Chaos Generator via SCR Relaxation Oscillator
Sinuhé Benítez, Leonardo Acho, and Julio C. Rolón G.
Centro de Investigación y Desarrollo de Tecnología Digital del IPN (CITEDI-IPN)\(^1\)
2498 Roll Dr. #757, Otay Mesa, San Diego, CA, 92154, USA

Abstract: An SCR (Silicon Controlled Rectifier) relaxation oscillator was used to produce chaos via Hysteresis Feedback. Evaluating the facts that a chaotic system presents random like motions with high sensibility to initial conditions and there exits a strange attractor, we showed, numerically with PSPICE, that our design present these facts concluding that our system is chaotic.

Keywords: Chaotic Oscillator, Silicon Controlled Rectifier.

I. Introduction:
Recently new designs of chaos generators have been reported (see [1], [2], and [4]-[12]). In [5] the authors presented a novel chaos generator via Hysteresis feedback, which was used in [1] to produce a new Hysteresis chaotic circuit. In [12] a chaotic generator was shown using the Wien-Bridge oscillator.

Motivated by the fact that an oscillator with Hysteresis feedback can produce chaos ([1], [5], [7]), we could design a new chaotic circuit using the SCR relaxation oscillator shown in [3]. Numerical experiments with PSPICE are shown to prove chaotic behavior of our design using the events that a chaotic system presents random like motions with high sensibility to initial conditions and there exits a strange attractor.

II. Chaotic Oscillator Design
The general representation of a nonlinear oscillator with Hysteresis feedback is depicted in Fig. 1

![Fig. 1 Nonlinear oscillator with Hysteresis feedback.](image1)

From the electronics point of view, the nonlinear oscillator is armed with capacitors and inductors; in this way, the output "y" could be a voltage on a capacitor and the input "u" could be a current injected to an inductor. In our design, the conditioner circuit A is a buffer and the conditioner circuit B is a voltage to current converter. The nonlinear oscillator used is show in Fig. 2 and it was adapted from the one designed on [3].

![Fig. 2 Nonlinear oscillator (SCR relaxation Oscillator).](image2)

The conditioner circuit A utilized is shown in Fig. 3, which is a buffer follow by offset elimination circuit. The input to the buffer is the capacitor voltage Vc(t).

![Fig. 3 Conditioner Circuit A (V+=15V, V-=15V).](image3)

The Hysteresis circuit developed is shown in Fig. 4.

![Fig. 4 Hysteresis Circuit (V+=13V, V-=13V).](image4)

\(^1\)Research center located in Tijuana, México.
Finally, the conditioner circuit \(B \) armed is illustrated in Fig. 5.

![Conditioner circuit](image)

Fig. 5 Conditioner circuit \(B \) (Voltage to current converter circuit) \((V^+=15V, V^-=-15V)\).

III. Numerical experiments

The whole system shown in Fig. 1 was implemented with **PSPICE**. The **SCR** employed was taken from the library of **PSPICE** with component number 2N5061. Simulation results for \(I_L(0)=0.1 \text{ mA} \) and \(V_c(0)=0.5V \) are shown in Figures 6, 7 and 8.

![Capacitor’s voltage](image)

Fig. 6 Capacitor’s voltage.

![Inductor’s current](image)

Fig. 7 Inductor’s current.

![Phase diagram](image)

Fig. 8 Phase diagram (capacitor’s voltage versus inductor’s current).

Also, we changed slightly the initial conditions in our experiments and we could realized that our design presents high sensitivity to initial conditions; that is, the evolution in time are stronger different in spite of the almost the same initial conditions.

References:

