αℓ

t RT , |At,x, 0, 0, 0|0,αℓ
T

≤ B0 (16)
All the mentioned derivatives are bounded in HM by the constant BM.

3.Bounds for solutions to the general boundary problem for linear parabolic equations.

Now we shall consider the equation (1) in the rectangle RT with the initial zero condition
u ∣t=0 = o (17)

and the boundary conditions (3)
We define

‖ϕp‖βpl
0,t = |ϕp |0, βl+2m−mp2m

0, t , for 1  mp,

‖ϕp‖βpl
0,t = |Dtϕp |0, βl2m

0,t + |ϕp |0, βl2m
0,t , for mp = 0.

(18)
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Let βp

+

−
l =

βl + 2m − mp
+
−

2m , p = 1, ...,m .The functions βp

+

−
l =

βl + 2m − mp
+
−

2m ,p = 1, ...,m,are
functions of the type βl,where βℓ → σ ∈ 0,1 if ℓ → 0+or ℓ → +∞. Note that

βpl → βp

+

−
l →

σ + 2m − mp
+
−

2m ∈ 0,1 if ℓ → 0+or ℓ → +∞.
In all the work we suppose that

ϕp

+

−

βp

+
−

l

0,T

< ∞, p = 1, ...,m (19)

Theorem1. Let ut,x ∈ C2m,Bβℓ
2

T RT be a solution to the problem (1), (17), (3) in the rectangle
RT . Assume that f1 ∈ C0,βℓ

T RT ,
f2 ∈ C0,αℓ

T RT, βℓ, αℓ ∈ Γ2, βℓ → σ1, αℓ → σ2 if ℓ → 0+ or ℓ → +∞, 0 ≤ σ1 < σ2 < 1,
|f1 |0,βl

ST < ∞, |f2 |0,βl
ST < ∞.

Furthermore the conditions (4) , (15)and (19 )hold. Then there exists a constant K, depending
only on n,m,λ,B,C,T,αℓ,βℓ, Bβℓ and on the constants of the complementary condition in
ST and in t = 0.such that for 0 ≤ t ≤ T the next estimate holds

|u|2m,Bβℓ
2

Rt ≤ K  f1 0,βℓ
t

+ f1 0,βℓ
St

+ t
σ2−σ1
2m |f2|0,αℓ

t + |f2|0,αℓ
St +

+∑
p=1

m

‖ϕp
+‖0, βp+l

0,t
+ ‖ϕp

−‖0, βp+l
0,t

. (20)

Proof. Let xo ∈ −ρ,ρ and d ∈ 0,1. We introduce the function ηx = μ|x − x0 |,
where μl is a decreasing infinitely differentiable function on l > 0, μl = 1 for 0 ≤ l ≤ d;
μl = 0 for l ≥ 2d and satisfying the inequality

∑
s=1

2m+1

ds|μsl| ≤ K (21)

The function ωt,x = ηxut,x satisfies the equation
L01ω ≡ ωt + −1ma2mt,x0Dx2mω = a2mt,x − a2mt,x0Dx2mω + f̂1t,x + ηxf2t,x (22)
in the rectangle RT, where

f̂1t,x = −1m+1∑
r=0

2m−1

art,xDxru + f1t,x ηx + −1ma2mt,x ∑
r=0

2m−1

Cr2m η2m−rDxru ,

Cr2m −binomial coefficients
The function ωt,x = ηxut,x ω ∈ C2m,Bβℓ

2
T RT satisfies the initial zero condition (17 ) and

the boundary conditions ( for x0 = −ρ )

bp
+

−
Dxω ∣

x=
+
− ρ

≡ ∑
q=0

mp
+
−

bqp
+

− Dxqω ∣
x=

+
− ρ

= ϕp

+

−
t ; p = 1, ...,m ; 0  mp

+

−
 2m − 1 (23)

We next find a bound for the solution ωt,x = ηxut,x to the problem (22) ,(17), (23) in
−ρ,−ρ + 2d.
The mapping y = x − −p y = x + ρ , x ∈ −ρ,ρ transforms the equation ( 22 ) into the
equation
L01ω ≡ ωt + −1ma2mt, 0Dy2mω = a2mt,y − a2mt, 0Dy2mω + f1t,y + ηy f 2t,y (24)

where
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ωt,y = ηyut,y ≡ ηy − ρut,y − ρ, y0 = x0 + ρ = 0 ,a2mt,y0 = a2mt, 0 ,
f 1t,y = f̂1t,y − ρ; f 2t,y = f2t,y − ρ;
The function ωt,y satisfies the equation (24) in the rectangle RT

+
= 0,T × 0,2ρ, the

initial zero condition
ϖ ∣t=0 = o (25)

and the boundary conditions

bp−Dxω ∣y=0 ≡ ∑
q=0

mp−

bqp− Dxqω ∣y=0 = ϕp
− t , p = 1, ...,m ; 0  mp−  2m − 1 (26)

We next find a bound for the solution ωt,y = ηyut,y to the problem (24) ,(25), (26) in the
rectangle Rt,2d = 0, t × 0,2d + ρ, 0 ≤ t ≤ T.
The function ωt,y ∈ C2m,Bβℓ

2
T ΠT

+
 satisfies the equation (24) in the half layer

ΠT
+
= t,y ; 0  t  T, y  0 observe that the functions ηy and ωt,y vanishes for

|y| ≥ 2d, 2d < ρ.), the initial zero condition (25) and the boundary conditions (26).
We can represent the solution to the problem ( 25),( 26 ),( 27 ) in the form

ωt,y = u1 + u2 (27)

u1t, z = ∫
0

t
∫
E1

Gx0t,τ; z − ξ ∑
j=1

2

Fj
∗
τ,ξ dξdτ (28)

where
Gx0t,τ;y − ξ is the fundamental solution to the operator
L01 , F1τ,ξ = a2mt,ξ − a2mt, 0Dy2mω + f1t,ξ , F2τ,ξ = ηξ f 2t,ξ and

Fj
∗
τ,ξ =

Fjτ,ξ , ξ ≥ 0
Fjτ,−ξ , ξ < 0

, j = 1,2

The function u2 = ωt,y − u1 is a solution to the problem
L01u2 = 0 (29)

u2 ∣t=0 = 0 (30)
bpDyu2 ∣y=0 = ψpt (31)

Where
ψpt ≡ η0ϕp− t − bpDxu1t, 0 , p = 1, ...,m

The function u1t, z ∈ C2m,Bβℓ
2

T ΠT is a solution to the Cauchy problem for the equation

L01u1 ≡ ut1 + −1ma2mt, 0Dy2mu1 = a2mt, z − a2mt, 0Dz2mu1 +
+ f1t, z + ηz f 2t, z (32)

with the initial zero condition (17) in the layer ΠT = 0,T × E1 , E1 = −∞ , ∞ .
Reasoning as in the proof of theorem 1 in [19] , choosing 0 < d = d1 < 1 small enough ( see
19 ), such that dBβd

2
< 1

2K d and d <
ρ

2 we obtain that the solution u1t, z to the Cauchy
problem (32),(17) satisfies the next inequality for 0 ≤ t ≤ T.(ωt,y ∈ C2m,Bβℓ

2
T ΠT

+
)

|u1|2m,Bβℓ
2

t
≤ K d1

−2m+1|u|2m−1,Bβl
2

t,2d1 + d1
−2m−1 f1 0,Bβℓ

t,2d1
+ t

σ2−σ1
2m |f 2|0,Bαℓ

t,2d1 . (33)

where the symbol t, 2d1 means that the norms in the right hand side of (33) are consider in
the rectangle 0, t × 0,2d1 .
Now we shall consider the solution u2t,x to the problem (29) - (31).At first we next find a
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bound for the norm ‖ψpt‖B2 βpl
0,t , p = 1, ...,m ; 0 ≤ t ≤ T. Reasoning as in the proof of

theorem 3 in [19], we find the next estimate for 0 ≤ t ≤ T

‖ψp‖ Bβpl

0,t < Kd1
−2m+1|u|2m−1,Bβl

2
t,2d1 + t

σ2−σ1
2m d1

−2m−1|f 2|0,Bαℓ

t,2d1 + f2
0,

Bαℓ
2M

t
+

´ + d1
−2m−1 f1 0,Bβℓ

t,2d1
+ f1

0,
Bβℓ
2M

t

+ ∑
r=0

2m−1

|Dyrut, 0|
0,
B
βl
2

2m

0,t
 + ‖ϕp

−‖ Bβpl

0,t
, p = 1, ...,m (34)

where fjt = fjt, 0 , j = 1,2
Now we consider the equation

L0v ≡ vt + −1mDy2mv = 0, (35)
The functions

vpt,y = ∫
0

t

Gp t − τ ;y ψpτdτ, p = 1, ...,m (36)

where
Gp t − τ ;y - component of the Green function to the problem ( 35 ), (30),( 31 ).

We can represent the solution vt,y ∈ C2m,Bβl
2 ΠT

+
, ΠT

+
= t,x ; 0  t  T, x  0 to the

problem (35),(30),( 31 ) in the form (See [8],[10])

vt,y = ∑
p=1

m

vpt,y (37)

and the next inequality holds
|vp |2m , Bβl

2
t

 K ‖ψp‖Bβpl

0,t , p = 1, ...,m (38)

K is a constant depending on n,m,λ,B,T,C,βl,Bβl
2 and on the constants of the

complementary condition in ST = t,x ; 0  t  T,x =−
+ ρ and in t = 0.

We can represent the solution u2t,y to the problem (29) - (31) in the form (37) and applying
the inequalities (38) and (34) ,we obtain
the next estimate ( by going back to the variable t for 0 ≤ t ≤ T.

|u2 |2m , Bβl
2

t
≤ Kd1

−2m+1|u|2m−1,Bβl
2

t,2d1 + t
σ2−σ1
2m d1

−2m−1|f 2|0,Bαℓ

t,2d1 + f2
0,

Bαℓ
2M

t
+

+d1
−2m−1 f1 0,Bβℓ

t,2d1
+ f1

0,
Bβℓ
2M

t
+ ∑

r=0

2m−1

|Dyrut, 0|
0,
B
βl
2

2m

0,t
 +∑

p=1

m
‖ϕp

−‖ Bβpl
−

0,t
, (39)

Combining the inequalities (33) and (39) we can get from (27) the estimate ( 0 ≤ t ≤ T
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|ω|2m , Bβl
2

t
≤ Kd1

−2m+1|u|2m−1,Bβl
2

t,2d1 + t
σ2−σ1
2m d1

−2m−1|f 2|0,Bαℓ

t,2d1 + f2
0,

Bαℓ
2M

t
+

+d1
−2m−1 f1 0,Bβℓ

t,2d
+ f1

0,
Bβℓ
2M

t
+ ∑

r=0

2m−1

|Dyrut, 0|
0,
B
βl
2

2m

0,t
 +∑

p=1

m
‖ϕp

−‖ Bβpl
−

0,t
 (40)

By other hand from the estimates of the moduli of continuity with respect to the time for the
derivatives of the solution to the Cauchy problem (32), (17) in the layer
ΠT = 0,T × E1 , E1 = −∞ , ∞ (See theorem 3 in [ 19 ] ) and from the estimates of the
moduli of continuity with respect to the time for the derivatives
Dy2m−ju2t,y, j = 0,1, ..., 2m − 1 , y ≥ 0 , 0 ≤ t2 < t1 ≤ T of the solution u2t,y to the problem
(29), (30) , (31) in the half layer ΠT

+
= t,y ; 0  t  T, y  0 (See [ 10 ] ) and from the

estimates (34),(37), (39) we can get from (27) the estimate

Dy2m−jωt1,y − Dy2m−jωt2,y

|t1 − t2 |
1
2m

B
β t1−t2

1
2m

2
+ J

≤ Kd1
−2m+1|u|2m−1,Bβl

2
t1 ,2d1 +

+ t1
σ2−σ1
2m d1

−2m−1|f 2|0,Bαℓ

t1,2d1 + f2
0,

Bαℓ
2M

t1


+ d1
−2m−1 f1 0,Bβℓ

t1,2d1
+ f1

0,
Bβℓ
2M

t1
+

+ ∑
r=0

2m−1

|Dyrut1, 0|
0,
B
βl
2

2m

0,t1   +∑
p=1

m
‖ϕp

−‖ Bβpl
−

0,t1  , (41)

Choosing o < d = d0 small enough (See [19]), such that dBβd
2

< 1
2K d and d = 1

2 min {1,
ρ

2  we
find that (by going back to the space variable x

|u|2m , Bβl
2

Rt,d0 ≤ |ω|2m , Bβl
2

Rt,d0 ≤ K|u|2m−1,Bβl
2

Rt + t
σ2−σ1
2m |f2|0,Bαℓ

t,2d0 + f2 0,
Bαl
2m

St
+ f1 0,

Bβl
2m

St
+

+ f1 0,Bβℓ

t,2d0 . +∑
p=1

m
‖ϕp

−‖ Bβpl
+

0,t
 (42)

For x0 = ρ we obtain similarly the next estimate

|u|2m , Bβl
2

Rt,d0 ≤ K|u|2m−1,Bβl
2

Rt + t
σ2−σ1
2m |f2|0,Bαℓ

t,2d0 + f2 0,
Bαl
2m

St
+ f1 0,

Bβl
2m

St
+

+ |f1 |0,Bβℓ

t,2d0 . +∑
p=1

m
‖ϕp

+‖ Bβpl
+

0,t
 (43)

where the norms in the right hand side are given in the rectangle 0, t × ρ − 2d0,ρ.

For x0 ∈ Iρ
d0
2 ≡ −ρ +

d0
2 ,ρ −

d0
2 we derive similarly the next interior estimate in the rectangle

Rt,d0
ρ

= 0, t × −ρ + d0,ρ − d0  , 0 ≤ t ≤ T

|u|2m , Bβl
2

Rt,d0
ρ

≤ K f1b 0,Bβℓ

t,Iρ
d0
2

+ t
σ2−σ1
2m |f2|0,Bαℓ

t,Iρ
d0
2
b. + |u|2m−1,Bβl

2
t,Iρ

d0
2

 (44)

where the symbol t, Iρ
d0
2 means that the norms in the right hand side of (44) are considered in
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the rectangle 0, t × −ρ +
d0
2 ,ρ −

d0
2 .

Now we can get from (42)-(44) the following estimate in the rectangle Rt, 0 ≤ t ≤ T :

|u|2m , Bβl
2

Rt ≤ K f1 0,
Bβl
2m

St
+ f1 0,Bβℓ

t . + |u|2m−1,Bβl
2

Rt + t
σ2−σ1
2m |f2|0,Bαℓ

t + f2 0,
Bαl
2m

St
+

+∑
p=1

m

‖ϕp
+‖0, βp+l

0,t
+ ‖ϕp

−‖0, βp−l
0,t



Applying the interpolation inequality (See [19]) with  small enough and arguing as in the last
part of the proof of theorem 1 in 16 to eliminate |u| 0,0Rt we get the estimate (21)
Remark 1 We can reduce the boundary problem(1), (2) ,(18) with non-zero initial condition
u ∣t=0 = ϕ0x to the boundary value problem (1), (17),(18) by means of the transformation
u = ut,x − ϕ0x ,where ϕ0x ∈ C2m,βl−ρ,ρ.

4.Existence and uniqueness theorems.

Theorem 2. Suppose that all conditions of theorem 1 are true.Assume furthermore that the
following consistency conditions hold

∑
q=0

mp
+
−

bqp
+

− Dxqϕ0 ∣
x=

+
− ρ

= ϕp

+

−
0, if mp

+

−
 1, p = 1, ...,m ; bqp

+

−
ϕ0x ∣

x=
+
− ρ

= ϕp

+

−
0, if mp

+

−
= 0.

b0p
+

− f10,x + f20,x − −1m∑
r=0

m

ar0,xDxrϕ0x ∣
x=

+
− ρ

= ϕp

+

−
0.

Then there exists a unique solution ut,x ∈ C2m,Bβℓ
2

T RT to the boundary problem (1),(2),(3)
with continuous derivatives ut in RT.
We can get the proof of this theorem on the basis of the new a priori estimates established in
this work and with the aid of the method of continuity in a parameter ( see 9 and 24| .
We proceed now to formulate the local existence theorem for solutions to the non- linear
boundary value problems for the equation (5).
( with the initial zero condition (17) and the boundary conditions (3) )

Let βp
+

−
l =

βl+2m−mp
+
−

2m .We will suppose that

ϕp

+

−

βp

+
−

l

0,T

< ∞ (45)

Here we consider that the function
At,x,u,Dxu, ...,Dx2mu = Lu + Ft,x,u,Dxu, ...,Dx2mu + Lu + At,x, 0, 0, ..., 0
where
Lu = AP0t,x, 0, ..., 0u + AP1t,x, 0, ..., 0Dxu + ... +AP2mt,x, 0, ..., 0Dx2mu,
Ft,x,u,Dxu, ...,Dx2mu = At,x,u,Dxu, ...,Dx2mu − Lu − At,x, 0, 0, ..., 0
Theorem 3. Suppose that all assumptions with respect to the function At,x,p0,p1, ...,p2m hold.
Moreover 0  σ1 < σ2 < 1 and the
following consistency conditions hold

ϕp

+

−
0 = 0 , if mp

+

−
 1, ϕp

+

−
0 = 0 ,
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ϕp

+

−



0 = b0p A0.x, 0, ..., 0 ∣
x=

+
− ρ

, if mp
+

−
= 0 (46)

Then there exists t0 ∈ 0,T, determined by the above assumptions, such that the problem ,
(5), (17), ( 3) has in the rectangle
Rt0 = 0, t0  × −ρ,ρ a unique solution ut,x ∈ C2m,Bβℓ

2 Rt0 with a continuous derivative ut in
Rt0 = 0, t0  × −ρ,ρ.
Proof. We will prove Theorem 3 by means of an iterative process in which one successively
solves the equations
utν = Luν + Ft,x,uν−1,Dxuν−1, ...,Dx2muν−1 + At,x, 0, ..., 0 , ν = 1,2, ..., (47)
with the zero initial condition (17 ) and with the boundary conditions

bp
+

−
Dxu ∣

x=
+
− ρ

= ϕp

+

−
t, p = 1, ...,m (48)

Furthermore
u0t,x = 0 (49)

We will show that there exists such a sequence of functions uνt,x,ν = 1,2, ...,defined in some
rectangle 0, t0  × −ρ,ρ with t0 small enough. Moreover they are bounded in C2m,Bβℓ

2 Rt0.
We assume that there exists the functions uμt,x, μ ≤ ν − 1 and they satisfy the inequality

|uμ |2m,BβL

Rt0 ≤ q = const. = min1,M (50)
where the numbers t0 and η are still to be determined.
Now we can consider the equation (47) as a linear equation of type (1), where
f1t,x = Ft,x,uν−1,Dxuν−1, ...,Dx2muν−1, f2t,x = At,x, 0, ..., 0.
Reasoning as in the proof of theorem 1 ,using lemma1 and theorem 2, we conclude that there
exists uνt,x ∈ C2m,Bβℓ

2 Rt0 and it satisfies the inequality

|uν |2m,Bβℓ
2

Rt0 ≤ K1 |uν−1 |2m,Bβℓ
2

t0  + |uν−1 |2m,Bβℓ
2

St0 + t0
γ (51)

We will useK1,K2,K3,..., to denote constants, depending on n,m,λ,αℓ,βℓ, Bβℓ
2 ,C, ;B0,BM but

not depending on t0. From the inequality (55) it follows the estimates
|uν |2m,Bβℓ

2
Rt0 ≤ 2K1 q2 + t0r

ων ≡ |uν − uν−1 |2m,Bβl
2

Rt0 ≤ K2 |uν−1 |2m,Bβl
2

t0  + |uν−2 |2m,Bβl
2

t0  ⋅ |uν−1 − uν−2 |2m,Bβl
2

t0  +

+ |uν−1 |2m,Bβl
2

St0 + |uν−2 |2m,Bβl
2

St0 ⋅ |uν−1 − uν−2 |2m,Bβl
2

St0 (52)

Putting 2K1q ≤ 1
2 , 2K1t0

γ
= 1

2 q we find that |uν |2m,Bβℓ
2

Rt0 ≤ 1
2 q +

1
2 q = q.

In the last inequalities we have selected
q = min 1

4K1
, 1
8K2
, 1,M , t0 =

q
4K1

1
γ (53)

From (50) and (53) it follows that ων  4K2qων−1 , then
ων ≤ 1

2 ων−1 , ων ≤ 1
2ν−1

ω1 = 1
2ν−1
|u1 |2m,Bβl

2
Rt0

We have determined the number t0 by (53) , then the sequence uνt,x converges in the
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space C2m,Bβℓ
2 Rt0.Consequently we can get a limit for ν → ∞ in the equation (47).

We proceed now to prove the uniqueness of the solution of the problem ( 5 ), (17), (3).
Assume that there exists two solutions u1t,x, u2t,x of this problem in the corresponding
rectangles Rt0 and consider the function u = u1t,x − u2t,x . This function satisfies the
equation (in the smaller of the corresponding rectangles Rt0

ut = Lu

Lu ≡ ∫
0

1

Aut,x,τz1 + 1 − τz2dτu + ∫
0

1

Apt,x,τz1 + 1 − τz2dτ,Dxu + .

+ ∫
0

1

Ap2mt,x,τz1 + 1 − τz2dτ,Dx2mu (54)

Here the components of the vector function zr = ur,Dxur, ...,Dx2mur, r = 1,2 belong to the
space C0,Bβℓ

2 Rt0 and the coefficients of the operator L also belong to this space. Since ut,x
satisfies the zero initial condition (17) and the boundary conditions

bp
+

−
Dxu ∣

x=
+
− ρ

= 0, p = 1, ...,m (55)

it follows that ut,x ≡ 0 .This completes the proof of Theorem 3.
Remark 2. We can reduce the boundary problem ( 5 ) , ( 2 ), (3) with non-zero initial condition
u ∣t=0 = ϕ0x to the boundary problem (5),(17),(3) with the zero initial condition u ∣t=0 = 0 by
means of the transformation u = ut,x − ϕ0x , where .ϕx ∈ C2m,βlEn.
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