A chaotic oscillator using the Van der Pol dynamic immersed
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Abstract

In the present work a new chaotic oscillator
is presented by immersing the dynamics of
the Van der Pol oscillator into a Jerk system
(a third order differential equation). The map
of Poincaré was used to prove chaotic
behavior.
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l. INTRODUCTION

In the paper presented by J. C. Sprott in
2000 [1], Sprott shows many Jerk systems
that exhibit chaotic behavior. A great part of
these chaotic systems can be implemented
using analog electronics ([1]). Also, a huge
amount of chaotic oscillators have appeared
recently (see, for instance, the references
given in [1]). In this paper, we present a new
chaotic oscillator obtained by inmersing the
dynamics of a slightly modified Van der Pol
oscillator into a Jerk system. The chaotic
test was done using the map of Poincaré
(Banerjce, page 61, [3]).

Il. JERK SYSTEMS AND CHAOTIC
OSCILLATORS

A Jerk system is a third order differential
equation (a nonlinear one) of the form [1]:
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where X,X,X, and X represent position,

velocity, acceleration and Jerk (the time
derivative of the acceleration), respectively.
For instance, the following Jerk system:

X+X-xx+ax+bh=0 )

presents chaotic motion with a=0.9 and
b=0.4 [1]. Its strange attractor is shown in
Fig. 1.

Fig. 1 Phase portrait using
x(0) = x(0) = x(0) = 0.1.

The Van der Pol dynamics is given by [2]:
X+&(x? -D)x+x=0 (3)

which is a second order differential equation.

Its phase portrait is pictured in Fig. 2 where

it is shown the presence of a limit cycle (a
stable one).

Fig. 2 Phase portrait using
X(0) = x(0) = 0.1 and &=1.



Motivated by the fact that a Jerk system can
produce chaos, first, we slightly modifiy the
dynamics of Van der Pol as follows:

axsign(x) + &(x2 —1)x+x =0 (4)

where a is a constant; after that, we
immerse (4) into a Jerk system:

X = (% X X)

(5)
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Its phase portrait (of (5)), with a=0.01 and
&7, is shown in Figure 3 and Figure 4,
where x(0) = x(0) = %(0) =0.1.

Fig. 3 Phase portrait.

Fig. 4 Three-dimensional phase portrait.

Other values of a and ¢ that produce chaos
are (a,& ={(0.03,7),(0.01,6)}. Hereafter we
will use a=0.01 and £=7.

. CHAOTIC TEST

The chaotic test we use to prove chaotic
motion for system (5) is the map of Poincaré

[3]. This map is obtained when we place, in
appropriate form, a surface, called the
“Poincaré section”, into the state space [3]
(see Fig. 5).
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Fig. 5 Poincaré map.

In this way, and roughly speaking, the
Poincaré map is a mapping of the points in
which the trajectory intersects the Poincaré
section. If the system is periodic, the
Poincaré map will contain a few points;
however, if the trajectory is chaotic, then, the
Poincaré map will contain a huge amount of
points distributed over the Poincaré section
producing something similar to a strange
attractor [3]. In Fig. 6 the map of Poincaré is
shown placing the Poincaré section in the

plane (X — X) in X = Oof our system.

Fig. 6 Poincaré map.

From Fig. 6 follows that the proposed
systems is a chaotic Jerk system.
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